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Heterogeneity of the cancer cell line metabolic
landscape
David Shorthouse1 , Jenna Bradley2 , Susan E Critchlow3, Claus Bendtsen2 & Benjamin A Hall1,*

Abstract

The unravelling of the complexity of cellular metabolism is in
its infancy. Cancer-associated genetic alterations may result
in changes to cellular metabolism that aid in understanding phe-
notypic changes, reveal detectable metabolic signatures, or eluci-
date vulnerabilities to particular drugs. To understand cancer-
associated metabolic transformation, we performed untargeted
metabolite analysis of 173 different cancer cell lines from 11 differ-
ent tissues under constant conditions for 1,099 different species
using mass spectrometry (MS). We correlate known cancer-
associated mutations and gene expression programs with meta-
bolic signatures, generating novel associations of known metabolic
pathways with known cancer drivers. We show that metabolic
activity correlates with drug sensitivity and use metabolic activity
to predict drug response and synergy. Finally, we study the meta-
bolic heterogeneity of cancer mutations across tissues, and find
that genes exhibit a range of context specific, and more general
metabolic control.
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Introduction

Metabolic pathways within a cell are responsible for an extremely

complex and regulated set of reactions responsible for generation

of energy and production of macromolecules (de Berardinis & Chan-

del, 2016; Pavlova & Thompson, 2016). Metabolic alterations are

common to all cancers, often caused by genetic alterations to tran-

scription factors such as HIF and NRF2 that regulate the expression

of enzymes (Ward & Thompson, 2012; Nagarajan et al, 2016). Per-

turbation of the metabolic network can result in increased prolifera-

tive capacity, resistance to hypoxia (al Tameemi et al, 2019), and

can promote metastatic transformation of the disease (Bergers &

Fendt, 2021). Additionally, there is a growing number of cancers

thought to be driven by the mutational inactivation or alteration

of a metabolic enzyme such as succinate dehydrogenase (SDH;

Bardella et al, 2011; Thompson, 2009), fumarate hydratase (FH;

Tomlinson et al, 2002) or isocitrate dehydrogenase (IDH; Waitkus

et al, 2018), and there is an emerging and growing understanding of

the impact of metabolic rewiring on the resistant and sensitivity of a

cancer to common drugs (Zaal & Berkers, 2018; Desbats et al,

2020). The heterogeneity of metabolic alterations in cancer is poorly

understood, with studies often limited to small numbers of samples,

to a limited number of metabolites, or without well-controlled

media conditions (Wright Muelas et al, 2018).

Mass spectrometry allows the unbiased detection and profiling of

metabolites in a studied sample, resulting in an understanding of

the steady-state levels of various untargeted metabolites in a highly

replicable and unbiased manner. We collected unbiased mass spec-

trometry (MS) steady-state data for metabolites in a large collection

of human cancer cell lines.

High-throughput metabolomics data of cancer have been

generated before (Li et al, 2019; Ortmayr et al, 2019), but these

have been limited in their assigned metabolites and scope, and in

the targets of their analysis. Here, we profile the steady-state

metabolite levels of 1,234 samples from 173 cell lines in 11 differ-

ent tissues. We measure the levels of 1,099 molecules, including

lipids, from cell lines cultured under well-controlled conditions to

study the associations of metabolic pathways with a variety of

clinically important features such as oncogenic mutations. We inte-

grate our data with publicly available genomic (Ghandi et al,

2019), expression and drug sensitivity data (Yang et al, 2013; Iorio

et al, 2016) to provide a highly comprehensive metabolic under-

standing of cancer. We correlate drug sensitivity with metabolic

pathways, showing that the activity of specific metabolic pathways

can be indicative of response to commonly indicated anticancer

therapeutics.

Finally, we define metabolic signatures associated with changes

to commonly occurring cancer genes and study the tissue specificity

of metabolites in these signatures, finding that cancer driver muta-

tions exhibit a range of tissue specificities. Furthermore, we show

that mutations in TP53 generate distinct changes to metabolic path-

ways depending on mutation class, highlighting the complexity of

metabolic regulation in cancer, and revealing metabolite groups that

show promise as potential biomarkers, or indicators of drug sensi-

tivity in particular cancers.
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Results

Metabolic profiling of cancer cell lines

To study the levels of metabolites in a range of cancers, we cultured

173 different cell lines from 11 different tissues under well-controlled

media conditions, and performed untargeted mass spectrometry

(Appendix Fig S1A). We performed three biological and two technical

replicates of each cell line (Dataset EV1). To quality control samples,

we calculated the Euclidean distance between all pairs of samples,

and used this to calculate the receiver operator characteristic (ROC)

as a metric of reproducibility (Appendix Fig S1B). We corrected for

sample mass (Appendix Fig S1C) and sample confluency

(Appendix Fig S1D), removed injections with low mass and removed

metabolites significantly associated with batch and plate effects

(Appendix Fig S1E; for full details see Materials and Methods).

Metabolites were assigned to peaks using HMDB v3.019, considering

[M-H+], resulting in 3,474 potential metabolites for the entire data

(Dataset EV2). Our resultant dataset contains 1,099 peaks for 1,234

samples, consisting of 173 unique cell lines from 11 tissues

(Dataset EV3). Area under curve (AUC) for the resultant dataset is

0.9975 for technical replicates and 0.9206 for biological replicates

(Appendix Fig S1F). We compared the distributions of our dataset to

those published previously (Li et al, 2019; Ortmayr et al, 2019;

Appendix Fig S2), and find that our data overall match previous

reported data in terms of variance from the mean, standard deviation

of each metabolite and unimodality. We additionally performed a sta-

tistical comparison of our data against Li et al, and find that for each

metabolite tested our data correlates significantly more than the null

distribution (Appendix Fig S2).

