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Budding allows virus replication and macromolecular secretion in cells
through the formation of a membrane protrusion (bud) that evolves into
an envelope. The largest energetic barrier to bud formation is membrane
deflection and is trespassed primarily thanks to nucleocapsid-membrane
adhesion. Transmembrane proteins (TPs), which later form the virus ligands,
are the main promotors of adhesion and can accommodate membrane bend-
ing thanks to an induced spontaneous curvature. Adhesive TPs must diffuse
across the membrane from remote regions to gather on the bud surface, thus,
diffusivity controls the kinetics. This paper proposes a simple model to
describe diffusion-mediated budding unravelling important size limitations
and size-dependent kinetics. The predicted optimal virion radius, giving
the fastest budding, is validated against experiments for coronavirus,
HIV, flu and hepatitis. Assuming exponential replication of virions and
hereditary size, the model can predict the size distribution of a virus popu-
lation. This is verified against experiments for SARS-CoV-2. All the above
comparisons rely on the premise that budding poses the tightest size con-
straint. This is true in most cases, as demonstrated in this paper, where the
proposed model is extended to describe virus infection via receptor- and
clathrin-mediated endocytosis, and via membrane fusion.
1. Introduction
Enveloped viruses are ubiquitous in nature. They have covered a fundamental
role in the evolution of the living kingdom and can have a tremendously disrup-
tive impact on human health and economy, as observed in recent times. While
subject to intense study from the biochemical point of view, the physical mechan-
isms involved in virus replication and infection have comparatively received
rather limited attention [1,2]. Despite the controversy around the definition of a
virus as a form of life, it is commonly observed that viruses replicate and evolve
to optimize replication at the planetary scale [2]. Replication is preceded by the
infection of a host cell [2], thus, infection must occur for a virus to replicate
itself. This explains why infection has been the centre of attention in recent
times. However, as demonstrated in this paper, and in agreement with obser-
vations in the literature, replication is a much slower biophysical process than
infection. Hence, it can cover a more significant role in the life cycle of a virus.

Enveloped viruses are characterized by a lipid membrane wrap (envelope)
surrounding the nucleocapsid, which encapsulates genetic material [2] (RNA).
The membrane is decorated with transmembrane proteins (TPs), of which the
most important ones are virus ligands (spike proteins). Virus ligands are macro-
molecular assemblies that protrude from the virion (virus particle) and anchor
to the receptors of the host cell to prompt infection. The latter involves RNA
delivery inside the cytosol of the infected cell (host). The virulent RNA can
hijack the host’s protein-duplication mechanism to replicate the components
of the virus. The new components then assemble into new nucleocapsids
inside the cytosol, while the new TPs are delivered to the host membrane.
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Figure 1. Schematics of the (virus) budding process: (a) The cell membrane adheres with the cargo (virus capsid) through TP interaction; (b) TPs induce a spon-
taneous curvature 1/R* to the budding membrane, which is function of the conical TP angle θ and TP spacing ℓb on the bud surface; (c) The TP also induces local
bending in the rest ( flat) membrane of the cell due to the angle θ, with ℓ0 the TP spacing in the resting membrane.
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Virus replication concludes with budding, the process by
which the nucleocapsid wraps around the host membrane,
equipped with virus ligands, and is ultimately expelled
from the mother cell into a new enveloped virion [2,3]
(figure 1). Budding requires significant membrane deflection,
and this constitutes the main energetic barrier to the process.
Because TPs protrude from the cell membrane, pointing out-
ward, they create a local spontaneous curvature [4–7], which
facilitates wrapping. The energetic barrier becomes then a
function of the radius of the capsid, relative to the spon-
taneous membrane curvature, with the latter defining the
optimal capsid radius for fast replication. This also provides
minimum and maximum radii ensuring the spontaneity
of budding. To accommodate membrane bending, the TPs
have to diffuse in the location of the bud. Their diffusion is
promoted by their high affinity with the nucleocapsid
(cargo); thus, TP diffusion controls the kinetics of the process
[8]. Lerner et al. [8] developed the first theoretical model to
describe budding from an energetic analysis. The free
energy of the bud includes the bending energy of the mem-
brane and the binding energy with the nucleocapsid,
mediated by spike proteins. The authors also speculated
on the possibility of the spike proteins accommodating
non-zero spontaneous curvature in the membrane, thereby
lowering the energetic barrier for bud formation. They esti-
mated the budding time as between 10 and 20 min, in
agreement with prior measurements. However, they did not
explore the influence of virion size in the process. Tzlil et al.
[9] continued this investigation by providing a steady state
model for budding incorporating the many-body interaction
among multiple forming buds. Here, the free energy of the
system includes membrane bending, spike adhesion and
the line energy of the bud rim. They provided the energetic
landscape of the multi-bud system and discussed the impli-
cations of size and spike density in budding, but did not
consider the spontaneous membrane curvature induced by
the TPs, nor the kinetics of TP diffusion.

Both the above-discussed investigations provided impor-
tant basic principles to better understand the physics of virus
replication; however, none provided a quantitative investi-
gation of the role of virion size on budding spontaneity
and kinetics. This paper provides a simple model to describe
the process, inspired by a simple model for diffusion-
mediated endocytosis [3]. It provides virion size limitations
via energetic analysis and size-dependent budding kinetics.
The model ultimately finds the optimal virion size at which
budding is fastest. This optimum is compared against
experiments for several virus species, namely SARS-CoV-1
and 2 [10–12] (coronavirus), HIV-1 (HIV type 1) [13], flu
(influenza) [14,15] and HCV (hepatitis type C) [16,17].
Using an exponential replication model based on size hered-
itariness, the proposed budding model can predict the size
polydispersity of a virus population. This prediction is then
compared against experiments for SARS-CoV-2 (novel coro-
navirus) [11] as an example. The reader will find it easy to
create such a comparison for all other virus species. The
above comparisons are based on the hypothesis that budding
is the most size-limiting process in the life cycle of a virus.
This hypothesis is later validated by investigating the size
limitations of virus infection; finding that, for the majority
of biologically relevant cases, budding imposes the tightest
size constraints on the virion. Virus infection is studied con-
sidering the two main infection mechanisms, namely,
receptor- and clathrin-mediated endocytosis [3,18] and mem-
brane fusion.

