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The DNA damage response (DDR) represents a complex network of pro-

teins which detect and repair DNA damage, thereby maintaining the integ-

rity of the genome and preventing the transmission of mutations and

rearranged chromosomes to daughter cells. Faults in the DDR are a

known driver and hallmark of cancer. Furthermore, inhibition of DDR

enzymes can be used to treat the disease. This is exemplified by PARP inhi-

bitors (PARPi) used to treat cancers with defects in the homologous

recombination DDR pathway. A series of novel DDR targets are now also

under pre-clinical or clinical investigation, including inhibitors of ATR

kinase, WRN helicase or the DNA polymerase/helicase Polh (Pol-Theta).

Drug resistance is a common phenomenon that impairs the overall effec-

tiveness of cancer treatments and there is already some understanding of

how resistance to PARPi occurs. Here, we discuss how an understanding

of PARPi resistance could inform how resistance to new drugs targeting

the DDR emerges. We also discuss potential strategies that could limit the

impact of these therapy resistance mechanisms in cancer.

1. Introduction

The DNA damage response (DDR) represents a com-

plex network of proteins that detect and repair DNA.

In doing so, the DDR maintains the integrity of the

genome and prevents the transmission of mutations

and rearranged chromosomes to daughter cells [1–3].
Consistent with this role, faults in the DDR (for exam-

ple those caused by deleterious mutations in DNA

repair associated tumour suppressor genes such as

BRCA1 and BRCA2) provide the mutagenic fuel that

drives oncogenesis and are well described as drivers

and hallmarks of cancer [4–6]. Apart from their driver

effect in cancer, DDR defects in tumours also provide

the basis for a number of therapeutic approaches. For

example, platinum salt chemotherapy works in part by

causing DNA inter- and intra-strand crosslinks that

breast or ovarian cancers with homologous recombina-

tion (HR) defects [7,8] or lung cancers with nucleotide

excision repair defects [9] are unable to effectively

repair (Glossary). More recently, targeted agents that

inhibit enzymes in the DDR have been developed as

treatments in cancers with specific DDR defects. This

is exemplified by PARPi used to treat breast, prostate,

pancreatic or ovarian cancers with defects in the

HR pathway, controlled by the tumour suppressors

including (but not exclusive to) BRCA1, BRCA2,

PALB2, RAD51C and RAD51D [10–13]. For example,

in gynaecological cancers, the PARPi olaparib is

approved for use as a maintenance treatment for

advanced cancer patients with deleterious or suspected

germline or somatic BRCA1/2-mutations who have

Abbreviations

ATR, Ataxia telangiectasia and Rad3 related gene; BRCA1, BRCA1 DNA repair-associated gene; BRCA2, BRCA2 DNA repair-associated

gene; ctDNA, circulating tumour DNA; DDR, DNA damage response network; HR, homologous recombination; MMR, mismatch DNA repair;

NAD+, nicotinamide adenine dinucleotide; PAR, poly-ADP-ribose; PARP1, poly-(ADP-ribose) polymerase 1 gene; PARPi, PARP inhibitor;

POLQ, DNA polymerase theta gene, protein known as Polh; RS, replication stress; SWI/SNF, SWItch/sucrose non-fermentable chromatin

remodelling complex; TMEJ, theta-mediated end joining; VEGF, vascular endothelial growth factor; WGR, protein domain containing

tryptophan (W), glycine (G), arginine (R); WRN, Werner syndrome ATP-dependent helicase gene; ZnF, Zinc Finger protein domain.

3811Molecular Oncology 16 (2022) 3811–3827 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-3226-0515
https://orcid.org/0000-0002-3226-0515
https://orcid.org/0000-0002-3226-0515
mailto:
mailto:


shown a prior response to first-line platinum-based

chemotherapy (a clinical indication that HR is defec-

tive) [14]. Olaparib is also used in gynaecological can-

cers as part of a combination maintenance treatment

with the VEGF inhibitor bevacizumab, in patients

who show either a complete or partial response to

first-line platinum-based chemotherapy (Glossary), or

those with defined HR deficiency (HRD) defined by a

deleterious or suspected deleterious BRCA1/2 mutation

and/or an FDA-approved diagnostic that estimates the

presence of cancer-associated genomic rearrangements

normally associated with HRD [14]. Finally, olaparib

is also used for the treatment of adult gynaecological

cancer patients with deleterious or suspected deleteri-

ous germline BRCA1/2-mutated (gBRCAm) advanced

ovarian cancer who have been treated with three or

more prior lines of chemotherapy [14]. Four other

PARPi, talazoparib (Pfizer) rucaparib (Clovis), nira-

parib (GSK) and pamiparib (BeiGene), have also been

approved for the treatment of cancer by regulatory

bodies [15].