Having confirmed our data are similar to previously reported

metabolomics data, we next z-scored the data and performed princi-

pal component analysis to check for correlation of principal compo-

nents with experimental conditions, such as cell volume as has been

observed previously (Ortmayr et al, 2019). We find that there are no

large biases in the principal components (Appendix Fig S3A), and

that the first two principal components do not correlate with small

numbers of metabolites that could associate with non-tissue of

origin phenomena (Appendix Fig S3B), indicated by the lack of

extreme outlier metabolites in the first two principal components.

Hierarchical clustering of the data reveals a heterogeneity that

groups biological replicates and cancers of similar origin together,

but does not separate the data purely by tissue, we find no statistical

clustering when calculating the significance of tissue-level order

(P = 0.43, See Materials and Methods; Appendix Fig S3C).

To further verify the reproducibility and visualize the structure

of the data, we performed clustering analysis. We clustered each

sample using T-map (Probst & Reymond, 2020), which constructs a

hierarchical network diagram of samples connected by similarity

(Fig 1A and B). Branches in the network generally represent cancer

types, with biological replicates clustering together. Whilst overall

the clustering does not separate the cell lines by tissue type, we do

find specific instances where cell lines of the same tissue cluster

together, similar to previous reports (Li et al, 2019). Haematopoietic

cell lines cluster into one part of the plot (Inset, bottom left), with

AML, infant and adult TLL and CML all being grouped together. Fur-

thermore, there is significant heterogeneity in cancers from the same

tissue, for example, we find that lung cancers spread throughout the

network, with the same cancer subtype not necessarily clustering

together. One lung cancer branch (Inset top left) contains five sub-

types of lung cancer (minimally invasive adenocarcinoma, adeno-

carcinoma, carcinoid, adenosquamous and squamous cell

carcinoma), which all contain a similar metabolic profile, and pre-

dominantly contain non-silent mutations to NRF2 pathway genes

(NFKB1, NFKB2, RELA, RELB, IKBKB, IKBKE and IKBKG;

Appendix Fig S4).

To assess pathway activity in the dataset, we calculated the vari-

ance of all SMPDB core metabolic pathways (Frolkis et al, 2009;

Jewison et al, 2014) across the dataset (Fig 1C). We classify path-

ways as increased or decreased if the average rank of pathway

members within a disease subtype changes significantly from the

bulk rank. Pathways with the most variance across the dataset are

generally those with a known association with cancer, including the

Warburg effect, purine metabolism and glutamate metabolism. Hier-

archical clustering of the samples separates them into two broad

partitions, with a set of highly metabolically active cells character-

ized by increased purine metabolism and citric acid cycle activity,

and a different set of cells generally less metabolically active, but

with an increased fatty acid biosynthesis phenotype. Cancers with

the largest number of increased pathways in comparison with the

average are cancers of the colon and lung, possibly indicative of

epithelial cancers being more proliferative.

Finally, we assessed correlations between metabolic pathways

and the reported doubling times of cell cultures assessed (Fig 1D).

We took cells with a reported doubling time in the NCI-DTP (Monga

& Sausville, 2002) database, and generated a regression model to

correlate the rank change of each pathway in each cell type with

doubling time. SMPDB pathways associated with a shorter doubling

time include oxidation of fatty acids and glutamate metabolism, pro-

cesses known to have a correlation with cancer growth.

Metabolic associations with cancer-driving genetic alterations

To study the metabolic effects of common oncogenic genetic alter-

ations, we looked for associations between metabolites and known

cancer-associated mutations. To validate the dataset, we looked

to mutations in known cancer-driving metabolic enzymes IDH

and SDH. IDH enzymes (Appendix Fig S5A) are responsible

for the conversion of isocitrate to alpha-ketoglutarate, and their

mutation in cancer is associated with an oncogenic build-up of 2-

hydroxyglutarate due to a change in catalytic activity (Losman &

Kaelin, 2013). The most commonly observed oncogenic mutation in

▸Figure 1. Metabolic profiling of cancer cell lines.

A T-map representation of metabolic profiling data for 1,298 samples of cell lines from 11 different tissues showing clustering by cell types.
B Proportion of tissues in the dataset.
C Pathway variability for most significantly different SMPDB core metabolic pathways across major tissue types.
D Correlation of SMPDB core metabolic pathways with reported cell doubling time.
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IDH1 is at the hotspot R132, which directly changes the interaction

of the binding site with Isocitrate. Whilst none of the cell lines stud-

ied contain the R132 mutation, we find two other mutations to IDH1

across our dataset, affecting G97 and S261. G97D is associated with

a significant accumulation of 2-hydroxyglutarate compared to the

bulk data (Fig 2A), similar to that of R132 mutations observed in Li

et al (2019). Studying the IDH1 structure (PDB ID 5YFN), we find

that G97 is also involved in a direct interaction with isocitrate, and

therefore will also likely damage enzymatic activity (Fig 2B); addi-

tionally, G97 has been previously implicated in human cancers and

is known to accumulate 2-hydroxyglutarate (Losman &

Kaelin, 2013). S261 conversely is on a distal region of protein not at

all adjacent to the binding site, supporting our data that shows it is

not associated with a change in catalytic activity.

