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Abstract

Brain extraction is an indispensable step in neuro-imaging with a direct impact on downstream 

analyses. Most such methods have been developed for non-pathologically affected brains, and 

hence tend to suffer in performance when applied on brains with pathologies, e.g., gliomas, 

multiple sclerosis, traumatic brain injuries. Deep Learning (DL) methodologies for healthcare 

have shown promising results, but their clinical translation has been limited, primarily due to 

these methods suffering from i) high computational cost, and ii) specific hardware requirements, 

e.g., DL acceleration cards. In this study, we explore the potential of mathematical optimizations, 

towards making DL methods amenable to application in low resource environments. We focus 

on both the qualitative and quantitative evaluation of such optimizations on an existing DL 

brain extraction method, designed for pathologically-affected brains and agnostic to the input 

modality. We conduct direct optimizations and quantization of the trained model (i.e., prior to 

inference on new data). Our results yield substantial gains, in terms of speedup, latency, through-

put, and reduction in memory usage, while the segmentation performance of the initial and the 

optimized models remains stable, i.e., as quantified by both the Dice Similarity Coefficient and the 

Hausdorff Distance. These findings support post-training optimizations as a promising approach 

for enabling the execution of advanced DL methodologies on plain commercial-grade CPUs, and 

hence contributing to their translation in limited- and low- resource clinical environments.
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1 Introduction

One of the most important first steps in any neuro-imaging analysis pipeline is brain 

extraction, also known as skull-stripping [1,2]. This process removes all non-brain portions 

in a brain scan and leaves the user with the portion of the image that is of maximal 

interest, i.e., the brain tissue and all associated pathologies. This step is an indispensable 

pre-processing operation that has a direct effect on subsequent analyses, and also used for 

de-identification purposes [3]. Enabling this to run on clinical workstations could have a 

tremendously positive impact on automated clinical workflows. The effects of the quality of 

brain extraction in downstream analyses have been previously reported, for studies on tumor 

segmentation [4-6] and neuro-degeneration [7].

This study specifically focuses on glioblastoma (GBM), which is the most aggressive 

type of adult brain tumors. GBM has poor prognosis despite current treatment protocols 

[8,9], and its treatment and management is often problematic with a necessity of 

requiring personalized treatment plans. To improve the treatment customization process, 

computational imaging and machine learning based assistance could prove to be highly 

beneficial. One of the key steps for this would be to enable a robust approach to obtain the 

complete region of immediate interest irrespective of the included pathologies that would 

result in an improved computational workflow.

While deep learning (DL) has been showing promising results in the field of semantic 

segmentation in medical imaging [4,10-17], the deployability of such models poses a 

substantial challenge, mainly due to their computational footprint. While prior work on 

brain extraction has focused on stochastic modeling approaches [1,2,18], modern solutions 

leveraging DL have shown great promise [12,15]. Unfortunately, models trained for this 

application also suffer from such deployment issues, which in turn reduces their clinical 

translation.

In recent years, well-known DL frameworks, such as PyTorch [19] and TensorFlow [20] 

have enabled the democratization of DL development by making the underlying building 

blocks accessible to the wider community. They usually require the help of moderately 

expensive computing with DL acceleration cards, such as Graphical Processing Units 

(GPUs) [21] or Tensor Processing Units (TPUs) [22]. While these frameworks will work 

on sites with such computational capacity (i.e., GPUs and TPUs), deploying them to 

locations with low resources is a challenge. Most DL-enabled studies are extremely compute 

intensive, and the complexity of the pipeline makes them very difficult to deploy, especially 

in tightly controlled clinical environments. While cloud-based solutions could be made 

available, patient privacy is a major health system concern, which requires multiple legal 

quandaries to be addressed prior to uploading data to the cloud. However, the availability of 

such approaches for local inexpensive compute solutions would be the sole feasible way for 

their clinical translation.

Quantizing neural networks can reduce the computational time required for the forward 

pass, but more importantly can reduce the memory burden during the time of inference. 

