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Multiple conserved states characterize the twist landscape of the
bacterial actin homolog MreB
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Filament formation by cytoskeletal proteins is critical to their involvement in myriad cellular processes.
The bacterial actin homolog MreB, which is essential for cell-shape determination in many rod-shaped
bacteria, has served as a model system for studying the mechanics of cytoskeletal filaments. Previous
molecular dynamics (MD) simulations revealed that the twist of MreB double protofilaments is depen-
dent on the bound nucleotide, as well as binding to the membrane or the accessory protein RodZ, and
MreB mutations that modulate twist also affect MreB spatial organization and cell shape. Here, we show
that MreB double protofilaments can adopt multiple twist states during microsecond-scale MD simula-
tions. A deep learning algorithm trained only on high- and low-twist states robustly identified all twist
conformations across most perturbations of ATP-bound MreB, suggesting the existence of a conserved
set of states whose occupancy is affected by each perturbation to MreB. Simulations replacing ATP with
ADP indicated that twist states were generally stable after hydrolysis. These findings suggest a rich twist
landscape that could provide the capacity to tune MreB activity and therefore its effects on cell shape.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Many bacteria encode homologs of the major eukaryotic
cytoskeletal proteins actin and tubulin, with diverse biological
functions including morphogenesis [51,54], division [1,29,45],
DNA segregation [16], and more [6,50]. In both eukaryotes and
prokaryotes, the function of many cytoskeletal proteins relies on
their ability to form filaments, in order to exert forces [32], trans-
port material [22], position organelles [26], and detect geometry
[13]. While crystallography has proven a powerful tool for reveal-
ing the vast array of filament structures adopted by bacterial
cytoskeletal proteins [29,45,51,52], it is challenging to infer func-
tion from static structures. Molecular dynamics (MD) simulations
provide insights into the potential for conformational changes at
multiple scales, enabling determination of important degrees of
freedom [8], changes to filament interfaces [19], and quantification
of the mechanical properties of filaments [10,19].

In many rod-shaped bacteria such as Escherichia coli, MreB is an
essential protein that dictates cell shape via regulation of new cell
wall synthesis by localizing in a curvature-dependent manner
[41,48]. MreB forms short, dynamic filaments that move along
the cell periphery [54]. While MreB movement is approximately
circumferential, the directionality is chiral (has a preferred hand-
edness relative to the longitudinal axis of a cell), and the degree
of chirality is related to cell-body twist during elongation
[12,46,55]. RodZ directly binds to [3] and moves with MreB [34],
and RodZ regulates cell shape by modulating MreB curvature sens-
ing [9,21,35]. Mutations in MreB can lead to dramatic changes in
cell morphology and/or cell size, potentially through altered curva-
ture localization patterns [18,25,33,42], suggesting that MreB is a
morphological tuning knob with a wide dynamic range. However,
the structural properties that dictate how perturbations to MreB
alter its curvature-sensing preferences and generate shape changes
has remained mysterious.
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Like eukaryotic actin, MreB has a U-shaped four-domain struc-
ture, with two beta domains and a nucleotide binding pocket
between two alpha domains [24]. Previous MD simulations of Ther-
matoga maritima MreB revealed nucleotide- and polymerization-
dependent conformational changes of MreB monomers [8] that
were later observed using X-ray crystallography [52]. Simulations
also predicted that intra-domain opening is connected to bending
of a single protofilament [8]. Crystal structures revealed that
Caulobacter crescentus MreB (CcMreB) forms anti-parallel double
protofilaments [52], and MD simulations exploring the dynamics
of double protofilaments over �100 ns demonstrated the potential
for left-handed twist, whose degree depends on the bound nucleo-
tide as well as binding to RodZ and/or the membrane [43]. Simula-
tions also predicted that point mutations in MreB can change the
intrinsic twist, and changes in twist angles correlated with MreB
filament conformation in vivo [43], suggesting that twist is a key
variable linking the activity of MreB to cell shape. While simulation
results were largely reproducible, some systems also showed occa-
sional, large fluctuations [43], indicating that longer simulations
are necessary to shed light on the stability of MreB twist states.

Anton2 is a special purpose supercomputer for molecular
dynamics calculations, enabling simulations at microsecond time
scales [40]. These longer simulations provide the potential for pro-
teins to traverse multiple conformational states [14,15], thereby
providing a more comprehensive and physiologically relevant pic-
ture connecting protein structure and dynamics to function. Moti-
vated by the connections between MreB twist and cell shape, we
sought to examine whether the seemingly equilibrated twist states
in previous simulations were a complete representation of the
twist landscape by performing microsecond-scale simulations of
CcMreB double protofilaments. We found that MreB can adopt
multiple twist states that can remain stable over hundreds of
nanoseconds, and perturbations to MreB alter the relative occu-
pancy of these states while conserving the distinct twist states. A
deep learning method revealed structural determinants of state
differences and identified residues located at the filament interface
that are key to twist state classification. These findings showcase
the potential of microsecond-scale MD simulations to quantify
the structural and mechanical landscapes of cytoskeletal proteins.
2. Results

