Skip to main content
. 2022 Oct 17;13:890221. doi: 10.3389/fphar.2022.890221

TABLE 2.

Prediction performance of different algorithms.

Metrics algorithms Dose regimen a Precision Recall f1_score Accuracy AUC Sensitivity Specificity
XGBoost 0 0.45 0.83 0.59 0.79 0.87 0.78 0.83
1 0.95 0.78 0.86
LightGBM 0 0.50 0.67 0.57 0.82 0.84 0.85 0.67
1 0.92 0.85 0.88
CatBoost 0 0.56 0.83 0.67 0.85 0.91 0.85 0.83
1 0.96 0.85 0.90
Random forest 0 0.40 0.67 0.50 0.76 0.88 0.78 0.67
1 0.91 0.78 0.84
GBDT 0 0.29 0.33 0.31 0.73 0.77 0.81 0.33
1 0.85 0.81 0.83
SVM 0 0.44 0.67 0.53 0.79 0.82 0.81 0.67
1 0.92 0.81 0.86
Logistic regression 0 0.44 0.67 0.53 0.79 0.81 0.81 0.67
1 0.92 0.81 0.86
ANN 0 0.40 0.67 0.50 0.76 0.85 0.78 0.67
1 0.91 0.78 0.84
TabNet 0 0.44 0.67 0.53 0.79 0.8 0.81 0.67
1 0.92 0.81 0.86
a

Regimen of the daily dose of 0.5 g VPA corresponds to “0,” and regimen of the daily dose of 1 g VPA corresponds to “1”.