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Valproic acid/sodium valproate (VPA) is a widely used anticonvulsant drug for

maintenance treatment of bipolar disorders. In order to balance the efficacy and

adverse events of VPA treatment, an individualized dose regimen is necessary.

This study aimed to establish an individualized medication model of VPA for

patients with bipolar disorder based on machine learning and deep learning

techniques. The sequential forward selection (SFS) algorithm was applied for

selecting a feature subset, and random forest was used for interpolatingmissing

values. Then, we compared nine models using XGBoost, LightGBM, CatBoost,

random forest, GBDT, SVM, logistic regression, ANN, and TabNet, and CatBoost

was chosen to establish the individualized medication model with the best

performance (accuracy = 0.85, AUC = 0.91, sensitivity = 0.85, and specificity =

0.83). Three important variables that correlated with VPA daily dose included

VPA TDM value, antipsychotics, and indirect bilirubin. SHapley Additive

exPlanations was applied to visually interpret their impacts on VPA daily

dose. Last, the confusion matrix presented that predicting a daily dose of

0.5 g VPA had a precision of 55.56% and recall rate of 83.33%, and

predicting a daily dose of 1 g VPA had a precision of 95.83% and a recall rate

of 85.19%. In conclusion, the individualized medication model of VPA for

patients with bipolar disorder based on CatBoost had a good prediction

ability, which provides guidance for clinicians to propose the optimal

medication regimen.
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Introduction

Valproic acid/sodium valproate (VPA) constitutes a widely

prescribed anticonvulsant drug for maintenance treatment of

bipolar disorders. VPA is a short-chain fatty acid that acts as a

gamma-aminobutyric acid transaminase inhibitor and blocker of

voltage-gated sodium channels and T-type calcium channels and

inhibiting histone deacetylase, which impacts systems associated

with manic-type behaviors (Perucca, 2002; Bowden and Karren,

2006; Chateauvieux et al., 2010). Bipolar disorder is a recurrent

illness characterized by depressive and manic/hypomanic

episodes, affecting more than 1% of the population worldwide

(Cipriani et al., 2013; Pisanu et al., 2018; Fontana et al., 2020).

VPA is effective for treating mania, alone or in combination

(Bowden and Karren, 2006). Wide variability in VPA

pharmacokinetic parameters exists in patients with bipolar

disorder, and they normally need long anticipated treatment

durations (Haymond and Ensom, 2010). Some common side

effects of VPA include alopecia, tremor, and weight gain

(Cipriani et al., 2013). When the acceptability of long-term

treatment is considered, together with efficacy and adverse

events induced by VPA, an individualized dose regimen is

important.

Compared with conventional modeling methods, machine

learning and deep learning techniques have indubitable

advantages in dealing with real-world data, such as 1)

machine learning and deep learning techniques can deal with

more complex, high-dimensional, and interactive variables,

which is lacking in traditional models; 2) machine learning

and deep learning models have stronger generalization and

better accuracy than conventional models (Kruppa et al.,

2012; Lee et al., 2018; Mo et al., 2019). Recently, some

algorithms with more sophisticated principles have been

developed, such as eXtreme Gradient Boosting (XGBoost),

light gradient boosting machine (LightGBM), categorical

boosting (CatBoost), and gradient boosting decision tree

(GBDT), which have been highly recognized in algorithm

competitions (Chen and Guestrin, 2016; Ke et al., 2017;

Prokhorenkova et al., 2017; Zhang et al., 2019). CatBoost is

designed for processing classification features based on the

modification of a standard gradient boosting algorithm, which

uses binary decision trees as base predictors (Prokhorenkova

et al., 2017). In medical and pharmacy application, CatBoost is

widely used in various classification or regression studies with

promising prediction results, such as the prediction of fractures

(Kong et al., 2020). Recently, the application of machine learning

and deep learning techniques on individualized medication

models has been approbatory, such as a novel vancomycin

dose prediction model through XGBoost and warfarin

maintenance dose prediction through LightGBM (Huang

et al., 2021; Liu et al., 2021). With the increasing number of

input subject data, the model can continually optimize

parameters to achieve better accuracy and practicality.

In order to achieve a balance of drug efficacy and toxicities,

an appropriate dose regimen is important for the patient’s

treatment outcome. In this study, we aimed to establish a

machine learning or deep learning model to predict the VPA

daily dose based on important influencing variables, resulting in

obtaining the optimal individualized dose regimen with high

predictive abilities.

Materials and methods

Study population

We enrolled patients who were diagnosed with bipolar

disorder and treated with VPA at the Southern Medical

University Nanfang Hospital from 17 July 2018, to

12 December 2021. Pregnant or lactating female patients were

excluded. Study data have been fully deidentified, and

confidential information of patients has been deleted, in

accordance with the CIOMS/WHO International Ethical

Guidelines for Health-related Research Involving Humans

(2016). Consequently, the study was deemed exempt from

informed consent by study participants.

