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Abstract
Brain perivascular macrophages (PVMs) are attracting increasing attention as this 
emerging cell population in the brain has multifaced roles in supporting the central 
nervous system structure, brain development, and maintaining physiological func-
tions. They also widely participate in neurological diseases such as neurodegeneration 
and ischemic stroke. Moreover, PVMs have been reported to have both beneficial and 
detrimental effects under different pathological contexts. Advanced research tech-
nologies allowed the further in-depth study of PVMs and revealed novel concepts in 
their origins, differentiation, and regulatory mechanisms. Deepened understanding 
of the roles of PVMs in different brain pathological conditions can reveal novel phe-
notypic changes and regulatory signaling, which might pave the way for the develop-
ment of novel treatment strategies targeting PVMs.
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1  |  INTRODUCTION

Innate immune cells in the brain are increasingly recognized as an 
important player in maintaining brain homeostasis and the develop-
ment of brain diseases.1–4 In addition to the widely studied microglia 
in the brain parenchyma, non-parenchymal border-associated mac-
rophages (BAMs) such as PVMs, are one type of innate immune cells 
in the brain that have also been shown to participate in brain devel-
opment, maintenance of homeostasis, neurodegenerative diseases, 
ischemic stroke, and other processes.5 Understanding the functions 
of PVMs in cerebral steady-state and disease progression can pro-
vide important insights for the development of treatment strategies 
for neurological diseases in the future. For this purpose, we sum-
marize the latest research on PVMs in recent years, including the 
effects and modulatory mechanisms in neurodegeneration diseases, 
which are the novelties of this review.

2  | DISCOVERY OF PVMs IN THE BRAIN

PVMs were first discovered in the 1980s by Mato et al6 using 
trypan blue and horseradish peroxidase injection into the ventri-
cles, which were taken up by slender cells located in the perivas-
cular space. They did a lot of research over the following several 
decades and found fluorescent granular perithelial (FGP) cells 
that could remove the metabolic waste of brain parenchyma with 
globular vacuolated inclusions in their cytoplasm,7 and incorpo-
rate lipids in circulation.8 Notably, FGP cells were distributed in 
the space around cerebral arterioles and venules, which was dif-
ferent from the pericytes embedded in the basement membrane 
of capillaries.9 At the same time, in 1988, Hickey et al also de-
scribed the slender and glycoprotein ED2 positive “perivascular 
microglia” around the blood vessels.10 As microglia do not express 
ED2 (CD163),11 these perivascular cells were confirmed to be dif-
ferent from microglia. Thus, scientists then gradually recognized 
that PVMs are unique myeloid cells located in the brain perivascu-
lar Virchow-Robin space (VRS).

It is now well-accepted that BAMs are non-parenchymal mac-
rophages in the central nervous system (CNS) and located in the 
boundary regions including VRS, meninges, and choroid plexus.12 As 
the name suggests, PVMs are macrophages located in the perivas-
cular VRS of the CNS. Specifically, the VRS refers to invaginations 
surrounding cerebral vessels, and distinct interfaces connecting 
blood, cerebrospinal fluid (CSF), and brain parenchyma.13,14 PVMs 
exactly reside around arterioles and venules both in cortical and 
subcortical regions of the mouse brain.15 This special anatomical lo-
cation of PVMs allows their direct contact with blood vessels and 
parenchyma, providing structural and functional support for the 
blood–brain barrier (BBB).16 PVMs are also essential in maintaining 
brain homeostasis. In recent years, increasing evidence support that 
PVMs are key components of the brain resident immune system and 
are involved in number of pathological processes, especially in neu-
rodegeneration and ischemic stroke.7,8,17–24

3  | DEVELOPMENT AND 
DIFFERENTIATION OF PVMs

3.1  | New views on the origin of PVMs

The origin of PVMs has been discussed for a long time.25–27 For dec-
ades, it was thought that all PVMs came from circulating monocytes 
and were updated frequently.10,28–30 However, this conclusion was 
questioned later, because it was based on the experiments of full-
body irradiation and bone marrow transplantation in rodents. Both 
of the experiments may cause the overexpression of chemokines 
and the destruction of the BBB, resulting in the entry of the bone 
marrow-derived monocytes into the CNS.