2.1. Double protofilaments fluctuate among multiple states with quasi-
stable twist angles

We previously showed that MreB double protofilaments exhibit
a nonzero twist angle that is stable over �100 ns but dependent on
the bound nucleotide [43]. To test whether twist angle is stable
over longer time scales, we carried out ls-scale MD simulations
on Anton2 using a 4x2 double protofilament initialized with the
crystal structure (PDB ID: 4CZF; Fig. 1A). To avoid effects due to
greater fluctuations of the filament ends, we quantified the twist
angle based on the middle doublet pair (Fig. 1B, Fig. S1A, Methods).
We first simulated an ATP-bound double protofilament for >2.5 ls
(Fig. 1C, left). At the beginning of the simulation, the double
protofilament quickly adopted a twist angle of �10� and main-
tained this value for almost 1 ls. These twist angles were consis-
tent with those in our previous, shorter simulations of ATP-
bound MreB [43]. However, the twist angle then quickly increased
to >12� over an interval of <5 ns and remained around this value
for >300 ns. After �1200 ns, the twist angle decreased to <5�within
200 ns and remained low for the remainder of the simulation.
The �5� twist angle was more reminiscent of our previous,
�100-ns simulations of ADP-bound MreB [43]. The distribution
of twist angles within each of these intervals (excluding bound-
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aries to avoid the transitions) was approximately Gaussian
(Fig. 1C, insets), suggesting that the double protofilament switched
between quasi-stable states. Consistent with this picture, the
Steppi algorithm, which is an information-based change-point
analysis algorithm for detecting transitions between discrete states
[27,57], identified three states defined by the boundaries described
above (Fig. 1C, left).

Having observed such transitions in twist angle, we carried out
another, independent simulation of a 4x2 ATP-bound double
protofilament. In this simulation, the twist angle initially started
at �5�, similar to the final state of the first simulation (Fig. 1C, left),
and fluctuated around this value for almost 500 ns (Fig. 1C, right).
After that point, like the first simulation, twist angle exhibited sev-
eral rapid transitions. A Steppi analysis of the twist trajectory sug-
gested the existence of twist states with low (�0�), intermediate
(�5�), and high (�10�) values. This simulation supports the
hypothesis that an ATP-bound structure can access quasi-stable
states with both higher twist angles and lower twist angles more
similar to the expected twist of ADP-bound double protofilaments.

To determine the stability of ADP-bound MreB, we carried out
two, independent 1-ls simulations. In both simulations, the twist
angle initially fluctuated around 0�. In the first simulation, the
twist angle remained low for the entire 1 ls; Steppi predicted a
single state (Fig. 1D, left). By contrast, in the second simulation,
after 300 ns the twist angle rapidly increased to �5�, and then
rapidly increased to �10� after 500 ns (Fig. 1D, right). Steppi pre-
dicted three states, the first of which exhibited similar average
twist to that of the first ADP-bound simulation (Fig. 1D, left) and
the last two with similar twist to that of the initial and final states
in the first ATP-bound simulation (Fig. 1C, left).

To determine if other filament conformational changes accom-
panied twist-state transitions, we evaluated bending dynamics
throughout these trajectories. While bending and twist angles
(Fig. S1A) were largely uncorrelated in ATP- or ADP-bound filament
simulations (Fig. S1B,C), we identified a weak negative correlation
between the out-of-plane bending angle and the twist angle in
both ATP simulations (Fig. S1B), suggesting a slight trade-off
between twist and bending angles. This relationship was evident
in only one of the ADP-bound filament simulations (Fig. S1C).
Steppi predicted only a single state transition of the out-of-plane
bending angle in each ATP simulation, despite the identification
of multiple twist-state transitions (Fig. 1C, S1D). Thus, while fila-
ment bending decreases with twist angle in ATP-bound filament
simulations, twist angle appears to be more robustly connected
to state transitions.

We also evaluated filament stability throughout these simula-
tions by measuring the buried solvent-accessible surface area
(bSASA, Methods) across all doublet pairs, which measures interac-
tion surfaces inaccessible to water. We found that the bSASA was
highly stable across both ATP- and ADP-bound filament simula-
tions, with no obvious signature during intervals associated with
twist transitions (Fig. S2A). In addition, twist angle was only
weakly anticorrelated with the bSASA of the middle doublet (the
filament section from which twist was computed) (Fig. S2B). Thus,
high twist states are accessible without substantial cost to filament
stability, and filaments remain stable throughout twist-state
transitions.

These simulations suggest the presence of multiple twist states
of MreB double protofilaments and highlight the importance of ls-
scale simulations for exploring the twist landscape of MreB.