The model can predict size constraints and the poly-
dispersity of a virus population from molecular-scale
properties such as TPadhesion, spontaneousmembrane curva-
ture and TP availability. It can be also used in reverse, where
virus size polydispersity can be used to predict molecular-
scale properties. This is particularly useful to extrapolate
the value of parameters that are difficult to measure, such as
TP–capsid adhesion.
2. Budding mechanics model
As sketched in figure 1a, in the proposed model, the kinetics
of the process is controlled by TP diffusion (also observed
in [8]). The free energy of the system ψ, in its dimensionless
form, is

c

kT
¼ �gm � rbeT þ s1S þ rb ln

rb
r0

� �
þ 2B

1
R
� 1
R�

� �2
" #

Sb

þ 2p
ð1
r
r ln

r

r0

� �
r dr, ð2:1Þ

where k is the Boltzmann’s constant; T is temperature; gm is the
adhesion surface energy between the cargo surface (CS, the
virus nucleocapsid) and the cell membrane; eT is the energy
released by a TP joining the bud; σ is the surface tension of
the cell membrane, here considered constant for simplicity
albeit dependent on membrane curvature [7]; 1S ¼ DS=Sb is
the surface strain of the membrane, with DS the change in



Table 1. Parameters adopted in the model, together with their source,
value range and adopted median value.

Parameter source
value (range; adopted
median)

kT [23] 4 · 10−21 J

ρb [3] 3 · 10−3−20 · 10−3 nm−2;

5 · 10−3 nm−2

lb r
�1=2
b , [18] 7−18 nm; 14 nm

σ [24] 5 · 10−3 nm−2

B [3] 10−25; 20
θ [11] θ≈ 8.2° = 0.14 rad

R* equation (2.2) 50 nm

dTP [12] 4 nm

D [3] 104 nm2 s−1

~r ¼ r0=rb [3,18] 0.01−0.1
~B equation (2.7b) 1.64

eb0=2~B figure 3 0.03−0.2; 0.05
eb0 0.1−0.66; 0.16
eRL [3] 10−25; 20
Bc [25] 255−315; 300
Bc/B 10.2−31.5; 15
ρc [25] 1.25 · 10−3 nm−2

~rc ¼ rc=rb 0.25

ec [25] 5−30; 23
Rc [25] 32.5−90 nm; 50 nm

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220525

3
membrane surface and Sb the bud surface; ρ is the TP density in
the membrane, with ρ0 and rb � l�2

b [18] that in the resting
membrane and in the bud (i.e. the ligand density in the
virion), respectively, and lb the TP (ligand) spacing in the bud
(virus particle); B is the bending modulus of the membrane;
R is the radius of curvature of the CS, i.e. that of the wrapping
membrane, with R* the spontaneous radius of curvature of the
membrane; r1 is the distance between the axis of symmetry and
the bud rim (the point of contact between the cargo and the
membrane, figure 1a). Equation (2.1) neglects the bending
energy of the membrane outside the bud and the line energy
of the bud rim. A full elastic solution would provide complete-
ness [19]; however, [4] showed that the cell membrane in that
region assumes a zero-energy catenoid-like configuration.
This is also proven by the calculations of [20], where the
energy of the system is nearly constant during wrapping.
ϵS > 0 constitutes an additional energy penalty due to stretch-
ing of the cell membrane, i.e. the diffusion of amphiphiles
to compensate for the surface area change during budding.
ϵS < 0 provides an energetic driving force due to an excess
of amphiphiles in the membrane, which can be removed by
expelling a vesicle (membrane buckling).

The spontaneous radius of curvature R* is given by the
conical angle θ created by the TPs located in the bud, as
shown in figure 1b, giving

1
R� ¼ 2u

ffiffiffiffiffi
rb

p
: ð2:2Þ

The energy released by one TP joining the bud is

eT ¼ eTa þ eTm, ð2:3aÞ

with eTa the adhesion energy between a TP and the CS, and

eTm ¼ B2pu2
d2TP

‘20 � d2TP
, ð2:3bÞ

the bending energy associated with the local curvature created
by the TP in the resting membrane, as depicted in figure 1c [4].
This energy is released once the TP joins the bud, hence it
proves a driving force. In equation (2.3b), dTP is the diameter
of the TP and ℓ0 is the TP spacing in the resting membrane.

Appendix A provides the solution to the transient
problem, where the bud rim moves following the kinetic law

r1 ¼ 2a
ffiffiffiffiffiffi
Dt

p
, ð2:4Þ

with α a kinetic constant called ‘speed factor’ [3],D the diffusiv-
ity of a TP in the membrane and t time. D can be calculated
using the bidimensional Stokes–Einstein relation [21], assum-
ing the lipid membrane behaves like a fluid mosaic, giving
D = kT/1.69πη. Here, η = 10−5 N s m−1 is the viscosity of the
membrane measured via rheology [22]. Also note that in the
above relation, D is independent of dTP. The value of D,
obtained via bidimensional Stokes–Einstein relation, is pro-
vided in table 1 and is in agreement with the value adopted
in [3].