New views on the origin and renewal of PVMs have been put for-
ward through large-scale single-cell RNA-sequencing (scRNA-seq), 
parabiosis, fate-mapping, and in vivo imaging. In general, PVMs and 
microglia are both of prenatal origin and PVMs have a closer tran-
scriptional relationship with microglia than monocytes. It is now well 
accepted that PVMs arise from early erythro-myeloid progenitors 
in the yolk sac, which migrate into the brain in the early stage of 
the embryo.31 Using scRNAseq, two phenotypically and transcrip-
tionally distinct macrophages, which separately differentiate into 
microglia and PVMs, can be found and distinguished in the devel-
oping brain and the yolk sac, indicating an early separation into two 
different populations. In addition, the development of PVMs is inde-
pendent of TGF-β, while microglia need TGF-β for development.32 
In normal conditions, PVMs are a stable cell population with a long 
lifespan and self-renewal ability after birth. When the PVMs are de-
pleted by laboratory methods, they can be replenished from bone 
marrow-derived monocytes.

3.2  |  Regulatory mechanisms of the 
differentiation of PVMs

The development and normal functions of PVMs are regulated by 
many factors, including transcription factors and cytokines. We 
summarize several key influencing factors modulating PVMs.

3.2.1  |  Transcriptional regulation

In recent years, transcription factors have been shown as the key 
determinants in the orchestration of myeloid identity and differen-
tiation fates.

PU.1 is a member of the large family of E-twenty six transcription 
factors and it is the product of the oncogene Spi1. PU.1 exists in 
almost all myeloid-specific and many lymphoid-specific gene regula-
tory sequences, and most PVM-specific enhancers contain binding 
domains for PU.1.33 The absence of Spi1 in mice can lead to fatal 
defects in fetal liver and/or newborn hematopoiesis, including the 
complete loss of macrophages.34,35 The more recent analysis has 
demonstrated that the absence of PU.1 impairs the repopulation 
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capacity of the hematopoietic stem cells (HSCs), impeding their dif-
ferentiation into the common myeloid progenitors and the common 
lymphoid progenitors.36–38

The survival of brain PVMs also depends on transcription factor 
c-MAF, which is part of the large Maf family of transcription factors. 
Conditional knockout of c-MAF in macrophage lineages will cause 
ablation of PVMs in the CNS.39

MAFB also belongs to the Maf family, with the function of con-
trolling the proliferation rate of PVMs through the epigenetic regu-
lation of self-renewing genes.40,41 Beyond that, MAFB is also able to 
limit the ability of macrophage colony-stimulating factor (M-CSF) in 
differentiating HSCs to PVMs.39,42

Interferon regulatory factor 8 (IRF8) is critically involved in 
driving the maturation and diversity of brain macrophages. The de-
ficiency of IRF8 will cause alternations in PVMs development and 
function.43,44

3.2.2  |  The cytokines that regulate myeloid cell fate

M-CSF, also known as CSF-1 is the major cytokine modulating mac-
rophages' proliferation, differentiation, and functional regulation.45 
M-CSF is produced by a variety of stromal and epithelial cells. It 
transmits signals through M-CSF receptors (M-CSFR/CSF-1R/
CD115). It has been shown that M-CSF can guide the myeloid fate 
of HSCs by inducing PU.1,46 and it is important in establishing and 
maintaining tissue-resident macrophage pools.47 In addition to influ-
encing the differentiation and maintenance of macrophages, M-CSF 
can also stimulate the survival and self-renewal of macrophages in 
steady-state and inflammation. Moreover, it is involved in the polari-
zation of macrophage activation.48,49

Interferon-gamma (IFN-γ) can interact with PVMs by upregu-
lating major histocompatibility complex (MHCII) and B7 coreceptor 
expression, and shift PVMs from anti-inflammatory to proinflamma-
tory cytokine profiles.50

The above evidence suggests that IFN-γ has a direct effect on 
the phenotypic switch of PVMs, while M-CSF could also be an im-
portant determinant cytokine of PVM cell fate and phenotypic po-
larization. However, further studies are warranted to identify the 
roles of different cytokines in the regulation of PVMs.