Data collection and cleaning

All data were collected from patients’ electronic medical

records and were cleaned (Figure 1). First, we extracted VPA

data from doctor orders after combiningmultiple VPA orders on a

daily basis and deleting repeated orders and 218 patients with

776 cases of data were obtained. On the other hand, we extracted

diagnosis data of bipolar disorder from diagnostic records and

obtained 354 patients with 879 cases of data. The data of patients

with bipolar disorder were extracted from VPA data, and we

obtained 214 patients with 767 cases of data. After deleting data of

pregnant or lactating female patients, there were 213 patients with

765 cases of data. Subsequently, the daily dose of VPA was

calculated, and units of dosage and frequency were unified

(daily dose = dosage * frequency). Temporary and long-term

VPA orders were combined, and long-term VPA orders were

broken down into one record per day. To be specific, if temporary

VPA orders existed on the day of long-term VPA orders, only the

daily dose in the temporary VPA order was adopted; otherwise, the

daily dose in the long-term VPA order was adopted; if VPA was

prescribed in the morning, a daily dose of the whole day was

adopted; if VPA was prescribed in the afternoon, 1/2 or 1/3 of the

daily dose was adopted; and, if the time of the temporary VPA

order was during the period of the long-term VPA order, the daily

dose of the temporary order was added to the long-term order.

After data decomposition, 213 patients with 3,175 cases of data

were obtained. Among these, demographic characteristics

(including gender, age, height, and weight) and basic disease
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information (including hypertension, diabetes, cerebrovascular

disease, hepatitis, and kidney disease) were extracted from

patient’s records, and VPA TDM information was extracted

from laboratory data (if VPA was administrated within four

days prior to TDM, the latest TDM record was adopted). After

deleting missing TDM records, 177 patients with 270 cases of data

were obtained. Other test results within 4 four days prior to VPA

TDM were extracted from laboratory data. Combination therapy

information within four days prior to VPA TDM was extracted

from doctor orders, including anticonvulsants and mood

stabilizers (such as carbamazepine, oxcarbazepine, and

lamotrigine), antipsychotics (such as olanzapine, quetiapine,

FIGURE 1
Enrollment of patients.

FIGURE 2
Workflow of data processing and modeling.
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TABLE 1 Description of demographic and clinical characteristics.

Categories Variables Cases (N = 164) Missing rate (%)

Target variable VPA daily dose, g, n (%) 0.5 29 (17.68%) 0

1 135 (82.32%) 0

VPA information VPA TDM, ng/ml, median (IQR) 79.55 (62.77–95.45) 0

Demographic information Age, y, median (IQR) 23.00 (18.00–29.00) 0

Gender, n (%) Male 76 (46.34%) 0

Female 88 (53.66%) 0

Height, cm, median (IQR) 164.50 (159.00–170.25) 0

Weight, kg, median (IQR) 58.00 (52.00–71.25) 12.80

BMI, kg/m2, median (IQR) 21.91 (19.34–24.67) 12.80

Basic disease Basic disease, n (%) 13 (7.93%) 0

Combination Anticonvulsants and mood stabilizers, n (%) 3 (1.83%) 0

Antipsychotics, n (%) 119 (72.56%) 0

Antidepressants, n (%) 22 (13.61%) 0

Antianxiety drugs/tranquilizers/hypnotic drugs,
n (%)

22 (13.61%) 0

Behavioral therapy, n (%) 132 (80.49%) 0

Essay index PLT, ×10̂9/L, median (IQR) 225.00 (200.50–260.00) 44.51

P-LCR, %, median (IQR) 26.20 (22.55–33.45) 44.51

MCH, pg, median (IQR) 29.60 (28.65–30.60) 44.51

BASO, %, median (IQR) 0.60 (0.40–0.90) 44.51

BUN, mmol/L, median (IQR) 3.70 (3.10–4.55) 49.39

LYM, %, median (IQR) 36.70 (31.75–42.25) 44.51

RDW-CV, %, median (IQR) 12.50 (12.00–13.25) 44.51

AST, U/L, median (IQR) 16.00 (13.00–21.50) 46.95

PCT, %, median (IQR) 2.00 (1.77–2.28) 44.51

PDW, %, median (IQR) 16.10 (15.70–16.40) 44.51

MONO, ×10̂9/L, median (IQR) 0.45 (0.38–0.53) 44.51

WBC, ×10̂9/L, median (IQR) 6.26 (5.46–7.38) 44.51

NEU, %, median (IQR) 52.10 (45.70–58.40) 44.51

MPV, fL, median (IQR) 8.90 (8.20–10.15) 44.51

MCV, fL, median (IQR) 90.00 (86.95–92.50) 44.51

EOS, ×10̂9/L, median (IQR) 0.14 (0.09–0.26) 44.51

RBC, ×10̂9/L, median (IQR) 4.60 (4.22–5.02) 44.51

A/G, median (IQR) 1.50 (1.40–1.60) 46.95

NEU, ×10̂9/L, median (IQR) 3.15 (2.62–3.94) 48.78

Hb, g/L, median (IQR) 132.00 (123.00–145.00) 44.51

RDW-SD, %, median (IQR) 42.20 (40.10–44.35) 44.51

LYM, ×10̂9/L, median (IQR) 2.28 (1.79–2.96) 44.51

MONO, %, median (IQR) 7.00 (6.20–8.45) 44.51

UA, μmol/L, median (IQR) 372.00 (313.50–462.00) 48.78

Cr, μmol/L, median (IQR) 66.00 (55.00–75.00) 49.39

Albumin, g/L, median (IQR) 40.60 (38.35–42.85) 46.95

Transaminase ratio, median (IQR) 1.00 (0.80–1.50) 46.95

MCHC, g/L, median (IQR) 329.00 (323.50–332.00) 44.51

HCT, L/L, median (IQR) 0.41 (0.38–0.44) 44.51

EOS, %, median (IQR) 2.20 (1.70–4.10) 44.51

Indirect bilirubin, μmol/L, median (IQR) 4.90 (3.70–6.50) 46.95

Total bilirubin, μmol/L, median (IQR) 7.60 (5.75–9.65) 46.95

(Continued on following page)
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aripiprazole, ziprasidone, risperidone, paliperidone, clozapine, and