Post-quantization, a high precision model is reduced to a lower bit resolution model, thus 
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reducing the size of the model. The final goal is to leverage the advantages of quantization 

and optimization, while maintaining the segmentation performance of the full precision 

floating point models as much as possible. Such methods can facilitate the reduction of the 

required memory to save and infer the generated model [23].

In this paper, we take an already published DL method, namely Brain Mask Generator 

(BrainMaGe)1 [15], and make it usable for low resource environments, such as commercial-

grade CPUs with low memory, and older generation CPUs by leveraging the advantages of 

quantization and optimization for performance improvements. We provide a comprehensive 

evaluation of the observed performance improvements across multiple CPU configurations 

and quantization methods for the publicly available TCGA-GBM dataset [6,24,25], as well 

as a private testing dataset.

2 Methods

2.1 Data

We identified and collected n = 864 multi-parametric magnetic resonance images (mpMRI) 

brain tumor scans from n = 216 GBM patients from both private and public collections. 

The private collections included n = 364 scans, from n = 91 patients, acquired at the 

Hospital of the University of Pennsylvania (UPenn). The public data is available through 

The Cancer Imaging Archive (TCIA) [24] and comprises of the pre-operative mpMRI scans 

of The Cancer Genome Atlas Glioblastoma (TCGA-GBM, n = 125) [6,25] collection. The 

final dataset (Table 1) included n = 864 mpMRI scans from n = 216 subjects with 4 

structural modalities for each subject available, namely T1-weighted pre- & post-contrast 

(T1, & T1Gd), T2-weighted (T2) and T2 fluid attenuated inversion recovery (FLAIR). 

Notably, the multi-institutional data of the TCGA-GBM collection is highly heterogeneous, 

including scan quality, slice thickness between different modalities, scanner parameters. For 

the private collection data, the T1 scans were taken with high axial resolutions. The brain 

masks for the private collection data were generated internally and went through rigorous 

manual quality control, while the brain masks for the TCGA-GBM data were provided 

through the International Brain Tumor Segmentation (BraTS) challenge [4-6,26-28].

2.2 Data Pre-processing

All DICOM scans were converted to the Neuroimaging Informatics Technology Initiative 

(NIfTI) [29] file format to facilitate computational analysis, following the well-accepted 

pre-processing protocol of the BraTS challenge [4-6,26-28]. Specifically, all the mpMRI 

volumes were reoriented to the left-posterior-superior (LPS) coordinate system, and the 

T1Gd scan of each patient was rigidly (6 degrees of freedom) registered and resampled 

to an isotropic resolution of 1mm3 based on a common anatomical atlas, namely SRI24 

[30]. We chose this atlas [30] as the common anatomical space, following the convention 

suggested by the BraTS challenge. The remaining scans (i.e., T1, T2, FLAIR) of each 

patient were then rigidly co-registered to this resampled T1Gd scan by first obtaining the 

rigid transformation matrix to T1Gd, then combining with the transformation matrix from 

1https://github.com/CBICA/BrainMaGe.
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T1Gd to the SRI24 atlas, and resampling. For all the image registrations we used the 

“Greedy”2 tool [31], which is a central processing unit (CPU)-based C++ implementation 

of the greedy diffeomorphic registration algorithm [32]. Greedy is integrated into the ITK-

SNAP3 segmentation software [33,34], as well as into the Cancer Imaging Phenomics 

Toolkit (CaPTk)4 [35-39]. We further note that use of any non-parametric, non-uniform 

intensity normalization algorithm [40-42] to correct for intensity non-uniformities caused by 

the inhomogeneity of the scanner’s magnetic field during image acquisition, obliterates the 

T2-FLAIR signal, as it has been previously reported [5]. Thus, taking this into consideration, 

we intentionally apply the N4 bias field correction approach [41] in all scans temporarily’ 

to facilitate an improved registration of all scans to the common anatomical atlas. Once we 

obtain the transformation matrices for all the scans, then we apply these transformations to 

the non-bias corrected images. This complete pre-processing is available through CaPTk, as 

officially used for the BraTS challenge (Fig. 1).