2.2. Perturbations to MreB shift twist angles among similar sets of
states

We noticed that the quasi-stable twist states adopted by ATP-
bound double protofilaments (Fig. 1C, S3A) were quantitatively



Fig. 1. MreB double protofilaments adopt quasi-stable twist states with similar sets of angles across simulations and nucleotide-binding states. A) Left: Caulobacter
crescentus MreB (CcMreB) monomer structure bound to ATP (from filament structure PDB ID: 4CZJ). The four subdomains align with those of actin and are defined by IA
(residues 9 to 36 and residues 322 to 345, blue), IB (residues 37 to 81, yellow), IIA (residues 151 to 186 and residues 265 to 321, red), and IIB (residues 187 to 264, green).
Right: double protofilament (4x2) structure of CcMreB (PDB ID: 4CZJ), which consists of antiparallel MreB strands (green, orange). The middle doublet (dotted square) was
used for twist measurements (Methods). The silver transparent water box is shown to illustrate the size of the simulated system. B) The twist angle of an MreB double
protofilament measures the relative rotation of pairs within the middle doublet. Left: schematic of the middle doublet (2x2) used to calculate the twist angle of MreB double
protofilaments. Shown in red and blue are antiparallel subunit pairs. Middle: subunit pairs (red, blue) are shown through the long axis of the double protofilament from the
crystal structure (0.7� twist). Right: subunit pairs (red, blue) rotate in opposite directions to generate twist, shown here at 12�. C) Twist angle varied throughout ATP-bound
double protofilament simulations. Left: twist angle throughout a 2.7-ms simulation of an ATP-bound 4x2 MreB structure. Colored segments with overlapping horizontal grey
lines represent states identified by the change-point algorithm Steppi (Methods). Inset: the twist angle distribution of each state fit with a Gaussian function. Right: A 2-ms
replicate simulation of an ATP-bound 4x2 MreB filament displayed different twist dynamics from the simulation on the left, but the collective set of twist angles was similar
in the two simulations. Steppi-identified states with similar mean values between the two simulations are plotted with the same color. D) Twist angle sometimes varied
throughout ADP-bound double protofilament simulations and adopted generally lower values than ATP-bound structures. Left: A 1-ms simulation of an ADP-bound 4x2 MreB
double protofilament was characterized by a single state with low twist (orange). Right: the twist angle of a replicate 1-ms simulation of an ADP-bound 4x2 MreB double
protofilament varied between three states.

Fig. 2. MreB double protofilaments occupy at least four distinct twist states and perturbations shift their relative occupancy. A) Representative 1-ms trajectories of the
effects of each perturbation on MreB double protofilament twist behavior. Binding to a membrane (red) decreased twist, while the R121C mutation led to higher twist angles
(green). Binding to RodZ (blue) caused the largest reduction in twist angle. B) The distribution of mean twist angles among Steppi-identified states across all simulations
from this study shows multimodal behavior. Modes are identified with arrows. C) K-means clustering with n=4 of Steppi-identified twist states across ATP- and ADP-bound
free (no membrane, no RodZ) double protofilament simulations. Clusters are identified by color and each state instance is shown as a colored circle. D) K-means clustering
with n=4 of Steppi-identified twist states across all simulations. Clusters are identified by color and each state instance is shown as a colored circle. E) Top: distribution of
twist moduli calculated for each state identified by Steppi (Methods). Bottom: twist modulus did not display any obvious trends across twist states. States are colored based
on k-means cluster (C,D), and the size of each circle is proportional to the state lifetime (scale shown at bottom right).
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similar to those of ADP-bound double protofilaments (Fig. 1D, S3B).
In our previous study [43]), we predicted using �100 ns-scale MD
simulations that membrane binding suppresses ATP-bound double
protofilament twisting and that mutations in MreB and binding to
RodZ modulate intrinsic twist. To determine how these perturba-
tions affect twist on longer time scales, we carried out ls-scale
simulations of double protofilaments bound to a membrane patch,
bound to RodZ, and with the MreBR121C mutation (in solution and
bound to a membrane patch), all bound to ATP, and carried out
two replicates of each lasting 1 ls or longer (Table S1, Fig. S3A-
D). During the initial period of each simulation, our results were
generally consistent with our previous study [43]. After binding
to the membrane, the twist angle was predominantly �5� in both
replicates, only occasionally increasing to �10� or decreasing
to �0� (Fig. 2A, red; Fig. S3A). One MreBR121C simulation initially
exhibited low twist values (0-5�) in solution for the first 100 ns,
which then increased and stabilized at larger values close
to �10� (Fig. 2A, green; Fig. S3C); this larger twist was suppressed
by membrane binding (Fig. S3C). RodZ binding reduced twist angle,
with long intervals at 0� or 5� and even some periods with negative
twist angle (right-handed twist in our formalism; Fig. 2A, blue;
Fig. S3D). In each of these cases, Steppi predicted the existence of
multiple states. To quantify the overall twist landscape of MreB,
we combined all our datasets (Fig. S3) and calculated the his-
togram of mean twist values across all Steppi-predicted states.
Consistent with our visual inspection, the twist angle distribution
exhibited four peaks, corresponding to �0�, 5�, 10�, and 12.5�
(Fig. 2B); the distribution was qualitatively similar if each state
Fig. 3. Deep learning identifies key residues responsible for predicting twist angle. A) T
states. The trajectory is the 2.7-ms simulation of an ATP-bound double protofilament sho
used for training. B) DiffNet training scores for twist classification. High (orange) and
during training. C) Scoring of MreB MD simulations using the ATP twist-based DiffNe
simulation in a color labeling simulation and replicate number. Colored ellipses represen
(2): second replicate of ATP-bound double protofilament from Fig. 1C, right; R121C-ATP(
bound double protofilament replicates. D) MreB monomer structure with a-carbons o
spheres. Residues G45 and G46 were identified by training a twist-based DiffNet using o
based DiffNet using the full 4x2 double protofilament (Fig. S5). E) Key residues in twist st
key residues from (D) are located at the interface within a single filament (between g
subunits). Right: zoomed-in view of interface highlighting the key residues (red sticks).
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was weighted by the time of occupancy (Fig. S4A). K-means clus-
tering with four clusters based on wild-type ATP- or ADP-bound
double protofilaments alone resulted in groups with twist angles
of �0�, 5�, 10�, and 12.5� (Fig. 2C, S4B; Methods), as did clustering
of all simulations (Fig. 2D, S4C). These results suggest that the per-
turbations to MreB are not altering the twist states themselves, but
rather shifting their relative occupancy.