chlorpromazine), antidepressants (such as photioxetine

hydrobromide, agomelatine, citalopram, sertraline, escitalopram,

fluoxetine, paroxetine, mirtazapine, and trazodone), antianxiety

drugs/tranquilizers/hypnotic drugs (such as clonazepam,

diazepam, lorazepam, alprazolam, dospirone, dexzopiclone,

zolpidem, shumian capsule, wuling capsule, and estazolam),

and behavioral therapy (suggestive therapy, guided education

and training, behavior correction therapy, and impulsive

behavior intervention therapy) (Hiemke et al., 2011; Hiemke

et al., 2018). After deleting examination results with a large

amount of missing data and retaining one major medication

record for each hospitalization, 177 patients with 184 cases of

data were obtained. Herein, the individualized medication model

of VPA mainly predicted daily doses of 0.5 and 1 g, after deleting

20 cases of other doses, finally corresponding to 177 patients with

164 cases of data.

Data processing

In order to improve the accuracy of the individualized

medication model, medication data of VPA were preprocessed

(Figure 2). Specifically, a binary variable was dealt with one-hot

encoding. Irrelevant variables (such as patient ID, case no., drug

administration time, and hospitalization time), missing rates over

50% and extremely unbalanced variables, and abnormal values

were deleted. After that, the sequential forward selection (SFS)

algorithm was applied for feature engineering to select the

minimum size and optimum performance of the feature subset

(Hatamikia et al., 2014). The SFS algorithm added one feature to

the feature subset each time, iteratively generated a newmodel, and

calculated the model performance [area under the curve (AUC)].

In order to ensure data integrity, the linear model and nonlinear

model are trained, the VPA dose of patients with bipolar disorder

is predicted, and the variables screened by feature engineering were

interpolated with missing values based on random forest.

Subsequently, the training cohort and test cohort were divided

according to 8:2. Due to the unbalanced distribution of the VPA

dose, it is necessary to adopt over-sampling on the training cohort

to learn useful information from unbalanced data sets and improve

the prediction ability of the model. As the daily dose of 0.5 g VPA

has a low proportion in the dataset, we applied the SMOTE

oversampling algorithm to generate a different number of low-

dose samples (Chawla et al., 2002).

Model establishment

In this study, the daily dose of VPA was set as the target

variable, and a daily dose of 0.5 g corresponds to “0,” and a daily

dose of 1 g corresponds to “1.” Based on the selected features, we

established a linear model and nonlinear model and obtained the

prediction performance of different models after parameter

adjustment (Figure 2). Herein, we compared the model

performance of nine algorithms, namely, XGBoost, LightGBM,

CatBoost, random forest, GBDT, support vector machine (SVM),

logistic regression, artificial neural network (ANN), and TabNet.

The dose prediction performance of all models was evaluated

through precision, recall, F1-score, accuracy, sensitivity, specificity,

and AUC. Ultimately, the model with the best evaluating indexes

was selected as the final model to predict the VPA dose.

Clinical interpretation

The importance of variables refers to the degree to which

each variable in the model contributes to improving the

predictive power of the whole model. We calculated and

ranked the importance scores of variables using the algorithm

with the best predictive performance. Variables with higher

importance scores were more closely related to the accurate

prediction of VPA dose. Afterward, we used the SHapley

Additive exPlanations (SHAP) to visually interpret the

impacts of important variables on the model output

(Lundberg and Lee, 2017). SHAP could help explain which

variables have positive or negative impacts on predicting the

VPA dose. Eventually, a confusion matrix was used to visualize

TABLE 1 (Continued) Description of demographic and clinical characteristics.

Categories Variables Cases (N = 164) Missing rate (%)

Globulin, g/L, median (IQR) 26.90 (25.00–29.65) 46.95

Direct bilirubin, μmol/L, median (IQR) 2.70 (2.00–3.80) 46.95

TP, g/L, median (IQR) 68.00 (63.95–72.30) 46.95

BASO, ×10̂9/L, median (IQR) 0.04 (0.03–0.05) 44.51

Abbreviations: VPA, valproic acid; IQR, interquartile range; TDM, therapeutic drug monitoring; BMI, body mass index; PLT, platelet; P-LCR, platelet-large cell rate; MCH, mean

corpuscular hemoglobin; BASO, basophil; BUN, blood urea nitrogen; LYM, lymphocyte; RDW-CV, red cell distribution width-coefficient of variation; AST, aspartate aminotransferase;

PCT, platelet hematocrit; PDW, platelet distribution width; MONO, monocyte; WBCs, white blood cells; NEU, neutrophil; MPV, mean platelet volume; MCV, mean corpuscular volume;

EOS, eosinophils; RBCs, red blood cells; A/G, albumin/globulin; Hb, hemoglobin; RDW-SD, red cell distribution width-standard deviation; UA, uric acid; MCHC, mean corpuscular

hemoglobin concentration; HCT, hematocrit; TP, total protein.
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the performance of the algorithm and further analyze the model

performance in the test cohort.