Following the relative success of PARPi, a series of

novel DDR inhibitors have now been discovered

including inhibitors of the phospho-inositol kinases

ATR, ATM and DNA-PK [16] and the DNA poly-

merase/helicase Polh (Polymerase Theta) [17,18]. In

addition, the inhibition of other DDR proteins, such

as the DNA helicase WRN [19–21], have been identi-

fied as having synthetic lethal interactions with DNA

repair defects in cancer, suggesting these might also

make good targets for drug discovery (Glossary). In

this review, we will discuss ATR inhibitors, Polh inhi-

bitors and WRN inhibition as potential treatments for

cancer and highlight how lessons from the discovery

and development of PARPi and the study of PARPi

resistance could inform the clinical development and

use of new DDR inhibitors.

2. Resistance to PARP inhibitors

A series of PARPi resistance mechanisms have been

identified, mainly through preclinical studies using

BRCA1/2-mutant tumour cells and/or mice (Fig. 1A).

For example, BRCA2 mutant tumour cell lines that

become PARPi resistant after long term in vitro

PARPi exposure develop reversion mutations (Glos-

sary) [22], i.e. secondary mutations in BRCA2 that

compensate for the original pathogenic mutation.

These reversion mutations (which also occur in

BRCA1, PALB2, RAD51C and RAD51D) [23–25]
restore the reading frame of the gene and thus encode

functional proteins which restore HR. Reversion muta-

tions also cause platinum salt resistance [22,26,27].

There are now reports of reversions in several hundred

patients treated with either PARPi and/or platinum

salts [25,28] and efforts are currently underway to con-

vert experimental methods for identifying reversions,

such as DNA sequence capture and sequencing [29,25],

into clinical-grade biomarkers. BRCA1 is also

rendered inactive in some cancers via BRCA1 pro-

moter hypermethylation; it is likely that loss of

BRCA1 methylation during or before treatment can

also result in an effective reversion of the HR pheno-

type [8,30–32].
Despite the identification of reversion mutations in

many PARPi-resistant patients (some estimates suggest

> 40%), there is a considerable fraction of the PARPi-

resistant patient population where the cause of PARPi

resistance is not known [13]. Pre-clinical studies have

suggested that alterations in a series of other DNA

repair proteins cause PARPi resistance by restoring

HR without the necessity for genetic reversion of a

mutant BRCA1/2 allele. The causative proteins in

these non-reversion mechanisms include 53BP1 [33]

(encoded by TP53BP1), RIF1 [34], SHLD1 [33,35–37],
SHLD2 [33,35,37,38], SHLD3 [33,37], REV7 [39] (en-

coded by MAD2L2), the CST complex [37,40], PTIP

[41], EZH2 [42], DYNLL1 [43,44], SLFN11 [45],

amplification in TRIP13 [46] or an increase in TIRR

[34]. Thus far, extensive evidence for genetic changes

in the genes encoding these proteins in clinical PARPi

resistance is limited, although TP53BP1 mutation has

been reported in a case of acquired resistance [47].

This may be due, at least in part, to the absence of

these genes on common ctDNA sequencing panels

used to profile liquid biopsies in patients with drug

resistance.

In addition to the restoration of HR (either by

reversion or via the non-reversion mechanisms

described above) changes in the drug target can also

cause PARPi resistance in pre-clinical models of can-

cer. The primary target of clinically-used PARPi is

PARP1 [48,49]. This DNA-associated protein is acti-

vated by binding to damaged DNA and uses NAD+
to synthesise Poly (ADP-ribose) chains (PAR) on adja-

cent substrate proteins (PARylation) and itself

(autoPARylation). As well as inhibiting this catalytic

activity, each of the clinically-approved PARPi also

alters the conformation of PARP1 so that its normal

release from damaged DNA is impaired, a phe-

nomenon known as PARP1 trapping (Glossary)

[48,49]. Mutations in PARP1 that prevent PARP1

trapping cause profound PARPi resistance in pre-

clinical in vitro and in vivo models of BRCA1 mutant

cancer and have been seen in a single case of clinical

PARPi resistance [50]. Some of these PARP1
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Fig. 1. DDR inhibitor resistance. (A) In pre-clinical models (e.g. tumour cell lines and genetically engineered mice, mechanisms of PARPi

resistance have been identified that can be classified into four broad groups as shown on left. How many of these resistance mechanisms

operate in the clinic is currently unclear. HR gene reversion mutations have been seen in multiple patients (right hand image), but do not

explain all cases of PARPi resistance (see main text). Anecdotal numbers of PARPi resistant patients with either ABC transporter gene

fusions, 53BP1 mutation or PARP1 mutation have been identified, but the true frequency of these mechanisms of resistance remain to be

established. (B) Revertable and non-revertable genes in synthetic lethal resistance. Synthetic lethal resistance describes the situation where

drug resistance to a synthetic lethal treatment is caused by modulation of the synthetic lethal partner (e.g. reversion of BRCA2), as opposed

to being caused by changes in the drug target. The potential for reversion emerging as a cause of synthetic lethal resistance must be deter-

mined by whether the reversing the dysfunction of the synthetic lethal partner (gene ‘a’) impairs the fitness of the tumour cell. The rever-

sion of BRCA2 has no deleterious effects on tumour cell fitness and indeed reversion gives a tumour cell a fitness advantage in the face of