To further interrogate the right-handed twisting of the RodZ
simulation (Fig. 2A), we extracted a conformation with high
right-handed twist and restarted short (<200 ns) simulations with
and without RodZ bound. In the two simulations of ADP-bound fil-
aments without RodZ, the right-handed twist quickly decreased to
zero within tens of ns (Fig. S5A). Simulations of ATP-bound fila-
ments with RodZ also exhibited somewhat reduced twist, despite
relaxing more slowly (Fig. S5A). Interestingly, in the two ATP-
bound simulations without RodZ, one untwisted within � 50 ns,
similar to ADP-bound simulations, while the other remained with
high right-handed twist for 200 ns (Fig. S5A). In all simulations,
bSASA values were high throughout (Fig. S5B), indicating that the
double protofilament remained stable despite the large changes
in twist. Thus, while MreB double protofilaments did not attain a
conformation with right-handed twist in our ls-scale equilibrium
simulations, the states adopted in RodZ-bound simulations can
remain stable over hundreds of ns when RodZ is removed. It
remains to be determined whether right-handed twist is inaccessi-
ble or accessible at low relative occupancy in equilibrium
simulations.
raining data used by DiffNets that defines high-twist (orange) and low-twist (blue)
wn in Fig. 1C, left. The middle 2x2 doublet of the full 4x2 double protofilament was
low (blue) twist distributions are from the labeling of each simulation frame used
t was highly correlated with twist angle. Each circle represents the frame from a
t the training distributions for high (orange) and low (blue) twist states in (A,B). ATP
1,2): replicates of MreBR121C mutant bound to ATP; ATP+RodZ(1,2): ATP- and RodZ-
f key residues identified from DiffNets based on twist classification shown as red
nly the middle doublet; residues G66 and H67 were identified by training a twist-
ate classification are located at filament interfaces. Left: in the MreB middle doublet,
reen and blue subunits) and across antiparallel filaments (between the two blue



Fig. 4. Nucleotide replacement typically does not alter twist angle. A) The ATP was replaced with ADP to mimic nucleotide hydrolysis in structures sampled from an ATP-
bound double protofilament at time points representing various twist states (purple = low; yellow = intermediate; green = high). Left: twist angle trajectory of an ATP-bound
MreB double protofilament simulation with twist states labeled (colored dots are the frames from which structures were extracted). Right: each ATP-bound double
protofilament structure was modified by replacing ATP with ADP and simulated for another �70 ns. B) Twist angle trajectories for each nucleotide-replacement simulation,
started from three twist states. Each replacement simulation is labeled with a replicate number, and colored bounding boxes correspond to twist states extracted from (A).
Colored, dotted lines represent the three twist states (low, intermediate, and high). Left: trajectories starting from the intermediate twist state. Middle: trajectories starting
from the high twist state. Right: trajectories starting from the low twist state. C) Buried solvent accessible surface area (bSASA) is maintained for the double protofilament in
each nucleotide-replacement simulation. Colored bounding boxes correspond to twist states extracted from (A). Left: trajectories starting from the intermediate twist state.
Middle: trajectories starting from the high twist state. Right: trajectories starting from the low twist state.
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To test whether the mechanical properties of the double
protofilament depended on twist angle, we computed the twist
modulus from the magnitude of the angular fluctuations (Meth-
ods) in each Steppi state across all simulations. The twist modulus
across all states was approximately normally distributed with a
relatively narrow spread (Fig. 2E, top), and there was no obvious
bias of twist modulus with respect to either state lifetime or twist
angle (Fig. 2E, bottom). Taken together, these data suggest that
MreB double protofilaments can adjust twist angle without
mechanical destabilization, supporting the hypothesis that each
twist angle is directly tied to a particular quasi-stable state.
2.3. Deep learning predicts that twist angle is broadly correlated with
the structural determinants that classify twist states