Results

Baseline information

The study population’s baseline information is shown in

Table 1. The continuous variables were described by “mean

(interquartile range, IQR)”, while the classification variables

were described by “frequency (percentage, %).” There were 29

(17.68%) patients administered with a daily VPA dose of 0.5 g,

and 135 (82.32%) patients administered with a daily VPA dose of

1 g. The mean VPA TDM value was 79.84 (IQR 62.77–95.45) ng/

ml. The mean age of cases in this study was 25.71 (IQR

18.00–29.00) years, the proportion of female patients was

53.66%, the mean height was 165.39 (IQR 159.00–170.25) cm,

the mean weight was 61.16 (IQR 52.00–71.25) kg, and the mean

body mass index was 22.25 (IQR 19.34–24.67) kg/m2. Patients

with basic diseases occupied 7.93%. The percentage of those

using combination therapies was 1.83% for anticonvulsants and

mood stabilizers, 72.56% for antipsychotics, 13.61% for

antidepressants, 13.61% for antianxiety drugs/tranquilizers/

hypnotic drugs, and 80.49% for behavioral therapy.

Variable analysis

After data preprocessing, features were selected based on

45 variables through the SFS method. XGBoost models were

established using the selected one to 45 variables, and the AUC of

each model was obtained (Figure 3). With an increasing number

of included variables, the AUC value keeps increasing, reaches its

maximum value when three variables were selected (AUC =

0.839), and then decreases. As we pursued a concise and accurate

model with minimal variables but the highest predictive

performance, the first three important variables were selected

to establish the individualized medication model, i.e., VPA TDM

value, antipsychotics, and indirect bilirubin.

Model performance and interpretation

Models were established by nine algorithms, and modeling

parameters are illustrated in Supplementary Table S1. The

parameters of the CatBoost model were iterations = 300,

learning_rate = 0.02, depth = 6, l2_leaf_reg = 2, subsample = 1,

loss_function = ’cross-entropy’, and random_state = 3. In Table 2,

we present the prediction performance of nine models. CatBoost

had precision = 0.56, recall = 0.83, and F1_score = 0.67 for predicting

the daily dose of 0.5 g VPA; precision = 0.96, recall = 0.85, and

F1_score = 0.90 for predicting the daily dose of 1 g VPA; and

accuracy = 0.85, AUC = 0.91, sensitivity = 0.85, and specificity =

0.83 for the whole CatBoost model, themetrics of which were higher

than those of other algorithms and achieved a best comprehensive

performance. Therefore, CatBoost was selected to predict the daily

dose of VPA and subsequently to calculate the importance scores of

variables and analyze the dose prediction effect.

On this basis, the importance scores of three selected variables

were calculated and ranked by CatBoost (Table 3). Among them,

the importance score of the VPA TDM value was remarkably

higher than that of the other two variables (importance score =

56.048), followed by antipsychotics (importance score = 26.479)

and indirect bilirubin (importance score = 17.473). A higher

importance score indicates the greater impact of this variable

on the prediction of VPA daily dose.

SHAP values represent the impacts on model output, which

is the prediction of VPA daily dose (Figure 4). The feature value

means the contribution of each variable to the predictive power

of the model. For the VPA TDM value, antipsychotics, and

indirect bilirubin, the dot color is redder when the SHAP value

becomes larger, while it is bluer when the SHAP value becomes

smaller, thus showing the positive impacts of these variables on

VPA daily dose.

The test cohort consisted of 33 patients, among which, six

patients took a daily dose of 0.5 g VPA and 27 patients took a

daily dose of 1 g VPA. The dose of VPA was recommended for

patients by establishing a confusion matrix based on the

CatBoost prediction model (Figure 5). The model

recommended a daily dose of 1 g VPA for 24 patients,

including one patient who was recommended the wrong dose,

with a precision of 95.83% and a recall rate of 85.19%; the model

recommended a daily dose of 0.5 g VPA for nine patients,

including four patients who were recommended the wrong

dose, with a precision of 55.56% and recall rate of 83.33%.

FIGURE 3
AUC of the XGBoost model corresponding to the number of
ranked features.
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Discussion

Our study focused on the establishment of an individualized

medication model for VPA daily dose in patients with bipolar

disorder, mainly evaluating two daily dose regimens (0.5 and 1 g).

We used CatBoost, a leading-edge machine learning method

based on the upgraded gradient boosting algorithm, to construct

the prediction model with good performance (accuracy = 0.85,

AUC = 0.91, sensitivity = 0.85, and specificity = 0.83). Afterward,

important variables that strongly correlated with VPA daily dose

were ranked via the importance score, including VPA TDM

value, antipsychotics, and indirect bilirubin. Last, a confusion

matrix was used to validate the model, and it can be observed that

predicting a daily dose of 0.5 g VPA had a precision of 55.56%

and a recall rate of 83.33%, and predicting a daily dose of 1 g VPA

had a precision of 95.83% and a recall rate of 85.19%.

VPA has a wide range of metabolic pathways.