PARPi treatment. Other driver genes, however, may not be revertable, as their continued dysfunction is essential for the tumour cell to sur-

vive (e.g. addicted oncogenes). For synthetic lethal interactions involving these non-revertable genes, other forms of drug resistance might

predominate, including alterations in the drug target itself. (C) New therapeutic vulnerabilities caused by drug resistance mechanisms. In

some cases, the mechanism of cancer drug resistance that emerges upon treatment creates new therapeutic vulnerabilities, not previously

present or as profound in the pre-treated state. For example, in pre-clinical models, PARPi resistance in BRCA1 mutant tumour cells can be

caused by loss of 53BP1 or Shieldin complex function (see main text). These mechanisms of PARPi resistance, whilst giving the tumour cell

a fitness advantage in the face of PARPi treatment, also impart a fitness disadvantage in the face of either ATRi, Polhi or ionising radiation

(IR) exposure, an evolutionary double bind or induced essentiality effect.
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resistance-causing mutations sit within the DNA bind-

ing ZnF domains of PARP1, but others are located

elsewhere in the protein, including the WGR domain,

that sits between the ZnF and the catalytic domain of

the protein [50]. Part of the normal removal of PARP1

from chromatin also involves PARP1 autoPARylation,

an activity that is opposed by the catalytic activity of

Poly (ADP-Ribose) glycohydrolase, PARG, which

hydrolyses ribose-ribose bonds in PAR. Loss of

PARG also causes PARPi resistance [51], likely by

altering the amount of trapped PARP1. Other mecha-

nisms of removal of trapped PARP1 from DNA also

operate, including the p97 segregase pathway [52].

A final category of resistance mechanisms to PARP

inhibitors is via upregulation of drug efflux pumps that

reduce the amount of PARPi in the cell. This has been

shown in genetically modified mouse models, where

Abcb1a/b upregulation is seen in Brca1;p53 (KB1P)

mammary tumours that develop resistance to PARPi

[53]. Deleting the genes encoding these transporters, or

using alternative PARPi that are not Abcb1 substrates,

delays resistance in these models and allows other

resistance mechanisms such as 53BP1 loss to emerge

[54]. ABCB1 gene fusions have been observed in

treatment-refractory breast and ovarian cancers, and

therefore may also be a source of clinical resistance to

PARPi that are a substrate for this pump [55,56].

Based on much of the work described above, a clas-

sification of different forms of PARPi resistance is

starting to emerge (Fig. 1A). For example, one could

classify the mechanisms into: (a) reversion-based mech-

anisms that restore HR gene function; (b) non-

reversion-based mechanisms that restore HR (e.g. loss

of 53BP1 etc.); (c) modulation of the drug target (e.g.

PARP1 mutation or via loss of PARG); (d) physical

removal of trapped PARP1 (e.g. via the activity of

p97); or (e) pharmacokinetic mechanisms that reduce

the active, cellular, concentration of the drug.

3. Resistance to ATR inhibitors

ATR (ataxia telangiectasia and Rad3-related) is one of

the apical kinases of the DNA damage response. The

ATR kinase complex is critical for recognising and

triggering a response to replication stress (RS) (Glos-

sary), a collection of phenotypes that describe abnor-

mal replication fork function e.g. fork slowing,

stalling, collapse or an increase in replication fork

speed [57]. RS is common in cancer; for example, the

increase in replication that results from oncogene acti-

vation (e.g. via Myc or Cyclin E upregulation) is a

well-established cause of RS [1,58,59]. In response to

abnormal fork progression, ATR, along with its

binding partner ATRIP, is recruited to the extended

tracts of RPA-coated single-strand DNA (ssDNA) that

often form at dysregulated forks [60,61]. RPA-bound

ATR is then trans-activated by TOPBP1 [62] or

ETAA1 [63,64], which leads ATR to phosphorylate

and activate downstream effectors including the kinase

CHK1 [65]. These effectors stall the cell cycle, mediate

DNA repair, prevent apoptosis and limit the firing of

latent replication origins, which could otherwise exac-

erbate RS [65]. In totality, this ATR-mediated RS

response allows cells to repair and restart replication

forks so that replication can be completed before

DNA is divided between daughter cells. When ATR is

partially inhibited, which can be achieved via drug-like

small molecule kinase inhibitors (ATRi), the normal

response to RS is impaired [66]. ATRi elicit anti-

tumour effects in both pre-clinical cancer model sys-

tems [67] and in early phase clinical trials [68], without

eliciting severe, non-tumour toxicity; this is presum-

ably because ATR inhibition exacerbates pre-existing

tumour cell-specific RS to the point where tumour cells

are not viable.