2.3 Network Topology

We have used the 3D implementation [10], of the widely-used network topology of U-Net 

[44], with added residual connections between the encoder and the decoder, to improve 

the backpropagation process [10,13,15,44-46]. The actual topology used here is highlighted 

in Fig. 2. The U-Net topology has been extensively used in semantic segmentation of 

both 2D and 3D medical imaging data. The U-Net consists of an encoder, which contains 

convolutional layers and downsampling layers, a decoder offering upsampling layers 

(applying transpose convolution layers), and convolutional layers. The encoder-decoder 

structure contributes towards automatically capturing information at varying resolutions and 

scales. There is an addition of skip connections, which includes concatenated feature maps 

paired across the encoder and the decoder layer, to improve context and feature re-usability. 

The residual connections utilize additional information from previous layers (across the 

encoder and decoder) that enable a segmentation performance boost.

2.4 Inference Optimizations

In this work, we used the OpenVINO toolkit (OV) for the optimizations of the BrainMaGe 

model. First, in order to provide estimates of scalability of the model performance in low 

resource environments, we conduct a comparison between the inference performance of the 

optimized OV model with that of the PyTorch framework. We further show a comparison of 

the optimized model performance across various hardware configurations typically found 

in such environments. We then showcase further performance improvements obtained 

through post-training quantization of the model and perform similar comparisons across 

different hardware configurations. In summary, for the BrainMaGe model, we explored 

both (i) conversion from PyTorch to the optimized model with an additional intermediate 

conversion to ONNX, which lead to an intolerable accuracy drop during the PyTorch to 

ONNX conversion step, and (ii) direct conversion from PyTorch to the model’s optimized 

intermediate representation format.

2github.com/pyushkevich/greedy, hash: 1a871c1, Last accessed: 27/May/2020.
3itksnap.org, version: 3.8.0, last accessed: 27/May/2020.
4www.cbica.upenn.edu/captk, version: 1.8.1, last accessed: 11/February/2021.
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2.4.1 OpenVINO Toolkit—OV is a neural network inference optimization toolkit 

[47], which provides inference performance optimizations for applications using computer 

vision, natural language processing, and recommendation systems, among others. Its main 

components are two: 1) A model optimizer and 2) an inference engine. The OV model 
optimizer, provides conversion from a pre-trained network model trained in frameworks 

(such as PyTorch and TensorFlow) into an intermediate representation (IR) format that 

can be consumed by its second main component, i.e., its inference engine. Other types 

of formats that are supported include the ONNX format. Hence, for frameworks like 

TensorFlow and PyTorch, there is an intermediate conversion step that can be performed 

offline. While support for direct conversion from the PyTorch framework is limited, there 

are specific extensions [48] that enable this. The OV inference engine, provides optimized 

implementations for common operations found in neural networks, such as convolutions, 

and pooling operations. OV also provides graph level optimizations, such as operator 

fusion and optimizations for common neural network patterns through the Ngraph library 

[49]. These optimizations can provide direct improvements in the execution time of the 

model, enabling the latter for low- (or limited-) resource environments with tight compute 

constraints.

2.5 Network Quantization

Quantization is an optimization technique that has been adopted in recent times, to improve 

inference performance of neural network models [50,51]. It involves a conversion from a 

high precision datatype to a lower-precision datatype. In this study, we specifically discuss 

the quantization of a 32-bit floating point (FP32) model to an 8-bit integer (INT8) model as 

provided by Eq. 1:

OutINT8 = round(scale ∗ InFP32 + zerooffset) (1)

where the scale factor provides a mapping of the FP32 values to the low-precision range. 

The zerooffset provides a representation of the FP32 zero value to an integer value [52,53].

We have explored leveraging quantization for further improvements in inference, while 

maintaining the model’s segmentation performance. Quantization has many benefits, 

including (i) speedup improvements, and (ii) reduction of memory utilization. There are 

two popular approaches to model quantization, namely:

1. Quantization-aware training [54], which involves training the neural network 

with fake quantization operations inserted in the network graph. The fake 

quantization nodes are able to learn the range of the input tensors and hence 

this serves as a simulation of the quantization.