Approximately 40% of the dose is metabolized in the

pathway of mitochondrial beta-oxidation, producing 2-

enevalproate and 3-keto-valproate (Silva et al., 2008; Tomson

et al., 2013). About 10%–15% of the dose is eliminated through

a metabolic pathway catalyzed by CYP enzymes, forming

hydroxylated metabolites (3-, 4-, and 5-hydroxyvalproate

metabolites) and 4-enevalproate (Sadeque et al., 1997; Levy

et al., 2002; Kiang et al., 2006). When adults receive

monotherapy of VPA, its conjugation with glucuronic acid is

the major metabolic pathway, and 30%–50% of the dose is

converted to valproate glucuronide, about 20% of which is

excreted in urine (Besag and Berry, 2006; Monostory et al.,

2019).

VPA is associated with non-linear pharmacokinetics because

of saturable plasma protein binding, resulting in large individual

differences in the dose-to-plasma concentration relationship

(Patsalos et al., 2018). Dosing of VPA benefits from serum level

determinations (Bowden and Karren, 2006). Previous studies on

manic episodes found that serum levels above 45 μg ml−1 led to

higher drug response rates (Bowden and Karren, 2006). Currently,

clinicians usually make dose adjustments based on TDM results,

showing a positive interaction between VPA daily dose and the

TDMvalue in our study, as a critical predictor in the individualized

medication model of VPA.

VPA is susceptible to many drug–drug pharmacokinetic

interactions because its metabolism is readily induced or

inhibited by multiple combined used drugs (Patsalos et al.,

2018). VPA is typically used in combination with

TABLE 2 Prediction performance of different algorithms.

Metrics
algorithms

Dose
regimena

Precision Recall f1_score Accuracy AUC Sensitivity Specificity

XGBoost 0 0.45 0.83 0.59 0.79 0.87 0.78 0.83

1 0.95 0.78 0.86

LightGBM 0 0.50 0.67 0.57 0.82 0.84 0.85 0.67

1 0.92 0.85 0.88

CatBoost 0 0.56 0.83 0.67 0.85 0.91 0.85 0.83

1 0.96 0.85 0.90

Random forest 0 0.40 0.67 0.50 0.76 0.88 0.78 0.67

1 0.91 0.78 0.84

GBDT 0 0.29 0.33 0.31 0.73 0.77 0.81 0.33

1 0.85 0.81 0.83

SVM 0 0.44 0.67 0.53 0.79 0.82 0.81 0.67

1 0.92 0.81 0.86

Logistic regression 0 0.44 0.67 0.53 0.79 0.81 0.81 0.67

1 0.92 0.81 0.86

ANN 0 0.40 0.67 0.50 0.76 0.85 0.78 0.67

1 0.91 0.78 0.84

TabNet 0 0.44 0.67 0.53 0.79 0.8 0.81 0.67

1 0.92 0.81 0.86

aRegimen of the daily dose of 0.5 g VPA corresponds to “0,” and regimen of the daily dose of 1 g VPA corresponds to “1”.

TABLE 3 Importance scores of variables.

No. Variables Importance score

1 VPA TDM value 56.048

2 Antipsychotics 26.479

3 Indirect bilirubin 17.473
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antipsychotics to reduce the symptoms of epilepsy, bipolar

disorder, schizophrenia, and schizoaffective disorder (Casey

et al., 2003). The augmentation of antipsychotics with VPA

resulted in better clinical response, especially the improvement

of excitement and aggression (Wang et al., 2016). In terms of

specific antipsychotics, some studies found inconsistent

information about the interactions between VPA and these

antipsychotics. For instance, van Wattum suggested in a case

report that risperidone might increase VPA concentration,

whereas Vitiello found that risperidone possibly decreased

VPA serum concentrations by 30% (van Wattum, 2001;

Vitiello, 2001). In addition, chlorpromazine appeared to

inhibit the metabolism of VPA and possibly increased its

concentration, but the reliability of supporting clinical data

was low (Mula and Monaco, 2002). Moreover, VPA was

deemed as both an inducer and a competitive inhibitor of

olanzapine metabolism, and the interactions between

clozapine and VPA, aripiprazole, and VPA were still

disputable (Spina et al., 2016). In our study, the usage of

antipsychotics was positively correlated with that of VPA

daily dose, contributing to an important predictor in the VPA

dose prediction model. In future, the mechanisms and clinical

relevance of these drug interactions need to be better-

investigated.

Furthermore, VPA is extensively metabolized in the liver,

and its reactive metabolites have been reported to be associated

with hepatotoxicity (Monostory et al., 2019; Zhang et al., 2020).

Indirect bilirubin, the abnormal value of which indicates

abnormal liver function, had a positive relationship with VPA

daily dose as shown in our results. In the individualized

medication model of VPA, indirect bilirubin, as a remarkable

predictor, can help clinicians adjust the VPA dose regimen

reasonably.

CatBoost is a new GBDT algorithm that can deal with

categorical features well. Characteristics of the CatBoost

algorithm include the following: 1) CatBoost allows the use

of the whole dataset for training. Target statistics is an efficient

method for handling categorical features with minimum

information loss. Specifically, for each example, the input

FIGURE 4
SHAP values of the important variables. The dot color is redder when the feature value gets higher and bluer when the feature value gets lower.
When the SHAP value gets higher, the impact of the variable on model output is larger.