Thus far, our analysis has been focused on twist angle based on
the apparent state transitions in simulations (Fig. 1,2). However,
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there are other structural properties that could also influence dou-
ble protofilament conformation such as bending [43], making it
unclear whether two conformations with the same twist angle
actually represent a common state. To avoid assumptions about
relevant structural features, we applied DiffNets, a deep-learning
framework that leverages biochemical information about protein
structural variants to learn structural contributions to functional
behavior [56]. DiffNets has been successfully applied to detect sub-
tle differences, for example beta-lactamase variant stabilities and
myosin motor isoforms [56]. Here, we sought to learn which con-
formational features across MreB filaments contribute to twist.

We trained a DiffNets network (DiffNet) on the initial interval of
an ATP-bound MreB simulation (Fig. 1C, left) with stable twist of
�10.4� (Fig. 3A, orange) compared with an interval near the end
of the same simulation with stable twist of �4.2� (Fig. 3A, blue).
If the high (10.4�) and low (4.2�) twist states represent distinct
conformational states, as assumed for the purpose of DiffNets
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input, the network should be able to predict twist-state dynamics
in other simulations. We trained the DiffNet using only the middle
doublet (Fig. 2B), since it was used for calculating the twist state.
DiffNet scores for the structures in the two intervals displayed
essentially non-overlapping distributions, with high score repre-
senting structures with high twist angle (Fig. 3B). When we applied
the DiffNet to the other simulation of an ATP-bound free (no mem-
brane) double protofilament, DiffNet scores were highly correlated
with twist angle despite the large differences in twist angle distri-
butions relative to the simulations in the training set (Fig. 3C,
black). These results indicate that there is a set of structural fea-
tures in common between high and low twist states in free ATP-
bound filaments.

To determine if those structural features are conserved across
other ATP-bound MreB double protofilament systems, we used
the DiffNet to score simulations of MreB bound to RodZ or with
the MreBR121C mutation. In each case, DiffNet score was highly cor-
related with twist angle (Fig. 3C), consistent with our previous con-
clusion that these perturbations are shifting the occupancy of each
state rather than altering the states themselves. Moreover, the por-
tions of RodZ-bound MreB trajectories with negative (right-
handed) twist exhibited even lower DiffNet scores than the train-
ing data (Fig. 3C, blue); likewise, very high twist angles from a
R121C trajectory exhibited scores higher than training data
(Fig. 3C, pink). Thus, the trained DiffNet can extrapolate to twist
states outside the range of the training data. However, when we
applied the network to an ADP-bound MreB simulation with stable
twist angle �0.5� (Fig. 1D, left), scores were intermediate between
the low and high twist intervals of the ATP-bound simulation
(Fig. S6A), indicating that another factor disrupted predictions for
ADP-bound simulations. Simulations of MreB bound to a mem-
brane patch were scored higher than would be predicted from their
twist angle alone, even though DiffNet scores correlated with twist
angle (Fig. S6B,C).

To compare nucleotide-bound states, we trained a DiffNet to
distinguish all time points in an ATP-bound MreB simulation
(Fig. 1C, left) from all time points in an ADP-bound MreB simula-
tion (Fig. 1D, right), both of which exhibited multiple twist angle
transitions (Fig. S7A). Despite the overlap in twist angles between
the two simulations (Fig. S7A), DiffNet scores were well separated
between the two groups, with high scores corresponding to the
ATP-bound simulation (Fig. S7B,C). However, application of the
network to the other ADP-bound simulation, which had uniformly
low twist angle (Fig. 1D, left), resulted in intermediate DiffNet
scores (Fig. S7D), indicating that the network does not robustly
separate states based only on nucleotide binding. Furthermore,
ADP- and ATP-bound MreB filaments bound to membrane were
all scored similarly as ATP filaments (Fig. S7E). Thus, we focused
our structural analyses on the twist-based DiffNet trained on two
states of an ATP-bound MreB double protofilament.

The DiffNet trained on the high and low twist states of the mid-
dle doublet of the ATP-bound simulation identified key residues
whose movements contributed the most to classification, as scored
by the top 50 interactions generated by DiffNets. These residues
included G45 and G46, each of which is located within the exposed
flexible loops in region IB (Fig. 3D, 1A); G46 was present in 34 of
the top 50 interactions. To determine whether focusing on the
middle doublet affected DiffNets classification, we trained another
DiffNet on the high and low twist states of the entire 4x2 ATP-
bound double protofilament. Scores from this DiffNet were also
well separated between the two twist states (Fig. S8). Moreover,
the key residues for classification included R63, P65, G66, and
H67, all of which are located close to G45 and G46 in region IB
(Fig. 3D, 1A); G66 and H67 were present in 39 of the top 50 inter-
actions. In a double protofilament, all these residues are located at
the filament interface (Fig. 3E), suggesting that our DiffNet indeed
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captured large-scale movement features related to filament
twist.