Additionally, we find mutations in the SDH enzyme family

within our dataset (Appendix Fig S5B), particularly SDH2: R33H

and R18G. Succinate dehydrogenase is involved in conversion of

succinate to fumarate, and we find that R33H is associated with a

shift in the succinate:fumarate ratio expected in cancer (Bardella

et al, 2011), where R18G is not (Fig 2C), these mutations have not

been characterized, and therefore we predict that R33H impairs cat-

alytic activity, whilst R18G does not. These results demonstrate that

known relationships between mutations in metabolic enzymes and

their metabolic targets are captured in our analysis, and that we can

predict the impact of not previously studied mutations.

To expand our analysis in an unbiased way, we controlled for tis-

sue label to reduce lineage dependent effects and built regression

models for every combination of all 1,099 metabolites and 723

cancer genes from the COSMIC cancer census (Sondka et al, 2018;

Dataset EV4). Mutations were associated with each metabolite to

find statistically significant correlations independent of tissue of ori-

gin. We find that groups of genetic mutations can be associated with

increased or decreased levels of groups of individual metabolites

(Fig 2D). Clustering reveals groups of similarly associated genes and

metabolites, for example, we find a major group of increased

metabolites involved in starch and sucrose metabolism, pentose and

glucoronate interconversions and galactose metabolism associated

with genes enriched for proliferation, pathways in cancer and PI3K

signalling (Fig 2E).

Genes associated with the largest numbers of metabolites include

KRAS, which has over 30 metabolites that are highly reduced when

it is mutated, and KCNJ5 and CCND3, which are correlated with the

increase of over 60 metabolites each when mutated

(Appendix Fig S5C). Finally, some genes show a huge correlation

with a small number of metabolites, for example, both NUTM2B

and H3F3A show extremely large (> 50) T-statistics for < 10

metabolites (Appendix Fig S5D).

We confirm that the data accurately reproduce known relation-

ships between mutations and pathways by studying the enrichment

of metabolites in lung cell lines mutated for KEAP1, NRF2 and

STK11 (Appendix Fig S6), three genes highly involved in disease

progression. KEAP1 and NRF2 are known to alter glutathione meta-

bolism (Panieri et al, 2020), and STK11 drives flux through glycoly-

sis and the TCA cycle (Faubert et al, 2014). We confirm that KEAP1

and NRF2 mutation associated metabolites are enriched for glu-

tathione metabolism, and STK11 mutation associated metabolites

are enriched for the TCA cycle, as expected – demonstrating the

ability of the data to accurately reproduce known pathway associa-

tions.

We next studied mutations to known cancer genes such as KRAS

(Fig 2F and Appendix Fig S7A), and reveal concerted patterns of

metabolic changes associated with mutation. Metabolic pathways

associated with KRAS mutations include aminoacyl-tRNA biosynthe-

sis, amino acid metabolism (Pupo et al, 2019) and notably a path-

way suspected to be essential for cancer survival: glutamine and

glutamate metabolism (Cluntun et al, 2017). We further generated

the correlations between different KRAS mutations compared to

KRAS WT cell lines (Dataset EV5) and find that glutamate metabo-

lism is primarily enriched in G12A, G12C and G12D mutants

(Appendix Fig S8). We additionally generate metabolic pathway

associations for common cancer drivers TP53, PIK3CA and APC

(Appendix Fig S7B). Finally, ranking cancer driver mutations by

their correlation with glutamine (Fig 2G) reveals that KRAS and

ERBB4 have the strongest negative correlation (indicating that muta-

tion is associated with a reduction of glutamine), and PRCC, JUN

and PIK3CA mutations rank highly with an accumulation of glu-

tamine.

Overall we confirm that mutations in known cancer drivers accu-

rately reproduce expected associations with both individual metabo-

lites such as IDH1 mutations and 2-hydroxyglutarate, and pathways

such as KEAP1 mutations and glutathione metabolism. We further

predict metabolic associations for mutations in all presently known

cancer drivers.

Transcriptional signatures associate with metabolic pathways

To study the activity of common transcriptional programmes in

cancer and their correlation with metabolite levels, we analysed the

RNAseq data available for 152 of the cell lines studied in the Cancer

Cell Line Encyclopedia (CCLE). For each cell line that had available

gene expression data, we calculated the progeny pathway scores

(Schubert et al, 2018), and correlated activation score with the

levels of metabolites in every SMPDB core metabolic pathway

(Fig 3A and Dataset EV6). We find a number of significant

▸Figure 2. Metabolic associations with known cancer-driving mutations.

A Log10 2-hydroxyglutarate levels for all cell lines, highlighting cells mutant for IDH1. Left panel represents data generated in this study, right panel represents data
from Li et al.