FIGURE 5
Confusion matrix in the CatBoost model.
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sample set is randomly sorted, and multiple groups of random

permutations are generated. Floating point or attribute value

tokens are converted to integers. All the classification

eigenvalue results are transformed into numerical results

according to the following formula: xδn,k �
∑

n−1
j�1 [xδj,k�xδn,k]·y+ε·p
∑

n−1
j�1 [xδj,k�xδn,k]+ε

,

where p is a prior value and ϵ is the weight of the prior. 2)
Feature combinations: all classification features can be
combined into a new classification feature. When a new split
of the tree is performed, the features are combined in a greedy
manner, and all the combinations of classification features and
designs are combined to form a new feature. 3) Overcoming
gradient bias: CatBoost has a unique calculation method of leaf
value. The first stage of CatBoost uses an unbiased estimation of
gradient step size, and the second stage is executed using the
traditional GBDT scheme. 4) Fast scorer: Catboost always uses a
full binary tree, and its nodes are mirrored to avoid overfitting,
increase reliability, and greatly accelerate the prediction.
CatBoost uses the oblivious tree as the base predictor, which
is balanced and reduces overfitting. The first step is to binarize
all floating point features, statistics, and one-hot encoding
features. The second step is to use the binary features to
calculate model predictions (Prokhorenkova et al., 2017;
Hancock and Khoshgoftaar, 2020).

One advantage of our study is the application of machine

learning and deep learning techniques for individualized

medication modeling, which can deeply mine data from the

clinical medical center. Second, we compared multiple models

and selected CatBoost with the best predictive abilities, which

provided the reasonability of the modeling process. Moreover,

we adopted rigorous data processing techniques, such as the

SFS algorithm to select minimal feature subsets with optimal

performance and SMOTE oversampling algorithm, to fully

utilize the unbalanced dataset. Last, we selected three

predictors, namely, VPA TDM value, antipsychotics, and

indirect bilirubin, to establish a robust individualized

medication model of VPA based on powerful evidence,

which few studies investigated before. One limitation is

that we used a limited sample size from only one medical

center, which necessitates a larger sample size from multiple

medical centers in the future, to increasingly improve model

performance by adding new data. Another limitation is the

shortage of considering the impact of gene polymorphism on

VPA dose, such as CYP2C9, which can be taken into account

in future research.

To conclude, this study was designed to mine in-depth

influencing factors to predict VPA daily dose in patients with

bipolar disorder. In our study, a machine learning technique,

CatBoost, was adopted to establish the dose prediction model

with the best performance. The application of an individualized

medication model for VPA daily dose provides guidance and

recommendations for clinicians to propose the optimal

medication regimen.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by the Medical Ethics Committee, Nanfang Hospital,

Southern Medical University. The ethics committee waived the

requirement of written informed consent for participation.

Author contributions

PZ, ZY and LM leaded the research and provided medical

support. YZ, YY, CL and JZ analyzed and interpreted data. XH

wrote the manuscript. HW, FG and YL provided methodological

guidance.

Funding

This study was supported by the National Key Research and

Development Program (2020YFC2005501 and 2020YFC2005503)

and Beijing Science and Technology Project (Z201100005620006).

Conflicts of interest

Authors YY, JZ, and FG were employed by Beijing

Medicinovo Technology Co., Ltd. Author XH was employed

by Dalian Medicinovo Technology Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.890221/full#supplementary-material

Frontiers in Pharmacology frontiersin.org09

Zheng et al. 10.3389/fphar.2022.890221

https://www.frontiersin.org/articles/10.3389/fphar.2022.890221/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.890221/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.890221


References

Besag, F. M., and Berry, D. (2006). Interactions between antiepileptic and
antipsychotic drugs. Drug Saf. 29 (2), 95–118. doi:10.2165/00002018-200629020-
00001

Bowden, C. L., and Karren, N. U. (2006). Anticonvulsants in bipolar disorder.
Aust. N. Z. J. Psychiatry 40 (5), 386–393. doi:10.1080/j.1440-1614.2006.01815.x

Casey, D. E., Daniel, D. G., Wassef, A. A., Tracy, K. A., Wozniak, P., and
Sommerville, K. W. (2003). Effect of divalproex combined with olanzapine or
risperidone in patients with an acute exacerbation of schizophrenia.
Neuropsychopharmacology 28 (1), 182–192. doi:10.1038/sj.npp.1300023

Chateauvieux, S., Morceau, F., Dicato, M., and Diederich, M. (2010). Molecular
and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. 2010,
479364. doi:10.1155/2010/479364

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357. doi:10.
1613/jair.953

Chen, T., and Guestrin, C. (2016). “XGBoost: A scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and DataMining, San Francisco, CA, 9Mar 2016 New York, NY: (ACM),
785–794.