Multiple, highly selective ATRi are currently in clini-

cal development including AZD6738/ceralasertib (Astra-

Zeneca) [69], BAY1895344/elimusertib (Bayer) [70],

M6620/VX970/berzosertib (Vertex/Merck KGaA)

[71,72], M4344/VX-803/gartisertib (Vertex/Merck

KGaA) [73], RP-3500 (Repare) [74], ART0380 (Artios).

These ATRi are being investigated both as monothera-

pies [68,73,75,76] as well as in combination with classi-

cal chemotherapies [68,77], targeted therapies including

PARPi [75], radiotherapy [78] and many others [79].

Multiple cancer-related ATR synthetic lethal effects

have been described that, at least in part, provide the

rationale for the clinical use of ATRi in biomarker-

defined subsets of patients. For example, ATR is syn-

thetic lethal with the closely related PIKK family

kinase ATM [80–84], suggesting ATRi could serve

some utility in the treatment of cancers, such as gastric

cancer, where ATM is defective [85]. Indeed, deleteri-

ous ATM mutations and/or loss of protein have been

associated with antitumour responses to ATRi in an

early phase clinical trial [76]. Whilst ATR and ATM

primarily recognise distinct forms of DNA damage

(replication-associated damage vs. non-replication

associated double-strand DNA breaks, respectively),

there is considerable overlap in downstream effectors

and extensive crosstalk between these two signalling

pathways [86]. It is likely that each kinase can partially

compensate/buffer for the loss of the other, whilst

simultaneous loss is simply not tolerated by cells.

Amplification and overexpression of oncogenes such

as Cyclin E (CCNE1) [87–89], Ras [90], Myc [91,92]
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and CDC25A [88] have also been linked with increased

replication stress and enhanced sensitivity to ATRi,

whereas genetic screens have identified a range of addi-

tional cancer-associated ATRi-related synthetic lethal

effects including those with ARID1A [93], RNASEH2A/

RNASEH2B [94], POLE3/POLE4 [95], APOBEC3A/

APOBEC3B [96] amongst others [97–105]. To what

extent these pre-clinical observations translate to clini-

cally meaningful biomarkers remains to be assessed in

clinical trials [75].

As ATRi have only recently entered clinical develop-

ment, most of what is understood about ATRi resis-

tance comes from pre-clinical studies. For example,

pre-clinical genetic perturbation screens have indicated

that mutation or loss of Cyclin E, CDK2 or Myc can

cause ATRi resistance [94,95,104]. Additional resis-

tance mechanisms also point to stalling of the cell

cycle as a resistance mechanism, for example via loss

of CDC25A/B phosphatase activity [94,95,106,107], or

via loss of the CDK8/Cyclin C complex [94,95,108].

Similarly, mutation of the pro-mitotic transcription

factor FOXM1 has been linked to ATRi resistance

[104]. This observation is consistent with work show-

ing that the S/G2 cell cycle transition is controlled by

a CDK1-directed FOXM1 phosphorylation switch that

is blocked by ATR until S phase has successfully been

completed [109]. Mutations in ECT2, a Rho GTPase

exchange factor linked to the DDR have also been

identified as a cause of ATRi resistance [110,106]. As

yet, these mechanisms of ATRi resistance have not

been validated in clinical trials, but in principle could

now be assessed.

Based on knowledge of PARPi resistance (and many

other drug classes), one could speculate that a likely

route to ATRi resistance would be through mutations

of the target gene itself, ATR. For example, kinase

mutations that sterically hinder access of small mole-

cule inhibitors to kinase catalytic domains, whilst

allowing catalytic activity, cause resistance to other

targeted kinase inhibitors [111–114]. If such mutations

do drive ATRi resistance, with careful drug design, it

may be possible to identify second generation ATRi

that overcome this form of resistance [115,116].

PARPi resistance can also be caused by reversion of

a synthetic lethal partner gene (e.g. BRCA2). Is it pos-

sible that a similar mechanism could also drive ATRi

resistance? This may depend upon the specific cancer

driver gene that is synthetic lethal targeted by ATRi.

For example, in PARPi resistance, reversion of

BRCA1, BRCA2, PALB2, RAD51C, or RAD51D

occur because the continued fitness of tumour cells is

not dependent upon the continued dysfunction of these

genes; tumour cells with reversions are clearly no

longer reliant or dependent upon defective HR for

their survival (Fig. 1B). These particular tumour sup-

pressors likely have a “Pandora Box” effect, (Glossary)

where their dysfunction fosters mutagenesis by

enabling mutation, perhaps for a defined period of

time. Beyond this mutagenic period, their status, func-

tional or dysfunctional, does not appear to have a

large impact on tumour cell fitness, other than possibly

the evolvability of the cell when faced with a new

selective pressure (Fig. 1B). It is not clear whether the

cancer driver genes that are synthetic lethal with ATRi

have the same “Pandora Box” effects as HR-

controlling tumour suppressors, or whether their con-

tinued dysfunction is key to the fitness of tumour cells.