B Structure of IDH1 highlighting residues R132, G97 and S261.
C Log10 succinate:fumarate ratio for all cell lines, highlighting cell mutant for SDHAF2.
D Heatmap of T-statistics for each metabolite/mutation association, controlled for tissue. High or low T-statistics represent strong correlations between mutations in a

Gene (x axis) and metabolite levels (y axis).
E Highlighted region of heatmap showing an enrichment of metabolites (Metaboanalyst) and genes (Gprofiler) involved in the cluster.
F Volcano plot showing T-statistic vs log10 levels for all metabolites between KRAS WT and mutated cells.
G T-statistic ranking for glutamine, highlighting genes whose mutations associate highly with measured levels of glutamine.
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Figure 3. Transcriptional signatures associate with metabolic pathways.

A Heatmap of P-value of association between SMPDB core metabolic pathways and progeny defined transcriptional programmes (P represents corrected iterative hyper-
geometric test P-value).

B log10 (P-value)*correlation direction against rank order for all SMPDB core metabolic pathways and their association with NRF2, showing glutathione metabolism as
a clear outlier.

C log10 glutamate levels against NRF2 relative activity. R represents Pearson correlation coefficient.
D Network of correlated metabolites and genes across all RNA expression and metabolic data. Metabolites and genes are linked if their expression correlates with a

Pearson correlation coefficient > 0.8. Plotted are all strongly connected components with 10 or more members.
E Enrichment of metabolites (left – Metaboanalyst) and genes (right – Gprofiler) in cluster 1.
F Enrichment of metabolites (left – Metaboanalyst) and genes (right – Gprofiler) in cluster 2.
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(hypergeometric test FDR corrected P-value < 0.001) associations

between SMPDB pathways and transcriptional programmes.

Notably TP53 activity significantly correlates with purine metabo-

lism and the Warburg Effect, both pathways previously associated

with all human cancers (Gaude & Frezza, 2016), as expected from a

universal cancer driver gene. Transcriptional and metabolic path-

ways with the most significant correlations were fatty acid biosyn-

thesis correlating with PI3K, TGFB, hypoxia and androgen

expression programmes.

To expand this analysis, we compared the calculated activity of

106 reliable transcriptional regulators (Garcia-Alonso et al, 2019)

with the activity of all SMPDB core metabolic pathways

(Appendix Fig S9 and Dataset EV7). We find significant correlations

between the activity of numerous transcription factors and meta-

bolic pathways associated with cancer, correlating pathways

with their most significant transcriptional regulators

(Appendix Fig S10A–D) we find that RXRA most significantly associ-

ates with glycolysis (Desvergne, 2007), as well as MYB and FOXA1.

NFIC most significantly correlates with both the TCA cycle and War-

burg effect, REST1 with the pentose phosphate pathway. To expand

this analysis to a specific example, we looked at the activity of

antioxidant responsive gene NRF2. NRF2 upregulation in cancer

increases glutathione synthesis, and increases consumption of intra-

cellular glutamate (Okazaki et al, 2020; Panieri et al, 2020). The

most significantly associated metabolic pathway with NRF2 is glu-

tathione metabolism (Fig 3B), as expected, and we additionally

detect a significant and negative (P-value < 0.001, R = �0.34) corre-

lation between NRF2 activity and glutamate availability (Fig 3C),

highlighting that our data capture the known relationships between

specific transcriptional regulators and metabolic pathways, and that

the RNA expression data correlate with the mutational analysis per-

formed previously. Analysis of HIF1A also reveals a significant asso-

ciation with fatty acid biosynthesis and steroidogenesis

(Appendix Fig S10E), and corresponding reduction of coenzyme A

(Appendix Fig S10F) expected from HIF1A control of fatty acid

metabolism (Huang et al, 2014; Seo et al, 2020).

To look for sets of correlated metabolites and genes, we per-

formed unbiased network analysis of the combined gene expression

and metabolite data (Fig 3D). For all samples in which we had RNA

expression data, we generated a cross-correlation value for every

pair of genes, metabolites and gene–metabolites. Linking pairs with

a Pearson correlation coefficient > 0.8, we generate a series of

strongly connected components, representing coordinated sets of

genes and metabolites across the dataset. Many sets include both

genes and metabolites, and enrich for cancer-associated metabolic

and transcriptional programmes. The largest cluster, designated

cluster 1 enriches for metabolites associated with purine metabo-

lism, a hallmark of cancer, and genes associated with neuronal

development and synaptic activation, possibly highlighting the pro-

liferative and metabolic changes occurring uniquely to neuronal

cancers (Fig 3E). We further define three more clusters: a cluster

associated with the pentose phosphate pathway and transcriptional

pathways linked to metastasis and epithelial to mesenchymal trans-

formation (EMT; cluster 2 – Fig 3F), glutathione metabolism and

pathways in the haematopoietic lineage (cluster 3 –

Appendix Fig S10G), and immune cell-specific genes and glyc-

erophospholipid metabolism (cluster 4 – Appendix Fig S10H).

Together these findings highlight the functional importance and

associations of both cancer-associated transcription programmes,

and cancer-associated mutational transformation with metabolic

pathways. The coupling of these levels of data can enrich our under-

standing of the coordinated changes occurring in cancer.