2. Post-training quantization [55], which is the idea where the quantization 

process is performed post-training, but prior to the actual inference. A subset of 

the training dataset is selected for calibration, and this dataset is used to learn the 

minimum and maximum ranges of the input weights and activations for tensor 

quantization.
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In this study, we have focused on exploring post-training quantization using the OV 

AccuracyAware technique [56], which provides model optimizations while explicitly 

limiting the segmentation performance drop. The intuition of the method is that the 

quantization is targeted towards all eligible layers in the topology. However, if a 

segmentation performance drop is observed, greater than the user-specified threshold, the 

layers that contribute the most to the segmentation performance drop are iteratively reverted 

back to the original datatype, until the desired segmentation performance level is achieved.

2.5.1 Quantitative Evaluation—The segmentation performance of the model is 

quantitatively evaluated according to (i) the Dice Similarity Coefficient [57] (a widely used 

and accepted metric for quantifying segmentation results [58]), (ii) the 95th percentile of the 

(symmetric) Hausdorff Distance (commonly used in Biomedical Segmentation challenges) 

(iii) memory utilization, and (iv) inference performance (latency). We further report the 

model performance for each stage of optimization, i.e., for the 1) baseline PyTorch 

implementation, 2) OV optimized FP32 model, and 3) OV optimized model converted to 

INT8 format through the post-training quantization step (Table 4). It is important to note that 

quantization to lower precision formats, such as INT8, typically results in a small drop in 

segmentation performance but this is highly dependent on the dataset. In our case, we do not 

notice any loss in segmentation performance after converting the model to the OV optimized 

model format.

2.6 Experimental Design

In favor of completeness, we chose five hardware platforms from various CPU generations, 

to benchmark our various model configurations. We ran inference benchmarks on all five 

hardware platforms with n = 132 images from the TCGA-GBM dataset. The results are 

reported based on average of running inferences on these images with a batch size of n = 1. 

See Tables 2 and 3 for the detailed hardware and software configurations.

3 Results

Of particular interest are the results obtained using the Hardware Configuration 4 

(Core(TM) i7-1185G7 @ 3.00 GHz machine), which describes the current generation of 

hardware available in the consumer market. We further summarize the results obtained 

from all hardware configurations, in Fig. 3. Table 4 shows the summary of these 

metrics running on the hardware configuration 4, using the n = 132 images from 

the public dataset. We also compare the results obtained using PyTorch v.1.5.1 and 

PyTorch v.1.9.0. Notably the dynamic quantization methodology on PyTorch v.1.9.0 did 

not yield any performance improvement. With FP32 precision, the performance between 

the PyTorch and the OV models is identical. Although memory utilization is slightly 

better with PyTorch v.1.9.0, the inference performance (latency) is 1.89x better with OV. 

When assessing the INT8 quantized/OV model, the performance drop is negligible, with 

comparable memory utilization, but with a 6.2x boost in ‘latency’, when compared to 

PyTorch v.1.9.0. The memory utilization and the model performance are similar across 

the hardware configurations, with some variations in ‘latency’. On the client hardware 

platforms (Configurations 1, 2, 3, and 4), with OV FP32 precision, we observed up to 2.3x 
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improvements in latency. The OV INT8 precision yielded further speedups up to 6.9x. On 

server hardware platforms (Configuration 5), with OV FP32 precision, we observed upto 

9.6x speedup and with the INT8 precision we observed a speedup up to 20.5x. Figure 3 

illustrates the speedup per configuration, and Fig. 4 highlights some example qualitative 

results. The additional boost in performance with INT8 quantized model in Configurations 

3, 4, and 5, is due to the hardware platform’s advanced features, i.e., AVX512 & Intel DL 

Boost technology [59,60].

3.1 Core Scaling Improvements Across Various CPUs

Additionally, we performed a core scaling performance benchmarking to determine the 

scalability aspects of the model and the hardware. By limiting the number of threads to 

run the inference, we performed benchmarking on all the hardware configurations. Figure 

5 shows a trend of increased performance with the increase in the number of threads. A 

slight drop in speedup can be observed if the number of threads assigned is greater than the 

number of physical cores. This is due to the imbalance and over-subscription of the threads. 