For example, it is possible that a permanent SWI/SNF

defect caused by ARID1A mutation (synthetic lethal

with ATRi [93]) is required for the transcriptional pro-

gramme that maintains the fitness of ovarian clear cell

carcinomas [117,118]. If this is the case, unless some

other alteration in the tumour cell can compensate for

the restoration of ARID1A function, then it is unlikely

that reversion of an ARID1A mutation is likely to be

tolerated by the tumour cell, making it unlikely that

reversion of this gene emerges as a cause of ATRi

resistance. We therefore foresee a future where cancer

driver genes are defined as “revertable” or “non-

revertable” based on how drug resistance emerges,

information that possibly indicates whether the contin-

ued dysfunction of the gene is still required by the

tumour cell. This, in turn, may inform which cancer

genotypes are likely to respond well to ATRi and

which are likely to acquire resistance through reversion

or adaptation.

ATR inhibitors clearly elicit multiple phenotypes

that commensurate with the multiple substrates and

downstream processes that ATR controls [119] and so

some consideration must be given to which of these

processes (or indeed which combinations of these pro-

cesses) must be reversed to mediate the maximal level

of ATRi resistance. Cell-based genetic screens, which

normally involve exposing cells to ATRi in vitro for a

relatively limited time, suggest profound ATRi resis-

tance can be achieved by pausing the cell cycle at S/G2

or G2/M (i.e. after S but before mitosis), so that the

capacity to repair the effects of replication fork stress

is maximised [104,107]. Whether such mechanisms

mediate profound ATRi in a more clinical setting,

where ATRi treatment continues over months, not

days, remains to be seen. It is possible, for example,

that when viewed from the perspective of this much

longer treating time, that only a combination of sup-

pressing the DNA damage that ATRi cause, together

with pausing of the cell cycle to enable repair,
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mediates profound ATRi resistance in cancer. The

observation that pausing the cell cycle at S/G2 or G2/

M can cause ATRi resistance might also suggest that

some consideration might be given to thinking about

how combination therapy is used with ATRi; it seems

reasonable to think that other cancer drugs (such as

CDK4/6 inhibitors) that work by reimposing key cell

cycle checkpoints in tumour cells might be antagonistic

to the effects of ATRi.

4. Resistance to Polh inhibitors

Polh is an A-family DNA polymerase and helicase

with key roles in theta-mediated end joining (TMEJ,

also known as alt-NHEJ or microhomology-mediated

end joining, MMEJ), base excision repair (BER) and

translesion synthesis (TLS) (Glossary) [120–124].
TMEJ is one of five distinct repair processes that

repair DNA double-strand breaks (DSB), the others

being non-homologous end joining (NHEJ), HR, sin-

gle strand annealing (SSA) and break-induced replica-

tion (BIR). Of these, NHEJ preferentially repairs

unresected DSB ends [125–127], whereas HR and

TMEJ require DNA resection to generate a 30 ssDNA

overhang [128–130]. As described earlier, HR is a con-

servative, template-dependent DNA repair process

involving BRCA1 and BRCA2, repairing DNA dam-

age using strand invasion into a homologous chromo-

some or sister chromatid followed by templated DNA

synthesis. In cells lacking HR, such as BRCA1/2 defi-

cient cancer cells, TMEJ serves as an essential backup

mechanism that still allows resected DSBs to be

repaired [131] through the activity of PARP1, DNA

ligase III and Polh (encoded by POLQ) [132].

The interest in Polh as a therapeutic target in cancer

was highlighted by the observations that Polh confers

resistance to the topoisomerase inhibitors etoposide and

camptothecin [133,134], ATRi [133] and ionising radia-

tion (IR) [135–137]. Furthermore, genetic inactivation

of POLQ is synthetic lethal with HR defects caused by

either BRCA1, BRCA2, ATM, RAD51C or FANCD2

defects [138–145] and tumour overexpression of POLQ

correlates with HRD status and a poor clinical outcome

[138,146,147]. Recently, some of these HR-related syn-

thetic lethal effects have been recapitulated with novel

small molecule inhibitors that target Polh’s DNA poly-

merase [17] or helicase functions [18]. These Polh inhibi-

tors not only target BRCA1/2 mutant tumour cells and

enhance the synthetic lethal effects of PARPi, but also

target PARPi resistant tumour cells with defects in the

53BP1/Shieldin [17,18], described above.