4  |  CHARACTERIZATION AND 
RECOGNITION OF PVMS IN THE BRAIN

PVMs are characterized by their anatomical localization, phagocy-
tosis ability, and molecular markers. Firstly, PVMs can be recognized 
by their specific locations. Nowadays, people believe that PVMs are 
located in the VRS between the vascular basement membrane on 
the abluminal side and the glial limitans of the brain parenchyma.15 
And they belong to a group of distinct myeloid cells.

Secondly, the phagocytosis function of PVMs can be utilized 
for their identification. For example, by intravenous injection of 

fluorescence-labeled dextran, PVMs can be clearly visualized due to their 
phagocytosis of the fluorescent dextran.16,51 Interestingly, their phago-
cytosis ability can also be utilized to achieve PVMs depletion by intra-
ventricular injection of clodronate (CLO)-containing liposomes.16,17,52,53

Importantly, PVMs express a number of markers that can be 
distinguished from microglia (Table 1, Figure 1). Besides CD45 and 
CD11b, the brain-resident myeloid cells all express fractalkine re-
ceptor (Cx3cr1), CSF1R, and allograft inflammatory factor 1 (Iba-
1).5 PVMs have higher expression levels of CD45, F4/80, Iba-1, and 
MHCII,5,54 and lower levels of Cx3cr1 compared to microglia.55 PVMs 
are negative for microglial-specific markers such as transmembrane 
protein 119 (TMEM119), sialic acid-binding immunoglobulin-like 
lectin H (Siglec-H), P2Y purinoceptor 12 (P2RY12), Sal-like protein 
1 (Sall1), Sal-like protein3 (Sall3), or ANXA3.5,56–59 Instead, brain 
PVMs express nonconventional macrophage markers such as Siglec1 
(CD169), which is absent in microglia.60 These features can be used 
to distinguish microglia and PVMs.

Some conventional PVMs markers could differentiate PVMs 
with microglia, such as CD163, lymphatic vessel endothelial hyaluro-
nan receptor-1 (Lyve-1), and CD206. CD163 is expressed in PVM and 
monocytes, but not in microglia.61,62 The mannose receptor CD206 
is only expressed in BAMs, which can be used to distinguish PVMs 
from microglia and monocytes. However, transient high expression 
of CD206 can be found in a subpopulation of microglia and infil-
trating macrophages after a brain injury such as stroke and brain 
trauma.63,64 The monoclonal antibody 5D3 can be used to localize 
the expression of mannose receptors on PVMs in normal CNS and 
various models of brain pathology with good specificity.65 Based on 
these different markers, a binary transgenic model has recently been 
used to dissect microglia and PVMs for further separate study.55

In summary, so far there is no single marker of PVMs with good 
specificity and sensitivity. The expressions of PVM markers com-
bined with their anatomical location and phagocytic feature may be 
an ideal and reliable way for identification.

5  |  PVM, THE FIRST LINE “FIREWALL” 
MAINTAINING THE HOMEOSTASIS OF THE 
CNS

Under physiological conditions, there are different types of mac-
rophages in the CNS, performing their functions and maintaining the 
homeostasis of the brain. As an important part of BAMs, PVMs act 
as the first “firewall” in the CNS because of their special anatomical 
location and innate immune functions. Paragraphs outlined below 
discussed PVM functions in the regulation of BBB permeability, im-
mune regulation, phagocytosis, and lymphatic clearance.