Equation (2.4) can be inverted to give the time required
for budding completion (budding time), tb, from the relation
Sb ¼ pr21 ¼ 4pR2, thus

tb ¼ R2

Da2 : ð2:5Þ
To calculate tb, one has to compute α. This is reported in
appendix A from the condition

eb � F~r(a), ð2:6aÞ

where eb is the budding energy, i.e. the driving force for
budding, and

F~r(a) ¼ (1� ~r)f(a)� ln 1þ 1
~r
� 1

� �
f(a)

� �
, ð2:6bÞ

is the kinetic function of the process, with ~r ¼ r0=rb the dimen-
sionless equilibrium density of TPs in the resting membrane,
and

f(a) ¼ a2E(a2)
a2E(a2)� exp (�a2)

, ð2:6cÞ

with E(a2) ¼ Ð1a2 e�udu=u the exponential integral function.
The budding energy in equation (2.6a) is given by

eb ¼ eb0 � 2~B 1� R�

R

� �2

, ð2:7aÞ

where

~B ¼ B
rbR�2 ¼ 4Bu2, ð2:7bÞ

is the dimensionless bending rigidity of the membrane, and

eb0 ¼ eTa þ eTr þ eTm þ ~gm � ~s1S, ð2:7cÞ

is the budding input energy, independent of the cargo size
(R), with

eTr ¼ 1� ~rþ ln ~r, ð2:7dÞ
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Figure 2. Budding in the absence of TPs. The plots report dimensionless
minimum bud radius versus dimensionless adhesion energy at various surface
strains, from equation (3.2).
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the energetic cost of TP relocation, and eTm the released
bending energy given by equation (2.3b) and rewritten as

eTm ¼ ~B
p

2
j~r

1� j~r
, ð2:7eÞ

with

j ¼
ffiffiffi
3

p

2
d2TPrb: ð2:7fÞ

Equations (2.7e,f ) are derived by adopting a hexagonal
distribution of TP in the resting membrane, for which
1=r0 ¼

ffiffiffi
3

p
‘20=2.

From equations (2.6) and (2.7), it should be noted that α is
proportional to eb, so that a higher driving force eb can pro-
duce faster budding or smaller tb. Conversely, α = 0, i.e.
tb→∞, provides the critical condition for budding spontane-
ity. From equation (2.6a), we have that F~r(0) ¼ 0 for any ~r,
thus eb≥ 0 gives the necessary condition for spontaneous
budding. This condition, applied to equation (2.7a), provides
the size constraints

Rmin � R � Rmax, ð2:8aÞ
with

Rmax

R� ¼ 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eb0=2~B

q ð2:8bÞ

and

Rmin

R� ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eb0=2~B

q : ð2:8cÞ

It should be noted that equation (2.8b) only applies for
eb0 , 2~B, whereas for higher input energy Rmax→∞ and
equations (2.8) only provides a constraint for minimum
radius.

The inequality in equation (2.8a) ensures budding sponta-
neity. The next section reports the size constraints from
equations (2.8) in the absence of TPs, and the budding time
as a function of eb0, ~r and R in the presence of TPs.

Table 1 reports the parameter values adopted in this
investigation and their source.
3. Results and discussion
3.1. Budding in absence of transmembrane proteins
In the absence of TPs, the kinetics of the process is controlled
by the relaxation time of the membrane. Here, the model is
simply used to define the size constraints for budding spon-
taneity, neglecting the kinetics of budding. In this case, ρ, ρb,
ρ0, 1/R* all vanish to zero, thus, equations (2.6)–(2.8) rewrite
as

gm � s1S � 2B
R2 : ð3:1Þ

From this, one can obtain the minimum (dimensionless)
bud radius as

Rminffiffiffiffiffiffiffiffiffiffiffi
2B=s

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gm=s� 1S

p : ð3:2Þ

Figure 2 plots Rmin=
ffiffiffiffiffiffiffiffiffiffiffi
2B=s

p
versus the dimensionless

adhesion energy gm/σ and surface strain ϵS, from equation
(3.2). All plots show a horizontal asymptote for very strong
adhesion, leading to a zero minimum radius. I.e. in the case
of very strong adhesion, compared with membrane tension,
or gm≫ σϵS, we have that Rmin � ffiffiffiffiffiffiffiffiffiffiffi

2B=s
p

. The minimum
radius also appears to be highly sensitive to the surface
strain ϵS. When ϵS > 0, e.g. in the case of ϵS = 1, the energy
of surface stretch, together with bending energy, has to be
compensated by adhesion. In the case of ϵS =−1, the surface
energy in excess is equivalent to the surface of the bud. In the
absence of adhesion, the latter case is the only one that can
favour budding since for gm = 0, all other plots give Rmin→∞
(i.e. no budding spontaneity for any size). The case of gm = 0
and ϵS =−1 is also that in which the cargo can be absent, i.e.
vesiculation, where Rmin ¼ ffiffiffiffiffiffiffiffiffiffiffi

2B=s
p

. In this case, the excess
surface energy is released in the form of bending energy,
i.e. membrane buckling. Taking the values reported in
table 1 for B and σ, the minimum vesicle radius computes
to Rmin = 60–100 nm, in agreement with experimental
observations [26].

3.2. Transmembrane protein-mediated budding
In the presence of TPs one can compute the minimum and
maximum radii of curvature of the cargo allowing spon-
taneous budding (i.e. the size constraints of the virion),
from equation (2.8). Figure 3a plots these radii as a function
of the ratio eb0=2~B. ~B is estimated from equation (2.7b) and
the parameter values in table 1, and its value is reported in
the same table. To the author’s knowledge, eb0 has never
been measured and is here estimated from the observed mini-
mum/maximum radii. Figure 3b reports the predicted eb0=2~B
as a function of the ratio Rmin/Rmax, from equations (2.8), and
from the minimum/maximum radii extracted from exper-
imental observations of several virus species. These are
SARS-CoV-1 & 2 (coronavirus) [10–12], HIV-1 (human immu-
nodeficiency virus type 1) [13], flu (influenza) [14,15] and
HCV (hepatitis C virus) [16,17]. As evidenced in this figure,
the proposed model predicts the range eb0=2~B ¼ 0:03� 0:2,
while the majority of data points suggest a median value of
0.05. From equations (2.7), one can deduce that the variability
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of input energy within the same virus species is likely to be
attributed to the stochastic variation of TP concentration
(variable ~r) and/or the stochastic presence of excess amphi-
philes (variable ϵS).