Since individual residue movements can predict twist state, we
wondered whether a DiffNet trained on individual subunits from
the MreB double protofilament could achieve similar success in
twist-state classification. We trained a DiffNet based solely on
atomic coordinates from the P4 subunit (Fig. S9), which resides
in the middle 2x2 doublet, with the same trajectories used to train
the 4x2 and 2x2 DiffNets (Fig. 3A). Training was generally success-
ful in classifying low and high twist states (Fig. S9A), although
there was some overlap in the distribution of scores due to a
decrease in scores of the high-twist state in later frames
(Fig. S9B). Ultimately, this DiffNet failed to predict twist states
from other simulations, instead identifying a negative correlation
between score and twist angle (Fig. S9C). Among the residue inter-
actions that contributed to training of the subunit-based DiffNet,
there were fewer key residues at the filament interface. The top
residue, H51, which resides in the IB subdomain, was found in 14
of the top 50 residue interactions, while the key twist residue
G66 from the full filament was found only once (residues G45,
G46, and H67 were not present in the top 50) (Fig. S9D). The infre-
quent presence of G45, G46, G66 and H67 in the subunit-based
DiffNet is consistent with their localization at the filament inter-
face (Fig. 3E). Thus, twist states are likely determined by large-
scale movements along filament interfaces rather than specific
internal rearrangements of individual subunits.

Interestingly, a large library of E. coli MreB mutants generated
by selecting for changes in cell width [42] includes G47C (G45 in
CcMreB) and G68C (G66 in CcMreB), both of which exhibited
increased cell width of �1.3 lm compared with 0.97 lm for wild
type. To determine the effect of these mutations on filament
dynamics, we performed short (<200 ns) simulations of ATP-
bound CcMreB double protofilaments with either the G45C or
G66C mutation, as well as a wild-type simulation as a control
(Fig. S10, Methods). While one of the G45C replicates quickly
adopted a high twist above 10�, in agreement with wild-type fila-
ment behavior, the other replicate adopted only low twist angles
below 5� (Fig. S10A). Similarly, simulations of G66C filaments dis-
played high twist in only one replicate (Fig. S10B). Since G45 and
G66 are predicted by DiffNets to be important for determining
twist state (Fig. 3D), we used our twist DiffNet (Fig. 3A,B) to score
these mutant simulations. DiffNet score was highly correlated with
twist angle in G45C filaments, with a relationship that overlapped
with that of the control simulation (Fig. S10C) and in agreement
with classification of other ATP-bound filaments (Fig. 3C). DiffNet
scores of G66C were also correlated with twist angle, albeit with
slightly lower DiffNet score for a given twist angle than other
ATP-bound filament simulations (Fig. S10C). The bSASA was lower
in both G66C simulations and the low-twist G45C replicate com-
pared with that of wild-type simulations (Fig. S10D), indicating
that the G45C and G66C mutations lower filament stability. Thus,
the G45C and G66C mutations bias filaments toward lower twist
states and compromise filament stability.

2.4. Twist states largely remain stable after nucleotide hydrolysis

Since simulations of ATP-bound MreB double protofilaments
exhibited overall larger twist angles compared to ADP-bound fila-
ments (Fig. 1C,D), we wondered whether high-twist ATP-bound
states would transition to low-twist states after ATP was replaced
by ADP, mimicking a hydrolysis event. To address this question, we
selected three time points in simulations of ATP-bound filaments
(Fig. 1C) at which the filament exhibited low, medium, or high
twist angles (Fig. 4A, left) and either swapped the bound nucleo-
tide to ADP to mimic hydrolysis, or maintained the ATP. We then
carried out replicate simulations based on each of these structures
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for �70 ns (Fig. 4A, right). In the simulations with ATP, the fila-
ments maintained their twist state regardless of the initial twist
angle (Fig. 4B, blue curves), consistent with our previous interpre-
tations that the twist angles observed in ATP-bound simulations
are all relatively stable over tens to hundreds of nanoseconds.

When the binding nucleotide was switched to ADP, the twist
angle was also stable for simulations initialized with low or med-
ium twist angles (Fig. 4B, left and right, respectively). By contrast,
in the ADP-bound simulations starting at �14� twist, only one of
the replicates maintained the high-twist conformation, while the
twist angle in the other replicate quickly decreased to and then
equilibrated at an intermediate value (Fig. 4B, middle). In all sim-
ulations, regardless of the bound nucleotide, the bSASA between
the middle doublet pairs was approximately constant (Fig. 4C),
suggesting that each filament conformation remained stable.