5.1  |  PVMs regulate the integrity of BBB

The integrity of BBB is essential for the brain to maintain its 
homeostasis and is an important anatomical structure that 
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mediates the entry of the essential components into the brain 
parenchyma and also prevents the invasion of pathogens and 
blood-derived harmful substances.79–82 It is well known that 
brain capillary endothelial cells and their tight junctions play key 
roles in maintaining the BBB permeability.83–85 Meanwhile, the 
participation of PVMs has been recognized recently.86–88 Under 
physiological conditions, the microvasculature of the area 
postrema (AP) has a less restrictive BBB than is found in other 

CNS areas due to the lack of tight junction.20 In this case, PVMs 
in this area can isolate 10–70 kDa serum proteins from the blood 
and combine the laminin layer, further helping to restrict the 
entry of solutes above 10 kDa into the parenchyma.86 In addition, 
using the cell culture model of the BBB, Zenker et al89 found 
that the transendothelial electrical resistance of post-confluent 
brain capillary endothelial cells was significantly increased by 
coculture with blood-derived macrophages, which could partly 

Markers Function PVM Microglia References

CD45 T cell and B cell receptor-mediated 
activation

++ + [5]

CD11b Cell adhesion, apoptosis, chemotaxis + + [66, 67]

Cx3cr1 Fractalkine receptor + ++ [55, 68]

CSF1R Csf1 receptor + + [69, 70]

Iba-1 Still unknown ++ + [51, 71]

F4/80 Interact with circulating immune cells ++ + [34, 72]

MHCII Antigen presentation ++ + [35, 54]

CD68 Lysosomal protein + +/− [73]

CD163 Endocytosis; scavenger receptor; 
antigen presentation

+ − [61, 62, 74]

Lyve-1 Hyaluronan receptor, controlling the 
expression of collagen in vascular 
smooth muscle cells

+ − [75]

CD206 Mannose receptor; endocytosis + − [5, 10, 40]

TMEM119 Still unknown − + [41, 59, 60, 
76]

P2RY12 Nucleotide receptor − + [41, 77]

SALL1 A zinc-finger transcription factor − + [58]

CD169 Sialoadhesin, endocytosis + − [78]

ANXA3 Belongs to the structurally-related 
annexin protein family

− + [56]

Siglec-H Still unknown − + [57]

TABLE  1 Differentiation markers of 
PVM and microglia

F IGURE  1 Characteristic markers of PVMs in the brain. All leukocytes express CD45 and CD11b, and besides, the brain-resident myeloid 
cells express Cx3cr1, CSF1R, and Iba-1. Conventional PVMs markers include CD163, Lyve-1, and CD206. Compared to microglia, PVMs have 
higher expression levels of CD45, F4/80, Iba-1, and MHCII. A variety of markers have been confirmed to be related to the phagocytosis of 
PVMs such as CD36, CD68, CD206, CCR2, and IDO-1. And some markers have been confirmed to participate in the antigen presentation 
such as CD163, CD45, CD11b, MCHII, and F4/80. LYVE-1 is a receptor of hyaluronan, controlling the expression of collagen in vascular 
smooth muscle cells.
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indicate that PVMs can be involved in the maintenance of BBB 
permeability.

The effect of PVMs on BBB seems to be two-edged. In normal 
condition, they are necessary for the maintenance of BBB, but in the 
case of CNS injury and neuroinflammation, they seem to mediate 
the damage of BBB. Most recently, PVMs have been confirmed to 
participate in BBB disruption through the release of cytotoxic me-
diators under malaria.90 What's more, another review analyzed liter-
ature from 2000 to 2021 and revealed that PVMs could cause BBB 
damage in Alzheimer's disease (AD).91

Taken together, the emerging literature suggests that PVMs 
modulate the integrity of BBB. Future research should investigate 
the specific regulatory mechanisms in this process.

5.2  |  Immune regulation and antigen 
presentation of PVMs

In a steady-state, there are few circulating immune cells in the 
brain, but a variety of immune cell subtypes can infiltrate into CNS 
in the case of inflammation, trauma, autoimmune diseases, and so 
on. Classical immunostimulation with lipoteichoic acid from gram-
positive bacteria and lipopolysaccharide (LPS) from gram-negative 
bacteria can lead to the proliferation of PVMs. PVMs show pheno-
typic plasticity in many homeostatic and pathological situations. 
PVMs have been confirmed that they can exert proinflammatory 
polarization (M1) in neurological diseases including ischemic injury 
in mice.15 We have reason to believe that PVMs may also have dif-
ferent types of classification as a kind of macrophages. However, 
PVMs activation status may also not be simply classified into M1/
M2 due to their complex nature. Thus, further research is warranted 
to identify different phenotypes of PVMs.