Figure 4a plots the dimensionless budding time tb=t�b ,
with t�b the characteristic budding time, as a function of the
dimensionless radius R/R* at various input energy eb0.
Equation (2.5) reports the budding time tb as function of
the speed factor α, where the latter is then calculated
numerically as function of the budding energy eb from
equations (A 8)–(A 10) in appendix A. The characteristic
budding time is

t�b ¼
R�2

Da21
, ð3:3Þ
with α∞ the maximum speed factor obtained for eb→∞ and
reported in table 2 in appendix A. The plots in figure 4a are
obtained for ~r ¼ 0:01, where ~r ¼ 0:1 gives nearly identical
plots, hence omitted. Note that, albeit tb=t�b appears not to be
directly affected by ~r within the explored range, ~r affects the
input energy eb0, via equations (2.7), and t�b , via equation
(3.3), where α∞ depends on ~r through appendix A, table 2.
Each plot shows a minimum and maximum radius, calculated
from equation (2.8), giving tb→∞, as well as an optimal radius
Ropt, for which tb = tb,min, the minimum budding time (vertical
bar symbol). Larger eb0 provide smaller tb, intuitively, following
the simple scaling law tb,min=t�b � 1:5=eb0 within the observed
range. For eb0≥ 5, the curves approach the simple scaling law
tb=t�b ≃ (R=R�)2 (dashed line in figure 4a) for R >Rmin, where
Ropt≃Rmin. This case, however, involves much higher input
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energy than the values extracted in figure 3b, rendering this
simple scaling inapplicable to the reported experimental
observations.

From the values in table 1 and the median value
eb0=2~B � 0:05, we have eb0≈ 0.16 giving tb,opt � 10 t�b from
figure 4a. From tables 1 and 2, we then have t�b � 0:15–2.93min,
for ~r ¼ 0.01–0.1, respectively, from which tb,opt≈ 1.5−29.3 min.
This range includes the experimentally observed 10−20 min
budding time [8].

Figure 4b reports the predicted ratio Ropt/Rmax, extracted
from figure 4a, as a function of Rmin/Rmax, where eb0 is
extracted from figure 3b. This figure compares the theoretical
prediction with the observed optimal virion radius (from
median values) for the species reported in figure 3b. The
close agreement between theory and experiments validates
the proposed model under the assumption that budding pro-
vides the tightest constraint to virus size. This hypothesis is
discussed in the next subsections.

The model considers the ideal condition of a fully formed
capsid at the onset of budding. In some cases, the capsid is
still forming when the first CS-TP binding occurs. This is par-
ticularly the case in retroviruses like HIV, where the capsid
develops from the agglomeration of gags. In these cases,
the attractive/repulsive forces between gags, and/or other
capsid components, might affect eb0. Thus, additional ener-
getic terms may be needed in equation (2.7c) to account for
it. Repulsive forces will reduce the effective eb0, while attrac-
tive forces will increase it. Additionally, the diffusion of
capsid components within the cytosol to reach the bud
might also affect the kinetics of the process. The proposed
model assumes that the process of capsid assembly is much
faster than TP diffusion. This idealization could explain the
larger deviation in figure 4b for HIV-1.

Figure 5a reports the energy of TP relocation eTr, from
equation (2.7d), as a function of ~r, for ~r ¼ 0:01� 0:2. This
energy is negative as it constitutes a cost, with smaller ~r requir-
ing higher relocation costs due to the higher density gap
between the bud and the resting membrane. This figure
shows a logarithmic correlation between ~r and eTr, within the
observed range, evidencing the predominance of the third
term on the right-hand side of equation (2.7d) over the
others. Figure 5b reports the membrane bending energy
released by a TP joining the bud, eTm, from equation (2.7e), as
a function of ~r for the same value range, and for ξ = ξn, 3ξn,
and 10ξn, with ξn = 0.2 a nominal parameter value based on
equation (2.7f ) and table 1. eTm is positive since the release
of this energy promotes budding. Figure 5b shows that eTm is
proportional to ~r (TPs availability) and ξ, with the sensitivity
of eTm with respect to ~r significantly amplified by ξ. From
equation (2.7f ) one can deduce that large dTP and ρb (large
and densely distributed TPs) yield higher eTm. For the
median values of the parameters adopted in table 1, we can
see in figure 5b that the contribution of eTm is relatively small
(< 0.1) compared with eTr. Take now, for simplicity, ~gm ¼ 0,
ϵS = 0, ~r ¼ 0:1 (0.01), eb0 = 0.16 and ξ = 0.2. We have then
eTr =−1.4 (− 3.62) and eTm = 0.053 (0.0052), so that we can
finally estimate the TP–capsid binding energy (in kT units) as
eTa ¼ 1:51 (3.77).
3.3. Exponential replication and virion size
polydispersity

Let us assume that virion size is hereditary, i.e. if a virion of
radius R infects the host, this will reproduce n* copies of itself
having a radius that is very close to R.