When varying the number of threads for inference, the memory utilization and accuracy 

are similar to running on all the threads available. The performance of both the PyTorch 

and the OV models improved with the increase in the number of threads allocated to the 

inference. However, the speedup achieved with the OV optimized FP32 and INT8 models, 

over PyTorch, is substantial and can be observed on all hardware configurations. Figure 5f 

shows the average inference time speedup achieved by limiting the number of threads on 

different hardware configurations.

4 Discussion

In this study, we investigated the potential contributions of mathematical optimizations of 

an already trained Deep Learning (DL) segmentation model, to enable its application in 

limited-/low-resource environments. We specifically focused on a MRI modality agnostic 

DL method, explicitly designed and developed for the problem of brain extraction in the 

presence of diffuse gliomas [14,15]. We explored these mathematical optimizations, in 

terms of their potential model improvements on 1) execution time, for different hardware 

configurations (i.e., speedup, Fig. 3), 2) speedup, as a function of increasing number of CPU 

cores for all the hardware configuration we considered (Fig. 5), 3) memory requirements 

(Table 4), and 4) segmentation performance. Our results yield a distinct speedup, and 

a reduction in computational requirements, while the segmentation performance remains 

stable, thereby supporting the potential of the proposed solution for application in limited-/

low-resource environments.

For these intended inference time optimizations (i.e., applied in the already trained model), 

we have particularly focused on using the post-training quantization technique. We observe 

that the largest improvement in terms of speedup was obtained from the post-training 

quantized INT8 model, which ended up being > 23x faster than the native single-precision 

implementations, while producing a negligible segmentation performance drop as measured 

by both the Dice Similarity Coefficient and the Hausdorff distance (Table 4). Post training 

quantization is the quickest method of obtaining the quantized INT8 model and is desirable 
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in situations where the “accuracy” (i.e., segmentation performance) drop is minimal, as well 

as within an acceptable threshold. In scenarios where the “accuracy” drop is greater than the 

acceptable threshold, quantization aware training could be an alternative approach to help 

in obtaining such potential improvements. However, such optimization (quantization aware 

training) would require model re-training.

The total number of parameters of the BrainMaGe 3D-ResU-Net model are 8.288 × 106, 

for which the number of Floating point operations per second (Flops) required for the OV 

FP32 model are 350.72665 × 109, whereas for the OV INT8 model the number of Flops 
required are 2.09099 × 109 and number of Integer operations per second (Iops) required 

are 348.63566 × 109. We observed that approximately 99.4% of Flops have been converted 

to Iops in the optimized INT8 model, resulting in two major computational benefits: (i) 
With lower precision (INT8), there is an improved data transfer speed through the memory 

hierarchy due to better cache utilization and reduction of bandwidth bottle-necks, thus 

enabling to maximize the compute resources; (ii) With hardware advanced features [59,60], 

the number of compute operations per second (OPS) are higher, thus reducing the total 

compute time. These two benefits of reduced memory bandwidth and higher frequency of 

OPS with the lower precision model resulted in substantial improvements (Table 4).

In favor of transparency and reproducibility, we make publicly available the optimized 

BrainMaGe brain extraction model, through its original repository5. Furthermore, a 

more generalized solution will also be made publicly available through the Generally 

Nuanced Deep Learning Framework (GaNDLF)6 [13], towards enabling scalable end-to-end 

clinically-deployable workflows.

We consider the immediate future work as a three-fold: 1) performance evaluation 

of quantization aware training compared against post-training quantization; 2) extended 

evaluation on a larger multi-institutional dataset [61,62], as well as evaluation of 

additional network topologies; 3) a comprehensive analysis covering additional hardware 

configurations; 4) assessment of the potential contributions of these mathematical 

optimizations for varying DL workloads, beyond segmentation and towards regression and 

classification tasks in the healthcare domain.
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Fig. 1. 
Example of MRI brain tumor scan from a randomly selected subject from the test set. The 

Original scans (A) include the skull and other non-brain tissues, and (B) the corresponding 

scan slices depicting only the brain.