Metabolic pathway activity correlates with drug resistance and
sensitivity

To study the correlations between metabolite levels and drug

sensitivity, we obtained drug sensitivity data for all of cell lines

studied from the cancer × gene project (Yang et al, 2013). We

correlate the IC50 for every drug in each cell line with the activity

of metabolic pathways (Dataset EV8), assuming that for many

drugs, metabolic activity may influence how sensitive a cell is. We

group metabolic pathways and drug mechanisms of action to look

for concerted correlations between drug susceptibility and metabo-

lism. For drug sensitivity (Fig 4A), we find that pathways increased

in association with increased sensitivity to a drug are generally split

between metabolism of the three major molecules; amino acids,

fatty acids and sugars. Interestingly, different mechanisms of action

have different metabolic pathways associated with sensitivity. PI3K

pathway inhibitors are associated with an increase in amino acid

metabolism pathways, whereas apoptosis regulation associated drug

sensitivity correlates most with an increase in carbohydrate metabo-

lism. Studying drug insensitivity (Appendix Fig S11A), we find that

an increase in carbohydrate metabolism pathways correlates with

insensitivity to cell cycle inhibiting drugs.

Focussing on specific drugs, we looked for pathways that corre-

late with resistance or sensitivity. For rapamycin (Fig 4B), the high-

est correlate with insensitivity is an increase of glutamate

metabolism – a known resistance mechanism (Csibi et al, 2013;

Tanaka et al, 2015), as well as increased activity of the citric acid

cycle, and an increase in the Warburg effect. Interestingly, however,

we find that an increase in fatty acid biosynthesis is correlated sensi-

tivity to rapamycin. Similarly, for cisplatin (Appendix Fig S11B), we

find that an increase in phospholipid biosynthesis correlates with

insensitivity as previously explored (Lee et al, 2018), whilst steroid

biosynthesis and glutathione metabolism correlate with sensitivity

▸Figure 4. Metabolic activity correlates with drug sensitivity and resistance.

A Sankey plot of sensitivity associations (Pearson-rho P-value < 0.05) between metabolic pathway classes (left) and drug classes (right).
B �log10(P-value)*correlation direction (iterative hypergeometric test) for associations between rapamycin IC50 and SMPDB core metabolic pathways, highlighting key

pathways associated with resistance (positive) and sensitivity (negative) to rapamycin.
C Spectrum of relative resistance to glycolysis and fatty acid biosynthesis for all drugs studied, highlighting drugs with most extreme anticorrelation between the two

pathways.
D Correlations between metabolic resistance associations for the most anticorrelated drugs. Metabolic pathway correlations against drug sensitivities are compared for

all drugs. Red squares represent known drug synergies from DrugCombDB. Drug synergies tend to coincide with anticorrelated metabolic sensitivities.
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(Kuo & Chen, 2010; de Luca et al, 2019). For AICAR

(Appendix Fig S11C), we find a sensitivity associated with increased

glycine and serine metabolism.

Observing that glycolytic activity correlates with known insensi-

tivity to rapamycin, we surmised that drugs with the opposite trend –

a sensitivity correlated with glycolytic activity, may represent a
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Figure 4.
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therapeutic pairing that guarantees sensitivity to one drug. We also

observe that fatty acid biosynthesis sensitivity is generally anticorre-

lated to glycolysis sensitivity (Fig 4C). Drugs fall into a spectrum

whereby increased sensitivity correlated with one pathway generally

also correlates with insensitivity to increased activity of the other

pathway. The two extremes of this spectrum may represent drug

pairings for which there is always a sensitivity (i.e. a cell cannot be

insensitive to both drugs at once), and two combinations that are

anticorrelated support this view, both salubrinal and bortezomib are

known to be synergistic with rapamycin (O’Sullivan et al, 2006;

Wang et al, 2012; Zhao et al, 2016).

Going further, we calculated the correlations between all path-

way sensitivities for all drugs (Dataset EV9), surmising that drugs

whose IC50s correlate with opposite metabolic pathways may repre-

sent synergistic or “always-effective” combinations. Correlating all

drug sensitivity pairs (Fig 4D) highlights that many drugs exhibit

opposing metabolic sensitivities. Overlaying these correlations with

known synergies from the DrugCombDB (Liu et al, 2020), we find

that many known synergistic drug combinations are also anticorre-

lated in their metabolic pathway associations. Having shown that

metabolic sensitivity can correlate with known drug synergies, we

highlight a number of drug combinations for which our analysis

suggests that a cell will always have some degree of sensitivity.

These data link metabolic activity explicitly with drug resistance.

We validate that our data predict the resistance profiles of drugs

compared to metabolic pathways, and suggest combinations of

drugs that have opposite metabolic sensitivity profiles.

Metabolic shifts associated with cancer-causing genetic
alterations exhibit a range of heterogeneities

Next, we looked to study the heterogeneity of metabolic changes

associated with mutations to common cancer-causing genes. We

surmised that mutations to the same gene will have different effects

on metabolism dependent on the tissue context in which the muta-

tion occurs. We first studied the mutational distribution in the cell

lines studied (top 50 most mutated genes are shown in Fig 5A).

Most of the common mutations are distributed across multiple tis-

sues, and so show at least some level of penetrance in more than

one of the 11 tissues studied. The top mutated genes are those com-

mon to cancers, including TP53, KRAS, MAP3K1 and PIK3CA.