Although very little is known about how resistance

to Polhi might emerge, it has already been shown that

pre-existing BRCA2 reversion mutations that cause

platinum-salt and PARPi also cause resistance to

Polhi [17,18]. Interestingly, these observations

provide the key evidence that the BRCA2 defect in

BRCA2-mutant tumour cells is the primary driver of

Polhi sensitivity, and not some downstream conse-

quence of BRCA2 mutation, such as genomic muta-

tions elsewhere in the genome that have arisen because

of the HR defect in these cells. Combined with the

recent data suggesting that 53BP1-pathway defects in

BRCA1 mutant, PARPi resistant tumour cells cause

profound sensitivity to Polhi [17,18] it also suggests

that if Polh inhibitors are to be used when PARPi or

platinum resistance has occurred, this should be in

those with 53BP1/Shieldin defects, and perhaps not in

those where the dominant tumour clone has a

BRCA1/2 reversion.

The issue of BRCA1/2 reversion also highlights

another feature of Polh biology that might reflect a

slightly different utility for Polhi compared to other

agents that target defective HR. TMEJ, one of the

DNA repair processes that Polh controls, has itself

been implicated in the formation of reversion muta-

tions in BRCA1, BRCA2 [22,27] and PALB2 [23,148].

For example, DNA sequence analysis of reversion

mutations highlights that many of these are deletions

flanked by tandem DNA repeat sequence microho-

mologies, a feature indicative of TMEJ operating in

the absence of HR [25,28]. Although pre-existing

reversion mutations cause Polhi resistance [17,18], the

potential to prevent new TMEJ-mediated reversions

via Polh inhibition could be widely exploited by using

these agents either before or even in combination with

PARPi or platinum salts [17]. This is not to say drug

resistance would not emerge in this setting, but the

possibility of targeting TMEJ to suppress reversion

formation may at least drive resistance to emerge in

forms that are perhaps simpler to treat than revertant

cancers, which are not currently treatable with a tar-

geted approach.

What other processes might emerge that could cause

clinical Polhi resistance? As described above, mutations

in the drug target itself might cause resistance – for

example missense or in frame deletions that allow Polh
activity in the presence of small molecule inhibitor. In

addition, pharmacokinetic (PK) resistance mechanisms

(such as increased drug metabolism or cellular export)

could play a part; countering this, the judicious selec-

tion of clinical Polh inhibitors with properties that

make such PK issues a likely driver of resistance seem

already to be used (Glossary) [17]. Alternatively,

changes in pathways that compensate for the loss of

Polh activity could conceivably cause resistance, as
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could molecular changes that compensate for dysfunc-

tion in the tumour suppressor being synthetic lethal

targeted by a Polhi (e.g. BRCA1, BRCA2). What these

changes might be remains to be determined, however

we note that in tumour cells with both BRCA1 and

53BP1 defects (where Polhi synthetic lethality is rela-

tively profound), for the full degree of Polhi resistance
to emerge, the dysfunction in BRCA1 and 53BP1 may

have to be compensated for (as opposed to just a com-

pensatory change in BRCA1 or 53BP1). This would

potentially make profound Polhi resistance less likely

in a BRCA1/53BP1-defective setting than in, for exam-

ple, a BRCA1 defective setting, where only a single

compensatory change might be required. As the ability

to predict how cells with a particular molecular make-

up (e.g. combined BRCA1/53BP1 defects) rewire in

the face of a particular perturbation (e.g. Polh inhibi-

tion) is in its infancy, only further experimentation will

confirm whether a synthetic lethality that targets two

combined cancer-associated defects is less prone to

resistance than those that target one defect.

5. Resistance to WRN inhibition

Werner syndrome ATP-dependent helicase (WRN) is a

member of the RECQ family of DNA helicases,

involved in unwinding of double-stranded DNA for

replication and repair processes [149]. WRN is notable

in that it is the only member with 30 to 50 exonuclease
activity in addition to its helicase activity [150]. Indi-

viduals carrying germline mutations in the WRN gene

exhibit characteristics of Werner syndrome [151],

including genomic instability [152,153], cancer predis-

position [154] and accelerated ageing [155]. WRN heli-

case is of interest from a cancer therapy perspective in

that it is observed to be highly expressed in rapidly

dividing cells [156] and cancer [157]. Whilst induced

loss is generally well-tolerated in healthy cells, target-

ing WRN can induce sensitivity to DNA damage

[158,159]. Importantly, multiple studies have identified

WRN to be a genetic dependency/synthetic lethal tar-

get in cancers with microsatellite instability (MSI) [19–
21], raising the possibility of selective targeting of this

subset of cancers by WRN small molecule inhibition

[160].

MSI arises in cancer with the loss of DNA mis-

match repair (MMR) pathways, often through muta-

tion or epigenetic silencing of MLH1 or MSH2

tumour suppressor genes [161]. MMR is critical for

detection and resolution of spontaneous DNA replica-

tion errors and as such, MMR inactivation leads to a

hypermutator phenotype and genomic instability [162].