Cipriani, A., Reid, K., Young, A. H., Macritchie, K., and Geddes, J. (2013).
Valproic acid, valproate and divalproex in the maintenance treatment of bipolar
disorder. Cochrane Database Syst. Rev. 2013 (10), CD003196. doi:10.1002/
14651858.CD003196.pub2

Fontana, E., Mandolini, G. M., Delvecchio, G., Bressi, C., Soares, J. C., and
Brambilla, P. (2020). Intravenous valproate in the treatment of acute manic episode
in bipolar disorder: A review. J. Affect. Disord. 260, 738–743. doi:10.1016/j.jad.2019.
08.071

Hancock, J. T., and Khoshgoftaar, T. M. (2020). CatBoost for big data: An
interdisciplinary review. J. Big Data 7 (1), 94. doi:10.1186/s40537-020-00369-8

Hatamikia, S., Maghooli, K., and Nasrabadi, A. M. (2014). The emotion
recognition system based on autoregressive model and sequential forward
feature selection of electroencephalogram signals. J. Med. Signals Sens. 4 (3),
194–201. doi:10.4103/2228-7477.137777

Haymond, J., and Ensom, M. H. (2010). Does valproic acid warrant therapeutic
drug monitoring in bipolar affective disorder? Ther. Drug Monit. 32 (1), 19–29.
doi:10.1097/FTD.0b013e3181c13a30

Hiemke, C., Baumann, P., Bergemann, N., ConcA, A., Dietmaier, O., Egberts, K.,
et al. (2011). AGNP consensus guidelines for therapeutic drug monitoring in
psychiatry: Update 2011. Pharmacopsychiatry 44 (6), 195–235. doi:10.1055/s-
0031-1286287

Hiemke, C., Bergemann, N., Clement, H. W., ConcA, A., Deckert, J., DomschKe,
K., et al. (2018). Consensus guidelines for therapeutic drug monitoring in
neuropsychopharmacology: Update 2017. Pharmacopsychiatry 51 (1-02), e1–e62.
doi:10.1055/s-0037-1600991

Huang, X., Yu, Z., Wei, X., Shi, J., Wang, Y., Wang, Z., et al. (2021). Prediction of
vancomycin dose on high-dimensional data using machine learning techniques.
Expert Rev. Clin. Pharmacol. 14 (6), 761–771. doi:10.1080/17512433.2021.1911642

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). “A highly
efficient gradient boosting decision tree,” in Proceedings of the advances in neural
information processing systems (Long Beach, CA, USA: Curran Associates, Inc),
3146–3154.

Kiang, T. K., Ho, P. C., Anari, M. R., Tong, V., Abbott, F. S., and Chang, T. K.
(2006). Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid
metabolism in hepatic microsomes from individuals with the CYP2C9*1/
*1 genotype. Toxicol. Sci. 94 (2), 261–271. doi:10.1093/toxsci/kfl096

Kong, S. H., Ahn, D., Kim, B. R., Srinivasan, K., Ram, S., Kim, H., et al. (2020). A
novel fracture prediction model using machine learning in a community-based
cohort. JBMR Plus 4 (3), e10337. doi:10.1002/jbm4.10337

Kruppa, J., Ziegler, A., and König, I. R. (2012). Risk estimation and risk prediction
using machine-learning methods. Hum. Genet. 131 (10), 1639–1654. doi:10.1007/
s00439-012-1194-y

Lee, H. C., Yoon, S. B., Yang, S. M., Kim, W. H., Ryu, H. G., Jung, C. W., et al.
(2018). Prediction of acute kidney injury after liver transplantation: Machine

learning approaches vs. Logistic regression model. J. Clin. Med. 7 (11), 428.
doi:10.3390/jcm7110428

Levy, R. H., Shen, D. D., Abbott, F. S., Riggs, K. W., and Hachad, H. (2002).
Valproic acid: Chemistry, biotransformation and pharmacokinetics. Antiepileptic
drugs. R. H. Levy, R. H. Mattson, B. S. Meldrum, et al. 5th ed (Philadelphia (PA):
Lippincott Williams & Wilkins), 780–800.

Liu, Y., Chen, J., You, Y., Xu, A., Li, P., Wang, Y., et al. (2021). An ensemble
learning based framework to estimate warfarin maintenance dose with cross-over
variables exploration on incomplete data set. Comput. Biol. Med. 131, 104242.
doi:10.1016/j.compbiomed.2021.104242

Lundberg, S. M., and Lee, S. I. (2017). “A unified approach to interpreting model
predictions,” in Advances in neural information processing systems (Long Beach,
CA: Neural Information Processing Systems), 4765–4774. Available at: https://
github.com/slundberg/shap.

Mo, X., Chen, X., Li, H., Li, J., Zeng, F., Chen, Y., et al. (2019). Early and accurate
prediction of clinical response to methotrexate treatment in juvenile idiopathic
arthritis using machine learning. Front. Pharmacol. 10, 1155. doi:10.3389/fphar.
2019.01155

Monostory, K., Nagy, A., Tóth, K., Bűdi, T., Kiss, Á., Déri, M., et al. (2019).
Relevance of CYP2C9 function in valproate therapy. Curr. Neuropharmacol. 17 (1),
99–106. doi:10.2174/1570159X15666171109143654

Mula, M., and Monaco, F. (2002). Antiepileptic-antipsychotic drug interactions:
A critical review of the evidence. Clin. Neuropharmacol. 25, 280–289. doi:10.1097/
00002826-200209000-00012

Patsalos, P. N., Spencer, E. P., and Berry, D. J. (2018). Therapeutic drug
monitoring of antiepileptic drugs in epilepsy: A 2018 update. Ther. Drug Monit.
40 (5), 526–548. doi:10.1097/FTD.0000000000000546

Perucca, E. (2002). Pharmacological and therapeutic properties of valproate: A
summary after 35 years of clinical experience. CNS Drugs 16, 695–714. doi:10.2165/
00023210-200216100-00004

Pisanu, C., Heilbronner, U., and Squassina, A. (2018). The role of
pharmacogenomics in bipolar disorder: Moving towards precision medicine.
Mol. Diagn. Ther. 22 (4), 409–420. doi:10.1007/s40291-018-0335-y

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.
(2017). Catboost: Unbiased boosting with categorical features. arXiv Preprint arXiv:
1706.09516.