Previous studies have confirmed that PVMs can act as antigen-
presenting cells (APCs) under certain pathological circumstanc-
es,21–24 they are essential in the CNS as APCs both in vitro and in 
vivo.8,33,92 One of the important characteristics of APCs is the ex-
pression of MHCII.93 PVMs express MHCII and can present antigen 
to lymphocytes in an experimental autoimmune encephalomyelitis 
(EAE) model.10 MHCIIhigh PVMs can be observed under patholog-
ical conditions, such as transient middle cerebral artery occlusion 
(tMCAo), EAE in rodents, and multiple sclerosis (MS) from the human 
autopsy.10,62,94 A recent study also showed it was PVMs that pre-
sented antigens to CD8+ T cells in experimental cerebral malaria.90 
Thus, PVMs also have the function of bridging innate and adaptive 
immunity in the CNS.

5.3  |  The phagocytic ability of PVMs

Under physiological conditions, PVMs are considered to be the 
scavenger cells and surveillant cells of the brain, as they occupy 
the ideal position of monitoring and removing potentially harmful 

substances. As mentioned before, PVMs were first discovered due 
to their uptake of dyes.6 Researchers also discovered that this kind of 
cells can remove metabolic waste from brain parenchyma, and bind 
to lipids in the circulation to clear the lipid deposition increased in 
aging animals.7,8 PVMs have also been shown to gobble up metabolic 
waste and cellular breakdown products in some brain diseases such 
as experimental subarachnoid hemorrhage and cerebral amyloid 
angiopathy.17,95

The phagocytosis property of PVMs has been proved relevant 
to the markers expressed on PVMs such as CD68, CD163, CD206, 
and IDO-1. CD68 is a lysosomal protein that promotes intracellu-
lar lysosomal function.73 CD163 is a scavenger receptor (SR) pro-
tein that recognizes and endocytoses the hemoglobin/haptoglobin 
complexes and participates in antigen presentation.74 CD206 is 
a mannose receptor that may be involved in the scavenging ef-
fect.65,96 IDO-1 is an immunosuppressive enzyme that increases cel-
lular phagocytic capacity and might suppress the overactivation of 
inflammatory response.97

In summary, the phagocytic ability of PVMs under physiological 
and also pathological conditions is of vital importance for maintain-
ing brain homeostasis by clearing exogenous substances, endoge-
nous metabolic waste, and cellular debris.

5.4  |  Lymphatic clearance of PVMs

The brain lymphatic system has momentous physiological func-
tions: excreting interstitial fluid (ISF) to the nearby lymph nodes 
from the brain parenchyma, maintaining water and electrolyte bal-
ance of the ISF, clearing metabolic waste, and reabsorbing mac-
romolecular solutes98,99; and communicating with the immune 
system, modulating immune surveillance, and the inflammatory 
response. The cerebral lymphatic drainage system is composed 
of a basement membrane-based perivascular pathway,100 a 
brain-wide paravascular glymphatic pathway,19 and some CSF 
drainage routes including sinus-associated meningeal lymphatic 
vessels18,101–103 and olfactory/cervical lymphatic routes.104,105 
Given their close relationship to vessels, PVMs may facilitate the 
first two pathways.

The “intramural perivascular drainage pathway” (IPAD) is a path-
way in the vessel wall of the tunica media which is composed of vas-
cular smooth muscle cells (VSMCs).100,106 Injection tracers into the 
caudate putamen were found to enter the arterial wall and travel 
along the intercellular spaces among the VSMCs. PVMs can pro-
mote the clearance of the IPAD by taking up 2 nm to 1 μm parti-
cles. Furthermore, PVMs mediate the speed of IPAD by regulating 
the contraction and relaxation of VSMCs, and it is found that the 
increase in age will lead to a significant slowdown of IPAD.107 The 
glymphatic pathway also involves “paravascular space.”19 CSF enters 
the parenchyma along paravascular spaces which surround pene-
trating arteries and the brain ISF is cleared via paravenous drainage 
pathways.
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PVMs can facilitate lymphatic drainage in the CNS in the above 
two ways mentioned above. The exact role of PVMs in these path-
ways is worth further study and discussion.