Of particular relevance to WRN, MSI can lead to

expansion of microsatellite DNA sequences (Glossary),

including (TA)n repeats; this microsatellite instability

often causes the formation of unusual DNA secondary

structures, stalling of replication forks and activation

of ATR [163]. WRN is specifically required to unwind

DNA at such secondary structures; in the absence of

WRN, TA repeats are cleaved by MUS81, an event

which leads to chromosome shattering and cell death

[163]. Sensitivity of MSI cells to WRN loss is specifi-

cally dependent on the helicase function of WRN and

not its exonuclease activity [19–21].
Compared to the BRCA1/2 vs. PARPi synthetic

lethality, the synthetic lethality between WRN inhibi-

tion and MSI is distinct; WRN inhibition does not tar-

get a DNA repair defect per se but targets the

mutagenic consequence of a DNA repair defect,

namely the presence of expanded TA-dinucleotide

repeats [163]. Indeed, MSI+ cell lines that are refrac-

tory to WRN loss, are those that have a notable

absence of expanded TA repeats [164]. Conversely,

PARPi synthetic lethality targets a defective DNA

repair mechanism (homologous recombination when

caused by BRCA1/2 defects) but does not appear to

target the mutagenic consequences of this HR defect.

A sign of this is that reversion mutations in BRCA1/2,

which restore HR without reversing the existing muta-

genic consequences of the HR defect, cause PARPi

resistance [22,27]. Furthermore, when BRCA2 defects

are experimentally imposed upon cells in vitro or in

animals, these cause PARPi sensitivity without neces-

sarily recapitulating the mutagenic consequences of

BRCA2 mutation seen in human cancers, again sug-

gesting it is the primary HR defect that is important

to PARPi sensitivity and not how defective HR

moulds the genome. For this reason, it seems unlikely

that reversion of a DNA repair-associated tumour sup-

pressor such as MLH1 or MSH2 would be a likely

source of resistance to WRN inhibition in the same

way that BRCA1/2 reversions cause resistance to

PARPi. Given this, other mechanisms are likely to pre-

dominate. A drug-like WRN inhibitor does not yet

exist and therefore it is difficult to predict whether or

how mutation or modulation of WRN itself could

drive resistance. However, the existing mechanistic dis-

section of the MSI/WRN synthetic lethality already

predicts a likely source of resistance. As described

above, the MSI/WRN synthetic lethality appears to be

driven by MUS81 nuclease cleavage of expanded TA-

dinucleotide repeats (along with its scaffold protein

SLX4) [163]; this suggests that loss of MUS81/SLX4

function (or at least partial loss compatible with cell

fitness) might drive WRN inhibitor resistance [163]. Of

course, such a MUS81 defect might itself open up
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other therapeutic vulnerabilities (e.g. PARPi [165] or

WEE1i sensitivity [166]), suggesting how such a mech-

anism of resistance, were it to occur, could be targeted.

This is discussed in Section 6, below.

6. Targeting DDR inhibitor resistance

There are many reasons for understanding how drug

resistance in cancer emerges. This information can be

used to inform the identity of biomarkers that allow

patient stratification for effective treatment and to

avoid the use of treatments that are ineffective. In

addition, understanding how drug resistance emerges

is the first step towards devising strategies that

enhance the overall effectiveness of treatment. For

example, identifying and understanding a mechanism

of drug resistance could lead to the design of combina-

tion therapies that target a primary defect in a cancer

alongside the resistance mechanism to the first treat-

ment. Identifying mechanisms of drug resistance could

also inform the sequential use of treatments, where the

first targets a primary defect in a cancer whilst the sec-

ond targets the mechanism of resistance that emerges

in response to the first treatment.

In this respect, one lesson the explosion in identify-

ing synthetic lethal interactions in cancer has indicated

is that if one is able to identify a molecular change in

a tumour cell (for example a change in a cancer driver

gene), then there is the possibility of identifying a syn-

thetic lethal interaction that targets this cancer-specific

change. The same is probably true of cancer drug

resistance mechanisms involving DDR inhibitors;

when a mechanism of resistance emerges, a new set of

vulnerabilities also emerge (Fig. 1C). This is in essence

a form of induced essentiality, where an adaptation to

one selective pressure causes a new essentiality, reflect-

ing the homeostatic changes that occur in response to

the original adaptation [167]. Alternatively, this could

be viewed as an evolutionary double-bind, where a

drug resistance adaptation drives the tumour cell pop-

ulation down an evolutionary route in which a new

vulnerability emerges [168]. For example, a 53BP1

defect that emerges to homeostatically enable BRCA1

mutant cells to survive the selective pressure of PARPi

treatment, imposes ionising radiation (IR) [169], ATRi

[170] or Polh inhibitor [17,18] hypersensitivity upon

cells (Fig. 1C).