Let us introduce the function n(t, R) giving the number of
virions having radius R in the population at time t. Assuming
that budding provides the tightest size constraint, the repro-
duction rate of virions having radius R, at the time t, becomes

@n(t,R)
@t

¼ n�
n(t,R)
tb(R)

: ð3:4aÞ

By integrating equation (3.4a) with time, we have

n(t,R) ¼ n0(R) exp
n� t
tb(R)

� �
, ð3:4bÞ

where n0(R) = n(0, R). Consider now n0(R) = n0, 8R, i.e. before
any virus reproduction occurs the population has equal
number of virions for any size. Now the total number of
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virions at the time t is N(t) ¼ Ð Rmax

Rmin
n(t,R) dR, via numerical

integration, and the statistical frequency of virions having
radius R is f (t, R) = n(t, R)/N(t), giving finally

f(t,R) ¼ n0
N(t)

exp
n� t
tb(R)

� �
: ð3:5Þ

From equation (3.5), we can now compare the statistical
distribution of virion size with experimental observations.
Figure 6 reports this comparison by taking three virus popu-
lation samples (sam 1, 2 and 3) from [11], where the vertical
axis reports the normalized frequency with respect to its
maximum in the population, f/fmax. Here, f = fmax if R =
Ropt. In the proposed model, one has to define the time of
observation t, which here is taken as t ¼ 20 t�b=n

�. The par-
ameter values used in this figure are eb0 = 0.2 and R* =
45 nm, estimated from the ratio Rmin/Rmax of the samples
[11], following the same procedure as in figure 3b.

In the model here described, the virus population evolves
toward the ideal condition at which all virions have radius
Ropt, at t→∞, hence no polydispersity and f(∞, R) = δ(R−
Ropt), with δ the Dirac delta. This condition is never reached
in real virus populations, and this is probably due to the
imperfect hereditariness of size, by which a virion might
replicate itself into virions having slightly different radii, or
due to finite availability of building blocks. A more
comprehensive model should consider these aspects, but
this is beyond the present scope.
3.4. Size constraints of virus infection
The experimental comparisons presented in the previous sec-
tions rely on the hypothesis that budding provides the
tightest constraint to virion size. The other most important
size-limiting process, in the life of a virion, is infection. This
section discusses the size limitations introduced by infection,
a process occurring via two main mechanisms, (i) receptor-
and clathrin-mediated endocytosis, and (ii) membrane
fusion. (i) requires the membrane of the host cell to wrap
around the envelope to produce an endosome (figure 7a),
which later fuses with the enveloped membrane inside the
cytosol to release RNA [3,27]; (ii) involves the fusion of
the envelope membrane with that of the host cell prior to
the creation of the endosome (figure 7b) [27].

3.4.1. Endocytosis
The kinetics of the process is here controlled by the diffusion
of receptors [3], and the proposed model applies by consider-
ing that now TPs stand for receptors (instead of virus
ligands). In this case, equation (2.6) is rewritten to

ee � F~r(a), ð3:6aÞ
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where

ee ¼ ee0 � 2~B
R�

R

� �2

�2~Bc
R�

R
� R�

Rc

� �2

, ð3:6bÞ

is the endocytosis energy (the driving force for wrapping), with

ee0 ¼ eRL þ ~rc ec � ~s1S þ 1� ~rþ ln ~r, ð3:6cÞ

the input endocytosis energy, and F~r(a) the kinetic function
described in equations (2.6b,c). As previously discussed, TP
diffusion is size independent, thus the value of D is here
again given in table 1. In equation (3.6), ~Bc is the bending
rigidity of the clathrin coat (taken to be zero in the absence
of clathrin), Rc is its spontaneous radius of curvature, eRL is
the receptor–ligand binding energy, ~r ¼ rr0=rb, with ρr0 the
surface density of receptors in the resting membrane, ρb the
density of receptors in the wrap (equivalent to the ligand
density [3]), ec is the binding energy of the clathrin pit with
the backing of the receptor [18] and ~rc ¼ rc=rb, with ρc the
surface density of clathrin pits.

Figure 8a provides the dimensionless endocytosis (wrap-
ping) time te=t�e , with t�e ¼ t�b , versus dimensionless virion
radius R/R*, at various input energy ee0, and normalized
spontaneous curvature of clathrin Rc/R*. The results are
obtained in the same way as in figure 4a, with eb substituted
with ee, from equation (3.6b). The dashed black lines represent
the plots in the absence of clathrin (~Bc ¼ 0 and ~rc ¼ 0), while
the solid black, blue and magenta lines represent the plots in
the presence of clathrin. For all these cases, the parameter
values are taken from table 1, with ϵS = 0 and the median
values for ec. In the absence of clathrin (receptor-mediated
endocytosis), this gives ee0 = 6.4−23.6 and a median of
ee0 = 17.5 (taking the median for eRL and averaged over
~r ¼ 0:01–0.1). In the presence of clathrin, we have ee0 =
12.13−29.3 with a median of ee0 = 23.24. This is then rounded
to ee0 = 6−29 in the figure. For Rc/R* = 0.6, ee0 = 6 gives nega-
tive ee, thus equation (3.6a) is violated and endocytosis cannot
occur. For this reason, this plot is omitted. All the reported
plots can be approximated by te=t�e � (R=R�)2 (magenta
circles) for Rmin < R <Rmax. Also, the plots consider
~r ¼ 0:01, where ~r ¼ 0:1 gives nearly identical plots, hence
omitted. As observed by [3] and confirmed in this figure,
endocytosis provides size limitations, where virions having
a radius smaller than Rmin are denied entry due to the exces-
sive (bending) energy barrier. The same authors also predicted
a maximum radius Rmax due to receptor depletion. However,
as calculated by [18], and shown in this figure, the presence
of clathrin also creates an Rmax and generally provides a
tighter constraint to the minimum and maximum virion
radii. The input energy ee0 appears here not to affect the
dimensionless endocytosis time significantly, so long that the
virion sizeR is within its limits. However, ee0 has a strong influ-
ence on virion size limitations, particularly in the presence of
clathrin, and more so for Rc≤R*.

Taking R≈ 50 nm, we have R/R*≈ 1, from which
te � t�b � 0:15–2.93min. This is in qualitative agreement
with the 2−58 s optimal wrapping time calculated in [3].

Let us now analyse the condition for which budding
provides the tightest selective pressure to the size of the vir-
ions. Let us assume that we are at the limit for budding
spontaneity, i.e. α = 0 and tb→∞, giving eb = 0. From equation
(2.7a), this condition gives that R =Rmin or R =Rmax from
equation (2.8b,c), i.e.