Thakur et al. Page 12

Brainlesion. Author manuscript; available in PMC 2022 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The U-Net topology with residual connections from GaNDLF was used for this study. 

Figure was plotted using PlotNeuralNet [43].

Thakur et al. Page 13

Brainlesion. Author manuscript; available in PMC 2022 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Speedup across different platforms using all the cores available on a processor.
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Fig. 4. 
Qualitative comparison of results for one of the subjects with high resolution T1 scans 

across the 3 visualization slices. “GT” is the ground truth mask, “PT-FP32” is the mask 

generated by the original PyTorch FP32 model, “OV-FP32” is the output of the optimized 

model in FP32, and “OV-INT8” is the output of the optimized model after quantizing to 

INT8.
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Fig. 5. 
Core scaling performance improvements, across various hardware configurations, shown in 

(a–e). The average speedup across all hardware configurations, and comparison with the 

PyTorch baseline performance (f).
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Table 1.

The distribution of all the datasets used in the study.

Dataset No. of subjects No. of mpMRI scans

TCGA-GBM 125 500

UPenn 91 364

Total 216 864
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Table 2.

The detailed hardware configurations used in for our experiments. Hyperthreading and turbo was enabled for 

all.

Config 1 Config 2 Config 3 Config 4 Config 5

Platform Kaby Lake Coffee Lake Ice Lake -U Tiger Lake Cascade Lake

CPU Core(TM) i5-7400
CPU @ 3.00 GHz

Core(TM) X-GOLD 
626 CPU @ 2.60 
GHz

Core(TM) i7-1065G7 
CPU @ 1.30GHz

Core(TM) 
i7-1185G7 CPU @ 
3.00GHz

Xeon(R) Gold 
6252N
CPU @ 2.30 GHz

# Nodes, # Sockets 1, 1 1, 1 1, 1 1, 1 1, 2

Cores/socket, 
Threads/socket

4, 4 8, 16 4, 8 4, 8 24, 48

Mem config: type, 
slots, cap, speed

DDR4, 2, 4 GB, 
2133MT/s

DDR4, 2, 8 GB, 
2667MT/s

LPDDR4, 2, 4 GB, 
3733MT/s

DDR4, 2, 8 GB, 
3200MT/s

DDR4, 12, 16 GB, 
2933MT/s

Total memory 8 GB 16 GB 8 GB 16 GB 192 GB

Advanced 
technologies

AVX2 AVX2 AVX2, AVX512, DL 
Boost (VNNI)

AVX2, AVX512, DL 
Boost (VNNI)

AVX2, AVX512, DL 
Boost (VNNI)

TDP 90 W 95 W 15 W 28 W 150 W
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Table 3.

Details of the topology implementation. We used the 3D-ResU-Net architecture with 1 input channel, 2 output 

classes, and number of initial filters as 16.

Framework OpenVINO 2021.4 PyTorch 1.5.1, 1.9.0

Libraries nGraph/MKLDNN MKLDNN

Model Resunet_ma.xml, Resunet_ma.bin Resunet_ma.pt

Input shape (1, 1, 128, 128, 128) (1, 1, 128, 128, 128)

Precision FP32, INT8 FP32, INT8

Brainlesion. Author manuscript; available in PMC 2022 November 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thakur et al. Page 20

Table 4.

Summary of accuracy, memory utilization and performance (latency) on the hardware configuration 4: 

Core(TM) i7-1185G7 @ 3.00 GHz.

DL framework Version Precision Average
dice score

Average
Hausdorff
distance

Memory
utilization
(normalized)

Avg. latency
speedup
(normalized)

PyTorch 1.5.1 FP32 0.97198 2.6577 ± 3.0 1 1

1.9.0 FP32 0.97198 2.6577 ± 3.0 0.769 3.8

OpenVINO 2021.4 FP32 0.97198 2.6577 ± 3.0 1.285 7.1

INT8 0.97118 2.7426 ± 3.1 0.907 23.3
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