The success of this strategy is of course dependent

upon whether a resistant tumour is clonal. Parallel

evolution of multiple different resistant clones, each

with a different mechanism of resistance (and thus dif-

ferent synthetic lethal effects), could present a chal-

lenge to this approach. However, improvements in the

detection of early emerging drug resistant clones (e.g.

via the use of cfDNA profiling) [171] could allow

treatment to be rapidly adapted so that dominant,

drug resistant, clones can be targeted relatively soon

after these emerge. Ideally, this targeting of drug resis-

tant clones would be made before highly heteroge-

neous populations of drug resistant clones, each with a

different mechanism of resistance (and thus requiring a

different therapeutic approach), emerge. Finally, for

reasons we explain earlier, targeting the consequences

of DDR defects, (e.g. their mutational consequences

such as microsatellite expansion) might turn out to be

a more robust therapeutic approach than targeting the

primary DDR defect itself, given it is difficult to

understand how the mutational consequences of many

DDR defects could be easily reversed. Whilst this

might be theoretically possible with WRN inhibitors in

cancers with expanded TA repeats, approaches that

target cancers with different types of mutational signa-

ture are not known but could be identified (an attempt

to identify these is described here [172]). For example,

in experimental models, though a BRCA2 reversion is

able to restore HR and cause PARPi resistance, it does

not restore a normal diploid genome to tumour cells;

PARPi-resistant BRCA2-revertant cells retain a highly

disordered genome and are still p53 mutant [173]. Per-

haps unsurprisingly, these revertant cells also retain

ATR or WEE1 inhibitor sensitivity [173], which is pos-

sibly driven by the disordered genome/mutant p53 sta-

tus of revertant cells. Identifying vulnerabilities that

are associated with distinct types of disordered tumour

genome might therefore provide additional therapeutic

routes going forward.

7. Glossary

Homologous recombination (HR). A form of genetic

recombination. HR involves the exchange of genetic

information between two similar or identical (i.e.

homologous) nucleic acid sequences, such as DNA

sequences on sister chromatids or homologous chro-

mosomes. HR is often used to faithfully repair double

strand DNA breaks, with the homologous DNA

sequence being used as a DNA template upon which

newly synthesised DNA is generated.

Nucleotide Excision Repair (NER). A form of DNA

repair which repairs single stranded DNA (ssDNA)

damage.

Platinum-based chemotherapy. Chemotherapeutic

agents used in cancer treatment that are salts of plat-

inum. Drugs in this class include cisplatin, carboplatin

and oxaliplatin. Platinum salts work by causing the

formation of crosslinks within DNA double helices
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and/or by causing crosslinks between DNA and pro-

teins. These crosslinks are thought to impair the fitness

of cells by preventing transcription and translation.

Bevacizumab. A recombinant monoclonal antibody

treatment for cancer that inhibits Vascular Endothelial

Growth Factor A.

Synthetic lethality. A form of genetic interaction.

Two genes (or proteins) are said to be synthetic lethal

or involved in a synthetic lethality when inhibition of

either gene is compatible with cell viability, but where

inhibition of both genes is not. Genes involved in a

synthetic lethal relationship are often termed synthetic

lethal partners.

Reversion mutations. Mutations that restore

(“revert”) the function of a mutated gene from a dys-

functional form to a functional form.

PARP1 trapping. An effect where PARP inhibitors

not only inhibit the catalytic activity of PARP1 but

also increase the amount of PARP1 bound to DNA

(or in the chromatin fraction of cells).

Replication stress. Molecular processes that lead to

the abnormal behaviour of the replication fork. Repli-

cation stress often manifests as an extreme increase or

decrease in replication speed, or in the stalling or col-

lapse of replication forks.

Pandora Box effect. A biological effect that is irre-

versible. Named after Pandora, a character from

Greek mythology. For example, the mutations in the

genome caused by BRCA1 or BRCA2 dysfunction are

thought to persist even when BRCA1 or BRCA2 func-

tion is restored by reversion mutations.

Theta-mediated end joining (TMEJ). Also known as

Microhomology Mediated End Joining or Alt-NHEJ.

A form of double strand DNA break (DSB) repair

which involves resection (cutting back) of DNA at the

DSB, alignment of small regions of identical (microho-

mologous) sequences close the ends of the resected

DNA and ligation of DNA ends at the point of micro-

homology, with the result that genomic DNA inbe-

tween the regions of microhomology is deleted. This

process is mediated by DNA Polymerase Theta (Polq),

hence the name.

Pharmacokinetic (PK) resistance mechanisms. Mech-

anisms of drug resistance caused by a change in the

pharmacokinetics of the drug involved. For example,

via increased metabolic degradation of the drug or by

an increase in the activity of small molecule transmem-

brane pumps that reduce the intracellular concentra-

tion of a drug.

Microsatellite DNA sequences. A short segment of

DNA, usually 1–6 bp in length, that is repeated multi-

ple times in succession at a particular genomic loca-

tion. For example, TA repeats (e.g. TATATA).

Replication of microsatellite DNA sequences often

results in the addition of new repeat sequences and the

formation of DNA mismatches to newly synthesised

DNA. These mismatches are often removed from

newly synthesised DNA by the process of mismatch

repair (MMR).
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