In summary, because of the special anatomical location in the 
brain, PVMs can directly contact blood, CSF, and brain parenchyma. 
PVMs exert phagocytic function and clear metabolic waste. PVMs 
can also act as APCs to recruit circulating immune cells into CNS. In 
addition, they provide structural and functional support for BBB and 
lymphatic clearance, which is important for the maintenance of brain 
homeostasis and normal functions.

6  |  PVMs IN NEUROLOGICAL DISEASES

As mentioned above, PVMs are vitally important in maintaining 
brain homeostasis. In the past few years, more and more evidence 
supported the theory that PVMs are widely involved in neurological 
diseases (Table 2). Here, we mainly focused on AD, hypertension-
associated neurovascular dysfunction, and stroke.

6.1  |  PVMs and Alzheimer's disease

AD is the main cause of cognitive impairment in the elderly, patho-
logically characterized by extracellular deposition of the amyloid-β 
(Aβ) and intracellular aggregates of the microtubule-associated pro-
tein tau (neurofibrillary tangles).

The brain is highly dependent on the continuous regulation 
of cerebral blood flow (CBF) to transport oxygen and glucose for 
the brain's energy needs. Not surprisingly, alternations in cerebral 
perfusion can cause brain dysfunction and cognitive impairment. 
A large number of studies have shown that Aβ disrupted cerebral 
microcirculation. Aβ inhibits the increase of CBF correlated to 
synaptic activity and interferes with endothelial function.113–120 
The brain Aβ is released to extracellular space during synaptic ac-
tivity121 and reaches the VRS.122 In this space, PVMs are in di-
rect contact with Aβ, which mediates special pathophysiological 
processes.

Previous studies have suggested that besides microglia, the 
phagocytosis of PVMs is essential for Aβ clearance. Depletion of 
PVMs is related to the vascular accumulation of Aβ 42 and the se-
verity of cerebral amyloid angiopathy.17 Scavenger receptors (SRs) 
are widely expressed by microglia/macrophages and are able to bind 
a diverse array of endogenous and foreign molecules, thus playing 
critical roles in the phagocytosis of these cells. The phagocytic func-
tion of PVMs was found to be regulated by the high-density lipo-
protein receptor (SR class B type 1, SR-B1) on PVMs that regulates 
the flow of cholesterol. The exhaustion of SR-B1 can impair PVMs 
response to Aβ and accelerate the formation of cerebrovascular and 
also parenchymal amyloid plaques in the cerebral cortex and hippo-
campus of mice, thus aggravating cognitive impairment.53

Nevertheless, in addition to the above beneficial effects, PVMs 
also take part in the negative side of AD development. PVMs are 

involved in Aβ-induced neurovascular dysfunction through CD36-
mediated oxidative stress. CD36 binds Aβ and leads to NADPH ox-
idase 2 (Nox2)-dependent production of reactive oxygen species 
(ROS).122,123 Selective depletion of PVMs can abrogate the neuro-
vascular dysfunction and vascular oxidative stress induced by Aβ16 
(Figure 2).

In addition, aging reduces the activity of PVMs and causes cell 
dysfunction, along with the alteration of the structure and distribu-
tion of PVMs. Mato et al found the amount of lipid precipitation in 
the cytoplasm increased significantly with age.7 In PVMs of young 
subjects, most inclusion bodies are round, uniform in content, and 
high in electron density. However, in elderly subjects, PVMs show 
many enlarged inclusion bodies and often display a honeycomb 
structure.7 At the same time, in both elderly experimental animals 
and humans, the swollen PVMs often appear at bifurcations of ce-
rebral arterioles and compress arterioles, which contribute to the 
disturbance of cerebral blood flow.7

To sum up, the bi-directional regulation of Aβ by PVMs reminds 
us not to simply block or boost PVMs in AD. Instead, it is meaningful 
for the future study on the regulation of PVMs to take advantage 
and avoid the reverse effects of AD.