R�

R
¼ 1+

ffiffiffiffiffiffi
eb0
2~B

r
: ð3:7Þ

Substitution of equation (3.7) into (3.6b), with condition
(3.6a) under α = 0, gives

ee0
2~B

� 1+
ffiffiffiffiffiffi
eb0
2~B

r� �2

þBc

B
1+

ffiffiffiffiffiffi
eb0
2~B

r
� R�

Rc

� �2

, ð3:8Þ

where the tightest limitation comes with ± substituted with +.
Figure 8b reports the minimum input energy ee0 satisfying

equation (3.8) as a function of eb0 and Rc/R*, and with Bc = 0
and Bc = 15B from table 1. The dashed lines report the case of
no clathrin. In the range of the parameter values reported in
table 1, the range of ee0 discussed in figure 8a, and in the
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absence of clathrin, equation (3.8) is always satisfied. In the
presence of clathrin, equation (3.8) is satisfied for all cases
apart from that of Rc/R* = 0.6 and 1.8 for certain values of
eb0. For the adopted median parameter values and Rc/R* = 1,
equation (3.8) is always satisfied. Thus, we can conclude that,
for the most representative cases of infection via endocytosis,
the tightest size constraint is dictated by budding.
3.4.2. Membrane fusion
This process involves virus unwrapping, as shown in
figure 7b and figure 9c, where the membrane of the virion
fuses with that of the host and transits from a spherical envel-
ope to a flat configuration. In this case, the ligands of the
virion, one by one, detach from the nucleocapsid and then
diffuse away toward remote regions in the host membrane.
It starts with the formation of a fusion pore, via molecular
reconfiguration of receptor–ligand bonds (proteolytic clea-
vage). In this case, TP stands for the ligands of the virus.
The propagation of the fusion pore is described by the sol-
ution to the transient problem reported in appendix B,
under the assumption of a diffusion-limited regime, where
the process continues thanks to the detachment and diffusion
of TPs. This is described by

ef � F~rf (a), ð3:9aÞ

with

ef ¼ e f0 þ 2~B 1� R�

R

� �2

, ð3:9bÞ

the fusion energy,

e f0 ¼ eRLg� ~gm � eT þ ~s1S � (1þ ~rf þ ln ~rf ), ð3:9cÞ

the input fusion energy and

F(a)~r ¼ (~rf þ 1)f(a)þ ln 1þ 1þ 1
~rf

 !
f(a)

" #
, ð3:9dÞ

the kinetic function of fusion, with ~rf ¼ r f0=rb, where ρf0 is
the equilibrium TP density in the host membrane, and f (α)
is given by equation (2.6c). In equations (3.9), γ = Sf/Sb with
Sf the area of the nucleated fusion pore and Sb = 4πR2 the sur-
face of the envelope. The speed factor α identifies the velocity
of the fusion process. As specified in appendix B, for ef→∞
we have that α→∞, i.e. TP diffusion can be indefinitely
fast (unlike budding and endocytosis). Due to the unlimited
speed factor, TP diffusion can become faster than membrane
relaxation or equally fast. In this case, the fusion time tf calcu-
lated in appendix B is inaccurate since the proposed model
relies on the assumption that viscoelastic relaxation is much
faster than TP diffusion. This model neglects again the bend-
ing energy of the membrane outside the envelope and, thus,
also the line energy of the rim. This approximation is again
based on the hypothesis that the membrane outside the
wrap assumes a catenoid-like configuration [4].

Figure 10a plots the dimensionless fusion time tf=t�f , with
t�f the characteristic fusion time, versus R/R*, at various ef0
and ~rf . The fusion time is given by equation (2.5), with tb sub-
stituted with tf, as function of the speed factor α. The latter
is then calculated numerically as function of the fusion
energy ef from equation (3.9) and (B 6) in appendix B. The
characteristic fusion time is

t�f ¼
R�2

D
: ð3:10Þ

As shown in this figure, tf is smallest for R≈Rmin or R≈
Rmax, and largest for R near R*, showing an opposite corre-
lation compared with tb and te. This is intuitive since the
bending energy is now a promoter of fusion, rather than an
energy barrier. Also, the fusion time and size-dependent kin-
etics appear here to be highly sensitive to the input energy ef0.

It is important to notice that virus infection only requires
the injection of RNA, which can occur as soon as the pore is
large enough, compared with the envelope size. Albeit com-
pleted unwrapping is far from necessary for infection, we can
still assume that the infection time is proportional to tf. It is
interesting to notice that fusion can occur with negative ef if
R≪ R*. From the parameter values in table 1 and equation
(3.10), we can obtain t�f ¼ 0:25 s. The relaxation time of the
cell membrane is tr = 0.5−0.75 s (measured on a red blood
cell [28]), thus the prediction reported in figure 10a is reliable
only for ef≤ 0 and R/R*≥ 0.7. That is, for the reported smal-
lest values of tf=t�f (for R→ 0.5), TP diffusion is faster than
membrane relaxation, hence, the latter controls the kinetics
of the process and the proposed model is inapplicable.

From figure 10a, we can deduce that tf=t�f � 0–100, for the
observed parameter values, thus tf≈ 1−10 s.
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Let us now analyse the hypothesis of budding as the
tightest size constraint. Because the statistical size frequency
of virions has the median at an intermediate radius, and
lower virion count for larger and smaller radii, it is intuitive
to consider that membrane fusion has limited influence on
the size polydispersity of a virus population by looking at
figure 10a. However, it is useful to analyse the critical con-
ditions required for the spontaneity of membrane fusion.
By equating equations (2.7) with (3.9), under α = 0, this
condition becomes

eRLg� eb � ~r 1þ ~rf

~r

� �
þ ln

~rf

~r

� �
: ð3:11Þ

Because eb≤ eb0, from equations (2.7), we can deduce that
R =R* produces the worst-case scenario in equation (3.11) so
that one can simply substitute eb with eb0 in this equation.