To further characterize these simulations mimicking hydrolysis,
we used the DiffNets trained on either distinct twist (Fig. 3A,B) or
nucleotide-bound (Fig. S7A-C) states to score each frame. The
nucleotide-based DiffNet failed to identify differences between
simulation trajectories in which ATP was replaced by ADP
(Fig. S11A), indicating that the MreB filaments in the two simula-
tions likely remain in an ATP-like state and yet can still transition
to a state with lower twist angle. The twist-based DiffNet success-
fully classified each twist state regardless of nucleotide (Fig. S11B),
in agreement with our ls-scale Anton2 simulations (Fig. 3C). Thus,
DiffNets does not distinguish between these ADP- and ATP-bound
simulations, suggesting that MreB twist states are resilient upon
nucleotide replacement on short time scales.
3. Discussion

Many bacterial cytoskeletal proteins are involved in cellular
processes that span multiple length scales, such as the regulation
of cell wall synthesis by MreB or of cell division by the tubulin
homolog FtsZ [5,11]. As a result, the filaments must reorganize as
the cell develops [17], and the ability to transition between states
may play a major role in such spatial reorganization. How does a
filament adopt multiple states? One possibility is that the subunits
possess multiple binding interfaces, which has been hypothesized
as the mechanism by which GTP hydrolysis alters the bending of
FtsZ protofilaments without affecting subunit conformation [19].
A mutation within a helix of Staphylococcus aureus FtsZ can alter
the inter-subunit binding interface and introduce protofilament
twist, which leads to altered patterns of cell-wall insertion along
the FtsZ helix and a transition from coccoid growth to elongation
[37]. For T. maritima MreB, protofilament bending appears to be
cooperative [51], a behavior that has been linked to intrasubunit
conformational changes [8] and may also be connected with bind-
ing to the membrane [43] or to RodZ [9,35,53].

While simulations from our previous study showed that ADP-
bound filaments adopt lower twist angles than ATP-bound fila-
ments [43], the ls-scale simulations in this study demonstrate that
both nucleotide-bound configurations are capable of accessing low
and high twist angles. Our analysis suggests that the nucleotide
may bias twist-state distributions toward either high (ATP-like)
or low (ADP-like) twist (Fig. 2). Furthermore, in simulations where
ATP was replaced with ADP, twist angles mostly remained stable
(Fig. 4), indicating that structural factors independent of nucleotide
hydrolysis are at least partially responsible for twist-state
transitions.

Based on our findings, we hypothesize that intersubunit inter-
actions involving flexible loops in the IB subdomain are crucial
for determining twist state (Fig. 3D,E). Simulations of filaments
with G45C or G66C (mutations that increase cell width E. coli
[42]) displayed a bias toward lower twist angles (Fig. S10A,B)
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and lower stability (Fig. S10D). Compromised filament stability
may generally reduce MreB function and its interactions with
binding partners. Future MD simulations focusing on these interac-
tions may reveal the mechanism of twist-state transitions, and
deep scanning mutagenesis [2] of MreB will enable experimental
validation of the links between cellular phenotypes and the func-
tional consequences of interfacial disruption.

The ability of a cytoskeletal filament to adopt multiple states can
provide several advantages. MreB plays a central role in cell shape
and size determination, which are important determinants of cellular
physiology [7,58]. Cell size and width vary with growth rate across
nutrient conditions [39,49], and thus the pattern of MreB-directed
cell wall synthesis [48] must adjust. Since twist angle is linked to
MreB patterning [43] andMreB curvature preference varies as a func-
tion of cell width [42], being able to adopt multiple twist states may
enable MreB to adapt to cell width. The size of double protofilaments
that can be explored in MD simulations over long time scales is cur-
rently limited, and double protofilaments with more subunits may
have a different twist landscape than the 4x2 systems that we have
focused on in this study. In that case, since double protofilament
length is likely dependent on MreB concentration, modulation of
the twist landscape along with transcriptional feedback on mreB
expression as a function of cell width [44] could enable homeostasis
of cell width.

MD simulations of bacterial cytoskeletal filaments on the 100-ns
time scale [8,19] have predicted conformational changes that were
subsequently validated experimentally [28,52], and have provided
estimates of filament mechanical properties that can be used to pre-
dict intracellular organization [43]. However, such simulations have
also revealed state transitions rather than complete equilibration
[19], and this study shows that longer, ls-scale simulations may be
critical to understand the full spectrum of possible conformations.
Like MreB, prokaryotic actin homologs such as FtsA, ParM, and cren-
actin display nucleotide- and filament-dependent subunit changes
[36], suggesting that their filaments may also have multiple quasi-
stable states. A combination of specialized supercomputers such as
Anton2 with computational strategies such as steered or accelerated
MD will enable comprehensive exploration of the state landscape,
and future studies should focus on quantifying the occupancy of each
state. Moreover, deep learning algorithms such as DiffNets can high-
light the specific residues responsible for state differences, facilitating
targeted mutagenesis experiments and MD simulations of mutants.
Ultimately, a comparison of behaviors among cytoskeletal proteins
may reveal fundamental rules that couple filament structure and
function.
4. Methods