6.2  |  PVMs and hypertension-associated 
neurovascular dysfunction

The health of the cerebrovascular system is of vital importance to 
the functional and structural integrity of the brain.51 Remarkably, 
hypertension can disrupt the cerebrovascular system, which is the 
basis of neurovascular cognitive impairment.124–127 Recent studies 
suggested that PVMs take part in the modulation of neurovascular 
and cognitive dysfunction associated with hypertension.

PVMs mediate cerebral neurovascular dysfunction in hyper-
tension through the angiotensin type 1 receptor (Atr1).51 In hy-
pertension, the elevated Ang II can reach the perivascular space 
through the damaged BBB, then activate Atr1 on PVMs, result-
ing in NOX2-dependent ROS production, finally leading to cere-
bral vascular dysfunction and cognitive dysfunction.51 Another 
study demonstrated that by depleting most of the PVMs and 
all the microglia in Ang II-induced hypertensive mouse model, 
short-term memory impairment can be prevented.128 What's 
more, PVMs contribute to the development of hypertension, 
both the number and activity of the PVMs are increased by the 
stimulation of proinflammatory cytokine.112,129 Then, prosta-
glandin E2 (PGE2) produced by PVMs enters the brain paren-
chyma, resulting in sympathetic activation and blood pressure 
elevation.112 Interestingly, in vitro study, it is confirmed that ex-
tracellular PGE can promote microglia to produce more PGE and 
COX-2.130 All of the above processes will play momentous roles 
in the development of CNS diseases. Based on these studies, we 
speculate whether PVMs and microglia have a synergistic effect 
in Ang II-mediated hypertensive cerebrovascular disease worth 
deeper study.
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PVMs are involved in the process of cerebrovascular remodel-
ing in hypertension as well. The remodeling and progression of ath-
erosclerosis in hypertension contain fibrosis and the production of 
type I collagen around the cerebral arterioles.111 PVMs around the 
cerebral small vessels express Col1a1 mRNA, which mediates the 
production of type I collagen, makes collagen deposition around the 
cerebral small vessels, and participates in the change of atheroscle-
rosis during hypertension111 (Figure 3).

It can be seen that PVMs participate in neurovascular and cogni-
tive dysfunction related to hypertension from many aspects. Hence, 
a deeper understanding of how PVMs influence the remodeling of 
the cerebrovascular system may help to optimize the therapies for 
the recovery and rehabilitation of related diseases.

6.3  |  Stroke and PVMs

Stroke remains the second leading cause of death and the third 
leading cause of death and disability worldwide in 2019.131 
Therefore, it is important and necessary to clarify the mechanisms 
of the stroke to lighten the burden on families and even the whole 
world. It is increasingly recognized that PVMs play an important role 
in the acute inflammatory phase and secondary injury after stroke.

According to statistics, ischemic stroke constituted 62.4% of 
all strokes.131 Researchers have confirmed the functions of PVMs 
in ischemic stroke in many ways. For instance, PVMs participate in 
the neuropathological process through cell proliferation and migra-
tion to the ischemic brain parenchyma, as PVMs are found highly 

F IGURE  2 The role of PVMs in AD 
PVMs has both positive and negative 
effects on the development of AD. 
AD is characterized pathologically by 
extracellular deposition of the amyloid-β 
peptide (Aβ) in amyloid plaques 
and intracellular aggregates of the 
microbubble-associated protein tau. A-β 
is released to extracellular in the process 
of synaptic activity and reaches the VRS, 
where the phagocytosis function of PVMs 
is essential for A-β clearance. Besides, 
PVMs are involved in A-β-induced 
neurovascular dysfunction through CD36-
mediated oxidative stress. CD36 binds A-β 
and leads to NADPH oxidase 2 (Nox2)-
dependent production of reactive oxygen 
species (ROS).