To look at heterogeneity of the metabolic changes associated

with each mutation, we first calculated tissue-specific associations

between mutations in each of the top 50 mutated genes and every

individual metabolite similar to the unbiased analysis in Fig 2 but

building a regression model only on a single tissue. After generating

the tissue-specific metabolic associations, we calculated the Spear-

man’s rank correlation coefficient between the associations for pairs

of the three largest tissue subsets in the dataset – bladder, breast

and lung cancers (Fig 5B). We find that the top 50 mutated genes

display a spectrum of heterogeneity between tissues. Some genes

such as KRAS, HRAS display a high correlation between disparate

tissues, indicating a conserved set of metabolic alterations despite

the different contexts; one the other hand, mutations to TP53

(Appendix Fig S12), CCNE1 and other common cancer drivers

appear to have almost no correlation across tissues, and so likely

alter metabolism in a distinct way, possibly more associated with

mutation type than tissue context.

To further unpick the pathways involved in tissue specificity or

agnosticism, we performed differential expression to find metabo-

lites that are significantly different between mutant and WT KRAS

(Fig 5C) and TP53 (Fig 5D). Enrichment analysis highlights path-

ways that are conserved across all tissues, for KRAS mutations this

includes glycerophospholipid metabolism, biosynthesis of unsatu-

rated fatty acids and amino sugar and nucleotide sugar metabolism.

For TP53, core enriched pathways in all tissues are sphingolipid

metabolism, and the pentose phosphate pathway. We also highlight

pathways specific to one type of tissue – for KRAS mutant lung

cancers, we find that pentose and glucoronate interconversions

and linolenic acid metabolism are significantly enriched, and for

TP53 mutant bladder cancer, we find an enrichment for core meta-

bolic pathways involved in the citric acid cycle and glutamine meta-

bolism.

This highlights that the heterogeneity mutations to the same

cancer driver genes can have across different tissues, with some

genes exhibiting effects that are agnostic to tissue, whilst others

have a more specific metabolic effect depending on the tissue they

are present in.

TP53 metabolic signatures correlate with downstream genes and
exhibit mutation-type differences

To further study the metabolic implication of TP53 mutations, we

next studied the overlap between mutations to TP53, and to five

downstream targets involved in different TP53-associated control:

TSC1 and cell growth, XPC and DNA damage response, FAS and

apoptosis, MDM2 and feedback and CDKN1A and cell cycle control

(Feng et al, 2005; Fischer, 2017; Fig 6A). We performed enrichment

analysis of metabolites differently measured between TP53 mutated

and WT cells, then performed the same enrichment with metabo-

lites only differently abundant due to both TP53 and each down-

stream gene in order to unpick whether TP53 pathways can be

associated with a downstream target. Each downstream gene shares

between 13% (XPC) and 29% (CDKN1A) of the total metabolites

differently measured for TP53 mutations, and performing enrich-

ment analysis highlights which TP53 pathway is most associated

▸Figure 5. Tissue heterogeneity of metabolic changes associated with cancer-driving mutations.

A Landscape of mutations in the top 50 most mutated cancer driver genes in the dataset.
B Mean Spearman correlation values between metabolite T-statistics for each cancer driver mutation and metabolite pair calculated within a specific tissue. Higher cor-

relation values indicate a higher tissue agnosticism in the metabolites associated with mutation of the gene.
C Metabolites significantly associated with KRAS mutations in breast, lung and bladder cancers. (right) Metabolic pathways conserved across all tissues, (bottom),

pathways associated only with KRAS mutant lung cancer.
D Metabolites significantly associated with TP53 mutations in breast, lung and bladder cancers. (right) Metabolic pathways conserved across all tissues, (bottom),

pathways associated only with TP53 mutant bladder cancer. P-values represent Fisher’s exact test.
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with each downstream gene (Fig 6B). We find that cell growth meta-

bolic pathways, such as TCA cycle and pyruvate metabolism, are

predominantly associated with the cell cycle protein CDKN1A,

whereas glycerophosphate metabolism is mostly enriched with

apoptotic regulator FAS. Overall, we show that metabolic pathways

associated with TP53 mutation can be associated with known

A

C D

B

Figure 5.
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A B

C

D

Figure 6. Subtypes of TP53 mutations alter different metabolic programmes.

A Chosen downstream targets of TP53 with their phenotypic effects. Numbers and percentages represent number and proportion of TP53 differently abundant
metabolites that are also differently abundant in each downstream target.

B Metabolic pathway enrichment for metabolites shared between TP53 and each downstream gene.
C Lollipop plot of different mutations in TP53 in our dataset. Mutations are coloured by known type.
D Phyloplot showing the associations of groups of metabolites with each mutation type. Significant associations indicate that mutations of a specific class

(conformation or DNA contact) are significantly associated with metabolites in respective pathway. Pathways are clustered by their similarity of expression across the
dataset. P-values represent Fisher’s exact test.
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downstream effector genes, thus we can separate individual meta-

bolic signatures for each of TP53s wide range of functions.

Having determined that metabolic changes associated with TP53

mutation do not appear to correlate strongly between tissues, we

studied the impact of different types of mutations to TP53 on

metabolite levels. Mutations in TP53 broadly fall into two cate-

gories, those directly impacting the DNA binding interface and alter-

ing the contact between the protein and DNA (DNA contact

mutations), and those altering the wider structure of the protein

itself and changing its stability and affinity for binding partners

(conformation mutations; Freed-Pastor & Prives, 2012; Baugh

et al, 2018). Previous work has highlighted that these two categories

of mutations confer differing transcriptional programmes, cellular

phenotypes and interestingly also drug sensitivities (Turrell

et al, 2017; Monti et al, 2020), we surmised that there may also be

metabolic changes associated specifically with each mutation, as

well as a conserved set of metabolites that are changed in response

to any TP53 mutation. We studied our data for cells with mutations

in TP53 that are validated as DNA contact altering, or conformation

altering (Fig 6C).