4.1. Equilibrium MD simulations

All ls-scale simulations were performed on the Anton2 super-
computer [40]; �100 ns-scale simulations were performed using
the MD package NAMD [38]. Simulations were set up as previously
described [43]. Briefly, the CHARMM36 force field [4] and CMAP
corrections [30] were used, with water molecules described with
the TIP3P model [23]. Integration time step was 2 fs [47]. Bonded
terms and short-range, non-bonded terms were evaluated every
time step, and long-range electrostatics were evaluated every
other time step. Setup, analysis, and rendering of the simulation
systems were performed with VMD [20].
4.2. Simulated systems

MD simulations performed in this study are described in
Table S1. Unless otherwise noted, systems were initialized using
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equilibrated simulations from [43]. The bound nucleotide was
replaced by ATP or ADP with chelating Mg2+ ions for all simulated
systems, a bounding water box was added to surround the com-
plex, and sodium or chloride ions were added to neutralize the
simulated system. Mutations G45C and G66C were created in
VMD using the mutate tool [20].

4.3. Membrane binding

MD systems with a membrane were generated as previously
described [43]. Briefly, the membrane plugin in VMD was used to
add an all-atom patch of palmitoyloleoyl phos-
phatidylethanolamine (POPE) molecules, neutralized by NaCl, to
an equilibrated 4x2 filament MreB simulation. The filament was
placed approximately 10 Å from the membrane patch and allowed
to freely interact during a 120 ns simulation. This final state was
used as the initial system in Anton2 simulations.

4.4. Calculation of buried solvent-accessible surface area (SASA)

The buried SASA between two molecules was calculated from
three quantities: the SASA of each molecule by itself (denoted as
A1 and A2), and the SASA of the complex of the twomolecules when
interacting (denoted as A1+2). The buried SASA between the two
molecules is

buried SASA = (A1 + A2�A1+2)/2.
For each molecule or molecule complex, its corresponding SASA

was calculated in VMD using the command measure sasa, with
1.40 Å as the van der Waal’s radius for water molecules.

4.5. Calculation of filament bending and twisting angles

For each simulation frame, a local coordinate system was
defined by three unit vectors (d1, d2, d3) as previously described
[19]. In the MreB filament, d3 is largely parallel to the filament,
d2 is approximately perpendicular to the membrane plane, and
d1 = d3 � d2. Twist angle is the rotation angle around d3.

4.6. Steppi analyses

State-change identification was performed using Steppi [27,57],
a change-point analysis package written in MATLAB. The algorithm
assumes features of the noise in each state and builds a model that
identifies transitions between discrete states. Parameters for state-
change identification in MreB twist trajectories were chosen for a
one-dimensional process as follows: state level l = unfixed, level
slope a = 0, nearest-neighbor coupling e = 0.6, noise ‘‘stiffness”
k = 0.2. These parameters were chosen to optimize state identifica-
tion in agreement with initial clustering analyses.

4.7. K-means clustering of Steppi-identified states

Twist-state clustering was performed with the kmeans function
in MATLAB. A four-cluster partitioning of the data was based on the
distribution of all twist states identified by Steppi. The clustering
was performed separately on the set of free (no membrane, no
RodZ) ADP- and ATP-bound filament simulations and on the set
of all simulation trajectories.

4.8. Calculation of twist modulus

Twist modulus was calculated as previously described [43].
Briefly, a Gaussian function was fit to the distribution of twist
angles in each state, and the standard deviation, r, was used in a
small-angle approximation to calculate the twist modulus as
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K ¼ kBT l
r2, where l � 5 nm is the size of an MreB monomer. Note

that any slow variation in the average twist angle will lead to an
overestimation of r and hence an underestimation of K.

4.9. DiffNets analyses

Inputs for DiffNet training were prepared according to [56] as
follows: (1) NAMD trajectories from Anton2 simulations were pro-
cessed using VMD [20] to extract only the relevant residue coordi-
nates; (2) trajectories were converted from dcd format to xtc using
the mdconvert command-line script from the MDTraj python pack-
age [31]; (3) trajectories were pre-processed using the whitening
procedure detailed in the DiffNets package; (4) each DiffNet was
trained using identical hyper-parameters (10 epochs, 50-fold
dimensional reduction, 32-frame batch size, nnutils.sae architec-
ture); (5) DiffNet clustering analysis was performed to identify
key residue interactions, of which the top 50 were chosen for fur-
ther analysis.

All trajectories used for DiffNet training and prediction were
performed on residue alpha-carbon atoms. Full (4x2) and doublet
(2x2) filament trajectories were further simplified by removing
residues 1 to 13, which comprise the flexible N-terminal section
added to PDB: 4CZF in previous simulations [43]. Subunit-based
DiffNets were trained on trajectories after removing residues 335
to 347 (the flexible C-terminus), in addition to residues 1 to 13.
These deletions reduced unwanted residue-score interactions dur-
ing training.
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