Figure 10b reports the minimum eRLγ− eb0 required to
favour fusion, from the right-hand side of equation (3.11)
and for various values of ~r and ~rf=~r ¼ r f0=r0. Noteworthy,
ρ0 is the equilibrium density of ligands in the mother cell,
where the virion is generated, while ρf0 is that in the
infected (host) cell. We can observe that a larger ρf0/ρ0
raises the bar for spontaneous fusion, while a smaller ρf0/ρ0
can facilitate fusion. That is, according to this model, the
first infection of a cell is far more likely to succeed and pro-
ceed at a high rate than the infection of a cell that has
already been infected multiple times. Considering now
ρf0 = ρ0, equation (3.11) reduces to eRLg� eb0 � 2~r. For the
range of parameter values adopted in table 1, for eb0 and
eRL, one can estimate γ≥ 0.0048−0.086, with median values
giving γ≥ 0.014. That is, the spontaneous formation and
propagation of the fusion pore can require up to 8.6% of
the envelope surface to be covered with receptor–ligand
bonds. Take now the fusion pore surface Sf ¼ pr2f , with rf
its radius, and Sf = γ Sb = γ 4πR2, with R≈ 50 nm from
table 1. We can then estimate the pore radius as
rf ¼ 2R

ffiffiffi
g

p ¼ 6:93–29.33 nm, with median value at rf =
11.62 nm. By comparing this with the ligand spacing lb =
14 nm in table 1, we can deduce that the fusion pore requires
commonly only one receptor–ligand bond to nucleate, and in
some cases, it can require up to three–four bonds.
4. Conclusion
The proposed simple model provides an energetic analysis to
derive size constraints and size-dependent budding time for
an enveloped virus. This compares well with experimental
observations on the optimal size (statistical median), giving
fastest budding, in virus populations for SARS-CoV-1 & 2
(coronavirus), HIV-1, flu and HCV (hepatitis C). The model
also shows a good prediction of the size polydispersity for
a virus population, via a simple exponential replication
model based on perfect size hereditariness, for SARS-CoV-
2. The same comparison can be simply extended to the
other species of enveloped virus analysed. These compari-
sons rely on the assumption that budding provides the
tightest size constraint. This hypothesis is verified by analys-
ing the size and energy limitations introduced by infection
via receptor- and clathrin-mediated endocytosis, and via
membrane fusion. Furthermore, as discussed in this article,
the timescale for virus replication (via budding) is approxi-
mately 10 min, while that of virus infection goes from
approximately 10 s, for membrane fusion, to approximately
1 min, for endocytosis. From this, one can observe that the
life cycle of a virus can be much more impacted by the kin-
etics of replication than that of infection. This observation
could shed light on the biophysical mechanisms involved in
virus infectivity. The experimental validation presented in
this paper also suggests that, for the analysed virus species,
budding is mediated by TP diffusion. The model is con-
structed to organize its parameters in a hierarchical fashion,
so that the dimensionless budding time tb=t�b only depends
on a small number of dimensionless parameters, namely,
the virion size R/R*, the availability of TPs ~r and the input
energy eb0. While R/R* varies across a small range, ~r and
eb0 are observed to span across at least one order of
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magnitude. This paper also provides a simple scaling
between the budding time and these quantities. The
proposed model provides a valuable tool to correlate molecu-
lar-scale properties (e.g. TP–capsid binding energy) of a
single enveloped virion with the size polydispersity of a
virus population. Because molecular-scale properties are
often difficult to measure (e.g. to the author’s knowledge,
no experimental data is available for TP–capsid adhesion),
this model can be used in reverse to extrapolate these proper-
ties from statistical observations on size polydispersity.
Finally, the proposed model can inspire biomolecular strat-
egies to limit virus replication by reducing the budding
energy, thereby increasing the budding time of a virus
population.
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Appendix A. Diffusion-mediated budding (and
endocytosis)
The proposed model assumes that TP diffusion controls the
kinetics of the process, as discussed by [8]. In axial symmetry,
the radial diffusion j is described by Fick’s second law as

j ¼ �Dr,r ðA1aÞ
or

j ¼ �rDm,r ðA1bÞ
with r the distance from the axis of symmetry, and D, ρ
and μ = 1 + ln(ρ/ρ0) the diffusivity, surface density and
(dimensionless) chemical potential of TPs in the membrane,
respectively. In this case, TP conservation imposes

_r ¼ � 1
r
(rj),r ðA2Þ

everywhere in the membrane, where _r ¼ @r=@t is the local
rate of change of TP concentration, with t time. Substitution
of (A 1) into (A 2) provides a partial differential equation in
the function ρ(t, r), subjected to the boundary conditions
ρ(t, ∞) = ρ0 and initial conditions ρ(0, r) = ρ0, with ρ0 the equi-
librium TP density in the unperturbed membrane (prior to
budding or far away from the bud). The solution to this
problem is given in [3]

r ¼ r0 þ C E
r2

4Dt

� �
, ðA3Þ

with C an integration constant and E(x) ¼ Ð1x exp (�u) du=u
the exponential integral function.

The total number of TPs in the system is

nTP ¼ rbSb þ 2p
ð1
r
rr dr, ðA4Þ

with ρb the (constant) TP density on the bud, Sb the surface of
the bud and r1 the distance between the bud rim and the axis
of symmetry (figure 1a). The assumption of constant ρb (and
spacing, lb ¼ r
�1=2
b , [18]) derives from observations on ligand

density and spacing for influenza-A virus [29] and SARS-
CoV-2 [30]. In this case, TP conservation imposes _nTP ¼ 0
on equation (A 4), which, considering _Sb ¼ 2pr1 _r1 and
(A 1–A 3), gives

(rb � r1)_r1 þ j1 ¼ 0, ðA5Þ

where ρ1 and j1 are the TP density and flux at the bud rim r =
r1, respectively. Because the condition at equation (A 5)
must be satisfied at any instant, the substitution of (A 3)
into (A5) gives the kinetic law for the moving boundary at
equation (2.4).