Sadeque, A. J., Fisher, M. B., Korzekwa, K. R., Gonzalez, F. J., and Rettie, A. E.
(1997). Human CYP2C9 and CYP2A6mediate formation of the hepatotoxin 4-ene-
valproic acid. J. Pharmacol. Exp. Ther. 283 (2), 698–703.

Silva, M. F., Aires, C. C., Luis, P. B., Ruiter, J. P., Ijlst, L., Duran, M., et al. (2008).
Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A
review. J. Inherit. Metab. Dis. 31 (2), 205–216. doi:10.1007/s10545-008-0841-x

Spina, E., Pisani, F., and de Leon, J. (2016). Clinically significant pharmacokinetic
drug interactions of antiepileptic drugs with new antidepressants and new
antipsychotics. Pharmacol. Res. 106, 72–86. doi:10.1016/j.phrs.2016.02.014

Tomson, T., Landmark, C. J., and Battino, D. (2013). Antiepileptic drug treatment
in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia
54 (3), 405–414. doi:10.1111/epi.12109

van Wattum, P. J. (2001). Valproic acid and risperidone. J. Am. Acad. Child.
Adolesc. Psychiatry 40, 866–867. doi:10.1097/00004583-200108000-00003

Vitiello, B. (2001). Valproic acid and risperidone: Commentary. J. Am. Acad.
Child. Adolesc. Psychiatry 40, 867. doi:10.1097/s0890-8567(09)60329-4

Wang, Y., Xia, J., Helfer, B., Li, C., Leucht, S., and BasAn, A. (2016). Valproate for
schizophrenia. Cochrane Database Syst. Rev. 11 (11), CD004028. doi:10.1002/
14651858.CD004028.pub2

Zhang, J., Mucs, D., Norinder, U., and Svensson, F. (2019). LightGBM: An
effective and scalable algorithm for prediction of chemical toxicity-application to
the Tox21 and mutagenicity data sets. J. Chem. Inf. Model. 59 (10), 4150–4158.
doi:10.1021/acs.jcim.9b00633

Zhang, Y., Jiang, Y., Yuan, F., Song, C., Zhao, Z., and Jiang, W. (2020). An
epileptic patient with recurrent hyperbilirubinemia caused by gilbert syndrome.
Case Rep. Gastroenterol. 14 (1), 39–47. doi:10.1159/000504645

Frontiers in Pharmacology frontiersin.org10

Zheng et al. 10.3389/fphar.2022.890221

https://doi.org/10.2165/00002018-200629020-00001
https://doi.org/10.2165/00002018-200629020-00001
https://doi.org/10.1080/j.1440-1614.2006.01815.x
https://doi.org/10.1038/sj.npp.1300023
https://doi.org/10.1155/2010/479364
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1002/14651858.CD003196.pub2
https://doi.org/10.1002/14651858.CD003196.pub2
https://doi.org/10.1016/j.jad.2019.08.071
https://doi.org/10.1016/j.jad.2019.08.071
https://doi.org/10.1186/s40537-020-00369-8
https://doi.org/10.4103/2228-7477.137777
https://doi.org/10.1097/FTD.0b013e3181c13a30
https://doi.org/10.1055/s-0031-1286287
https://doi.org/10.1055/s-0031-1286287
https://doi.org/10.1055/s-0037-1600991
https://doi.org/10.1080/17512433.2021.1911642
https://doi.org/10.1093/toxsci/kfl096
https://doi.org/10.1002/jbm4.10337
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.3390/jcm7110428
https://doi.org/10.1016/j.compbiomed.2021.104242
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://doi.org/10.3389/fphar.2019.01155
https://doi.org/10.3389/fphar.2019.01155
https://doi.org/10.2174/1570159X15666171109143654
https://doi.org/10.1097/00002826-200209000-00012
https://doi.org/10.1097/00002826-200209000-00012
https://doi.org/10.1097/FTD.0000000000000546
https://doi.org/10.2165/00023210-200216100-00004
https://doi.org/10.2165/00023210-200216100-00004
https://doi.org/10.1007/s40291-018-0335-y
https://doi.org/10.1007/s10545-008-0841-x
https://doi.org/10.1016/j.phrs.2016.02.014
https://doi.org/10.1111/epi.12109
https://doi.org/10.1097/00004583-200108000-00003
https://doi.org/10.1097/s0890-8567(09)60329-4
https://doi.org/10.1002/14651858.CD004028.pub2
https://doi.org/10.1002/14651858.CD004028.pub2
https://doi.org/10.1021/acs.jcim.9b00633
https://doi.org/10.1159/000504645
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.890221

	An individualized medication model of sodium valproate for patients with bipolar disorder based on machine learning and dee ...
	Introduction
	Materials and methods
	Study population
	Data collection and cleaning
	Data processing
	Model establishment
	Clinical interpretation

	Results
	Baseline information
	Variable analysis
	Model performance and interpretation

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflicts of interest
	Publisher’s note
	Supplementary material
	References