We looked for sets of coordinated metabolites across three con-

ditions (WT for TP53, DNA contact mutant and conformation

mutations in TP53). We assigned KEGG terms, and expression

changes between the WT and two mutant types were calculated

(Fig 6D). We find sets of metabolites that are consistently altered

in both cases, notably purine metabolism and phospholipid biosyn-

thesis – both hallmarks of cancer metabolic change and cell

growth, are significantly altered in both types of TP53 mutation

compared to WT. Interestingly, we also find metabolic alterations

specific to individual mutation types, notably sphingolipid metabo-

lism and amino sugar metabolism appear selectively altered in

conformation mutants, whilst pathways associated with amino

acid metabolism and the citric acid cycle, cell growth pathways,

are primarily altered in DNA contact mutations. This heterogeneity

opens up the possibility that signalling differences recognized

between different mutant types in TP53 may also result in charac-

teristic metabolic shifts, opening up a further research avenue of

drug sensitivity and prognostic value for metabolism in TP53

mutant cancer.

Discussion

There have been significant efforts to understand the interplay of

metabolic rewiring in cancer, including work on large datasets that

attempt to integrate metabolomics from multiple tissues (Li

et al, 2019; Ortmayr et al, 2019). Metabolic alterations occur in all

cancers, and widening our understanding of the interplay between

changes to metabolite levels and genetic alterations that drive

cancer will be key to a better understanding of the disease in the

future. To further study the complex and poorly understood rela-

tionship between metabolic rewiring in diverse tissues, we per-

formed an unbiased analysis of 1,099 metabolite levels in 173

different cancer cell lines distributed across 11 different tissues cul-

tured in the same conditions. The depth of this study allows the

unbiased correlation of metabolic pathways with other large data-

sets studying mutations, RNA expression and drug sensitivities to

link specific metabolic pathways to known cancer properties. This

study suggests that cancer-driving mutations have a range of meta-

bolic heterogeneities across tissues that have implications for the

detection and therapeutic targeting of cancer, in particular when

studying the metabolic effects of TP53 mutation we highlight that

consideration must be taken for both the tissue context, and the

mutational type.

We correlate mutations to cancer-causing genes with individual

metabolite levels, and show an association between common

metabolic pathways and transcriptional programmes that are

known to drive cancer; furthermore, we find that metabolite levels

are indicative of the drug sensitivity of numerous cancer cell lines,

opening up an opportunity for assessment of a cancer therapeutic

response through analysis of tumour metabolites. Finally, we find

that tissue context and mutation type can alter the metabolic sig-

nature associated with some genetic alterations, further expanding

our understanding of the ever increasing heterogeneity of human

cancers.

Due to the constant experimental conditions and large number

of biological and technical replicates, coupled with the large num-

ber of metabolites studied, our study offers a significant and reli-

able resource for further unpicking the roles of metabolism in

cancer. And that these data are broader and deeper than previ-

ously published work allows a greater understanding of the

heterogeneity of cancer cell metabolism. Previous data have either

been limited by collection of a small number of cell lines, or

through measurements including a smaller number of potential

metabolites, and as such the ability of these studies to analyse

metabolite pathways is limited either by the number of metabo-

lites that can be assigned to a pathway, or the number of cell

lines that can be compared. Here, we are able to analyse the

activity of many metabolic pathways across a broad range of

cancer cells, and can additionally correlate the activation states of

these pathways with other features such as mutations and tran-

scription factor activity.

Whist the data generated for this study is rich, it is collected

at steady state, and so does not incorporate the dynamic

changes of metabolism in response to external stimuli; addition-

ally, cell culture is recognized to be substantially different to

human cancers in vivo, and thus future work will need to

address both the dynamic behaviour and limitations of cell

culture-based study of human cancers. These data, however,

offer a unique insight into the relationship between protein func-

tion and cellular metabolic state. Future work using CRISPR-

based screens will allow the specific relationships between indi-

vidual genes and metabolism to be compared directly to drug

impact allowing a deeper understanding of both drug mecha-

nisms and off target effects.

Materials and Methods

Processing and data normalization

We used primary data published simultaneously in Cherkaoui

et al (2022). We used the area under curve of the receiver operator

characteristic (ROC) based on the Euclidean distance between bio-

logical replicates and non-biological replicates as a metric for repro-

ducibility (Appendix Fig S1B).
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To normalize for injection sequence artefacts, we applied Lowess

smoothing to each ion independently (Appendix Fig S1C), normaliz-

ing the sum of the ion intensities in each injection. We also removed

injections with low ion intensities (defined as those with a log2

(sum of ion intensity) of < 25). This resulted in the total removal of

112 injections.

We also normalized for the confluences of the plate. We found

an observable correlation between total ion intensity per sample

and measured confluency prior to injection. We applied Lowess

smoothing to correct for confluency correlation (Appendix Fig S1D).

To remove metabolites that had a significant correlation with

the batch or plate in each experiment, we calculated the P-value

using ANOVA for a plate and batch effect for each metabolite

(Appendix Fig S1E). The best AUC improvement was found with

the removal of 127 peaks. We further found a bias induced by

the high number of repeats of MCF-7 cell lines (but not

MDAMB231) – identified by principal component analysis and

TSNE (not shown), and as such, MCF-7 cells were also removed

from the analysis.