By substituting (A 1), (A 3) and (2.4) into (A 5), the
integration constant computes to

C ¼ a2(rb � r0)
a2E(a2)� exp (�a2)

: ðA6Þ

To calculate α, one has to define the thermodynamics of
the problem. The free energy of the system is described by
equation (2.1), and its rate of change, from the substitution
of (A 1), (A 2) and (A 5) into it, gives

_c

2pkT
¼ �rbeT�gmþs1Sþr1�rbþrb ln

rb
r1

� �
þ2B

1
R
� 1
R�

� �2
" #

r1 _r1�
_q

2pkT
, ðA7aÞ

with

_q
2pkT

¼
ð1
r1
Dr(m,r)

2r dr: ðA7bÞ

The term in equation (A 7b) is the energy dissipation due
to the diffusive transport of TP across the membrane, from
remote locations to the bud rim. To ensure the spontaneity
of the process, one needs to ensure a continuous free
energy reduction, i.e. _c � 0 (second law of thermodynamics).

Figure 9a gives the distribution of ρ across the membrane,
from equation (A 6) substituted into (A 3) and with ρb > ρ0.
For budding and endocytosis (figure 9b,c), ρ1 < ρ0 is required
to prompt the flux of TP toward the bud. From equation
(A 7b) one can deduce that _q � 0 is always satisfied. At this
point, budding spontaneity requires that the term in [ ], in
equation (A 7a), satisfies [ ]≤ 0. This condition, from the sub-
stitution of equation (A 6) into (A 3) and the result into (A 7a),
ultimately provides equation (2.6).

The kinetic constant is then obtained from a ¼ F�1
~r (eb), by

inverting equation (2.6a). This is here done numerically,
giving

a ¼ a1~a(eb), ðA8Þ

with a1 ¼ F�1
~r (1) the maximum speed factor, and ~a(eb) the

normalized speed factor giving ~a(0) ¼ 0 and ~a(1) ¼ 1. The
latter is fitted to the function

~a(eb) ¼ 1� exp �k1 eb � k2
ffiffiffiffi
eb

pð Þ: ðA9Þ

The values for α∞ and the fitting constants k1 and k2 are
given in table 2 for ~r ¼ 0:01 and ~r ¼ 0:1.

The fitting accuracy of equation (A 9), with the
coefficients in table 2, is R2 = 1 for both the adopted
values of ~r.



Table 2. Fitting parameters for equation (A 9).

~r α∞ k1 k2

0.01 0.0415 0.7443 0.7002

0.1 0.1846 0.8043 0.6326
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The budding time tb, expressed in equation (2.5) as a
function of α, can be rewritten in dimensionless form as

tb
t�b

¼ R
R�

� �2 1

~a(eb)
2 , ðA10Þ

with t�b the characteristic budding time taken from
equation (3.3), and ~a(eb) from equation (A 9). The dimension-
less budding time in equation (A 10) is finally reported in
figure 4a.
e
19:20220525
Appendix B. Diffusion-mediated membrane
fusion
Assuming TP diffusion controls again the kinetics of the pro-
cess, in axial symmetry, the radial diffusion j is described
by Fick’s second law as in equation (A 1), with (A 2) giving
again TP (ligand) conservation. The TP density distribution
ρf(t, r) is again given by (A 3) with ρ and ρ0 substituted
with ρf and ρf0.

The total number of TP now is

nTP ¼ �rvSv þ 2p
ð1
r1
rf r dr, ðB 1Þ

where ρv and Sv are the TP density and surface of the virion,
and the minus on the first term on the right-hand side is due
to the extraction of TPs from the envelope to then join the
resting membrane (figure 9). TP conservation imposes
again _nTP ¼ 0 on equation (B 1), which, considering
_Sb ¼ 2pr1 _r1 and (A 1)–(A 3), gives

� (rv þ r1)_r1 þ j1 ¼ 0, ðB 2Þ
where ρ1, r1 and j1 are now associated with the rim of the
fusion pore. The latter advances again according to the
kinetic law given by equation (2.4)

By substituting (A 1), (A 3) and (2.4) into (B 2), the
integration constant computes to

C ¼ a2(r f0 þ rv)

exp (�a2)� a2E(a2)
: ðB 3Þ

To calculate α, one has to again define the thermodyn-
amics of the problem. The free energy of the system is now
described by

c

kT
¼ gm þ rveT � s1S � rv ln

rv
r0

� �
� 2B

1
R
� 1
R�

� �2
" #

Sv

þ 2p
ð1
r1
rf ln

rf

r f0

 !
rdr, ðB 4Þ

and its rate of change, from the substitution of (A 1), (A 2)
and (B 2) into it, gives

_c

2pkT
¼ gmþrveT�s1S�2B

1
R
� 1
R�

� �2

þr1þrvþrv ln
r1
rv

� �" #
r1 _r1

� _q
2pkT

, ðB5Þ

with _q the energy dissipated by TP transport, given by
equation (A7b). To ensure the spontaneity of the process,
one needs to again ensure continuous free energy reduction,
i.e. _c � 0 (second law of thermodynamics). Here, one can
again ensure spontaneity by imposing [ ]≤ 0 for the terms
within [ ] in equation (B5). This then provides the condition
in equation (3.9).

The fusion time tf, similarly to the budding time, can be
written in dimensionless form as

tf
t�f

¼ R
R�

� �2 1

a(ef )
2 , ðB 6Þ

and plotted in figure 10a, with t�f the characteristic fusion
time given by equation (3.10). Here, the relation α(ef) in equation
(B 6) is calculated from the numerical solution of equation (3.9d).
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