F IGURE  3 The role of PVMs in 
hypertension-associated cognitive 
impairment. PVMs can mediate 
hypertension-associated neurovascular 
and cognitive dysfunction in many ways. 
Expressing Col1a1MRNA, PVMs mediate 
the production of type I collagen. Collagen 
deposits around the cerebral small vessels 
induces the change of atherosclerosis 
during hypertension. Circulating AngII can 
activate Atr1 on PVMs, resulting in NOX2-
dependent ROS production, which then 
leads to cerebral vascular dysfunction 
and cognitive impairment. PVMs produce 
PGE2 through COX-2, PGE 2 enters the 
brain parenchyma and activates PGE2 
receptors on the PVN and the rostral 
ventrolateral medulla (RVLM), leading to 
sympathetic activation and an increase in 
blood pressure.
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accumulated in peri-infarction areas and in the developing necrotic 
core area in the early stage after cerebral infarction, and the number 
continues to increase until several months after stroke.109 More than 
that, PVMs also up-regulate the expression of COX-1, which plays 
an important role in the pathophysiology of acute ischemic inflam-
mation, tissue remodeling, and secondary injury after stroke. Aside 
from acting as direct proinflammatory cells, PVMs can also partici-
pate in granulocyte recruitment by upregulating the expression of 
leukocyte chemo-attractants.110 Moreover, PVMs have the function 
to elevate the expression of VEGF, increasing the permeability of 
pial and cortical blood vessels, and deteriorating neurological im-
pairment in the acute phase of stroke.110 These results were also 
found in postmortem brain samples from ischemic stroke patients.78

A current study revealed that heavy drinking of alcohol (> = 6 
standard drinks/day) is an independent risk factor associated with 
worse outcomes in ischemic stroke patients.108 PVMs are activated 
in mice with chronic alcohol exposure, and the inflammation signifi-
cantly increased after a secondary insult (ischemic stroke or LPS 
challenge). Depletion of PVMs can block the alcohol-induced aggra-
vation of ischemic lesions.

Subarachnoid hemorrhage (SAH) is a subtype of stroke and 
constituted 9.7% (about 1.18  million) of all strokes.131 As eryth-
rocytes are damaged, there are many decomposition products 
such as bilirubin, heme, and free iron released into the CSF, which 
can cause inflammation, vasoconstriction, and direct cellular in-
jury.132–135 After SAH, erythrocytes enter the perivascular space, 
where they can interact with PVMs. Recent studies have found 
that erythrocytes are mainly removed by PVMs rather than mi-
croglia; however, the depletion of PVMs with CLO can decrease 
inflammation around arterioles and improve prognosis after SAH 
(Figure 4). This contradictory result is probably due to the reduced 
inflammatory burden after PVM depletion counteracting the neg-
ative effect of increased breakdown waste. It can be seen that 
although PVMs play a role in the phagocytosis of damaged eryth-
rocytes and their decomposition products, PVMs may still show 
harmful effects in the long run.

To sum up, as a part of the brain innate immune cell population, 
PVMs are the important guardians of CNS homeostasis. Given the 
functional similarity of PVMs and microglia, whether PVMs display 
sex difference as in microglia is not clear.136,137 The current literature 
is lacking on this issue. A deep understanding of how PVMs partic-
ipate in the pathological mechanism of CNS diseases will be helpful 
to the development of treatment strategies.

7  |  CURRENT KNOWLEDGE GAPS AND 
FUTURE PERSPECTIVES

Growing evidence is suggesting the critical role of PVMs in main-
taining brain hemostasis and regulating the progression of various 
neurological diseases. However, there are still a lot of unknowns and 
obstacles in the PVM research field. Here, we outline some of the 
key issues that need to be resolved.

1.	 The key regulatory genes and the underlying regulatory mech-
anisms of PVMs' differentiation, phenotypic switch, and cell 
fate under different disease contexts remain largely unknown.

2.	 The research findings from animal models are not able to fully re-
flect the changes of PVMs in the human body. The imaging tech-
niques of PVMs in human is still underdeveloped.

3.	 Currently, there is no specific PVM targeted strategy that could 
allow precise manipulation of PVMs. Delivery techniques targeting 
PVMs are highly warranted for future PVM-associated treatments.

Collectively, as important brain innate immune cells, the role of 
PVMs in the brain is emerging. Further research is warranted to ex-
pand the knowledge of the regulatory mechanisms of PVMs and the 
role of PVMs in various brain pathologies.
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