The resultant final dataset contains 173 cell lines, with 1,234

total injections, and 1,099 total peaks. We find that the AUC values

improve from 0.9928 technical reproducibility to 0.9975, and 0.7934

biological reproducibility to 0.9206 (Appendix Fig S1F). Data were

then averaged (mean) over the biological repeats before analysis

was performed.

Clustering analysis

Clustering analysis was performed using T-map (https://tmap.gdb.

tools).

Permutation statistics

For generating P-values of clustering or similarity between datasets,

we generated null distributions to generate a P-value from. For clus-

tering, we generated a score for how clustered the tissue labels in

the heatmap were, based on how many same-tissues were adjacent

to each other. For the dataset comparisons, we generated the Pear-

son correlation between the same metabolite and cell lines in the

two datasets (this manuscript and Li et al).

We then permuted the cell lines in each case one million times,

and used the scores generated from these random distributions to

generate a null distribution. We then measured how many times a

score equal to or greater than the observation occurred to generate a

P-value.

Pathway activity analysis

Pathway activity was calculated using the rank change of metabo-

lites in a pathway of interest. SMPDB (Jewison et al, 2014) path-

ways were downloaded, and metabolites for each pathway

collected. Metabolites for all the samples were ordered by average

expression, and the equivalent ordering was performed for each cell

line. Pathway activity was calculated through comparing the rank of

metabolites in a pathway between the cell line of interest and the

bulk data. P-values were calculated through a hypergeometric test

for rank change, pathways where 40% of all cell lines had a signifi-

cant association (P < 0.05) were considered for plotting, and

pathways where the total pathway rank sum change was greater

than 350 or lower than �350 were coloured.

Pathway enrichment analysis

Enrichment analysis was performed using Metaboanalyst 4.0

(Chong et al, 2018). We used the pathway enrichment tool by input-

ting metabolite HMDB IDs, using the hypergeometric enrichment

method against the KEGG database (Kanehisa et al, 2017). For RNA

pathway enrichment, we used Gprofiler (Raudvere et al, 2019)

through their python library API.

Metabolite/mutation correlation

We calculated the correlations between mutations and metabolites

using ordinary least squares (OLS) regressions. We calculated the

correlations for every metabolite and mutations in every gene in the

COSMIC cancer gene census (Sondka et al, 2018). For each metabo-

lite/mutation pairing, samples were partitioned into those wild type

for the gene of interest, and those with a non-silent mutation in the

gene (samples for which no mutation data were available were

excluded), data were downloaded from the Cancer Cell Line Ency-

clopedia (Ghandi et al, 2019). A tissue label was included for all 11

tissues of origin, which was one-hot encoded and passed to the

model. The metabolite expression was Z-scored and a regression

model built for every metabolite/mutation pairing. We opted to use

the T-score for further analysis, because they allow further discrimi-

nation between extreme values (whereas a P-value will stop at a

value of 0). We used the statsmodels and sklearn libraries in python

to calculate regressions (Seabold & Perktold, 2010; Pedregosa

et al, 2011). We tested the performance of the method on known

mutation/metabolite pairing IDH1 and 2-hydroxyglutarate.

RNA correlation

RNA expression data were downloaded from the Cancer Cell Line

Encyclopedia (Ghandi et al, 2019). We calculated the PROGENY

(Schubert et al, 2018) and DOROTHEA (Garcia-Alonso et al, 2018)

pathway scores for each cell line using their respective R libraries.

For DOROTHEA, we chose to only calculate the transcription factor

activity for the two most reliable pathway categories (A and B).

RNA pathways were correlated with each SMDB metabolic pathway

by calculating the hypergeometric P-value for the ranks of each

pathway member when ordered by their absolute correlation with

the RNA signature score. P-values were corrected using the Ben-

jamini and Hochberg FDR method.

Drug sensitivity correlation

Drug sensitivity data were downloaded from the GDSC (Yang

et al, 2013). Correlations between drug sensitivity and pathway

activity were calculated by generating the hypergeometric test P-

value (multiple test corrected using the Benjamini and Hochberg

method) for the ranks of pathway metabolites when ordered by

their absolute correlation against the sensitivity score. Synergies

were obtained from DrugCombDB (Liu et al, 2020). We defined a

combination as synergistic if its normalized zero interaction potency

(ZIP) score was greater than 0.
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TP53 mutation analysis

TP53 mutational pathway trees were generated using the Metabodiff

R library (Mock et al, 2018) and plotted with phytools (Revell, 2012).

We used the workflow adapted from the Weighted Gene Co-

Expression Analysis (WGCNA; Langfelder & Horvath, 2008) with a

multiple test corrected P-value cut-off of 0.05.

Data availability

This manuscript uses a dataset derived from Cherkaoui et al (2022).

We provide our data after the normalization described in the materi-

als and methods. Data and the results of all analysis is available in

the supporting information. All codes used in to perform analysis

and generate figures are available here: https://github.com/

shorthouse-mrc/CellLine_metabolomics_analysis. We have devel-

oped a dashboard allowing the exploration of the data here: https://

cancer-metabolomics.azurewebsites.net, and code for the display of

this dashboard is available here: https://github.com/shorthouse-

mrc/CellLine_Metabolomics.

Expanded View for this article is available online.
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