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BACKGROUND Current wearable devices enable the detection of atrial fibrillation (AF), but a machine learning (ML)–

based approach may facilitate accurate prediction of AF onset.

OBJECTIVES The present study aimed to develop, optimize, and validate an ML-based model for real-time prediction

of AF onset in a population at high risk of incident AF.

METHODS A primary ML-based prediction model of AF onset (M1) was developed on the basis of the Huawei Heart

Study, a general-population AF screening study using photoplethysmography (PPG)–based smart devices. After opti-

mization in 554 individuals with 469,267 PPG data sets, the optimized ML-based model (M2) was further prospectively

validated in 50 individuals with paroxysmal AF at high risk of AF onset, and compared with 72-hour Holter electrocar-

diographic (ECG) monitoring, a criterion standard, from September 1, 2019, to November 5, 2019.

RESULTS Among 50 patients with paroxysmal AF (mean age 67 � 12 years, 40% women), there were 2,808 AF events

from a total of 14,847,356 ECGs over 72 hours and 6,860 PPGs (45.83 � 13.9 per subject per day). The best performance

of M1 for AF onset prediction was achieved 4 hours before AF onset (area under the receiver operating characteristic

curve: 0.94; 95% confidence interval: 0.93-0.94). M2 sensitivity, specificity, positive predictive value, negative pre-

dictive value, and accuracy (at 0 to 4 hours before AF onset) were 81.9%, 96.6%, 96.4%, 83.1%, and 88.9%, respec-

tively, compared with 72-hour Holter ECG.

CONCLUSIONS The PPG- based ML model demonstrated good ability for AF prediction in advance. (Mobile Health

[mHealth] technology for improved screening, patient involvement and optimizing integrated care in atrial

fibrillation; ChiCTR-OOC-17014138) (JACC: Asia 2021;1:399–408) © 2021 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AF = atrial fibrillation

AUC = area under receiver

operating characteristic curve

ECG = electrocardiography

NPV = negative predictive

value

PPG = photoplethysmography

PPV = positive predictive value

ROC = receiver operating

characteristic
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A trial fibrillation (AF) is the most com-
mon cardiac rhythm disorder;
because of its association with

increased risk of stroke, heart failure, demen-
tia, and death (1), efforts have been directed
toward improving the detection of and
screening for AF (2).

Screening for AF can be systematic or
opportunistic, with the latter being more
cost-effective, especially considering that
patients at high risk of incident AF (eg, those
with previous myocardial infarction, heart
failure, chronic chest disease, or stroke)
would normally attend clinical follow-up with health
professionals. Various common and validated risk
factors have been used to propose clinical risk pre-
diction models for incident AF, but most of these
models only have modest predictive value (3). Recent
studies have shown that the clinical scores predicting
AF recurrence after ablation have limited predictive
ability (4). Nonetheless, clinical risk prediction scores
can be used to identify high-risk subjects (eg, after
stroke) who should be targeted for more intense
screening efforts (5).

A clinical approach to AF screening has recently
been complemented by various “smart” options for
improving AF detection, including smart devices,
wearable patches, and wearable devices, such as
smartwatches linked to smartphones (6). Current
wearable devices enable the detection of AF, but a
machine learning (ML)–based approach may facilitate
even more accurate prediction of incident AF. In the
Huawei Heart Study, we conducted a population-
based screening study of 187,912 individuals, where
0.23% received a “suspected AF” notification and
87.0% of those were confirmed as having AF, with a
positive predictive value (PPV) of 91.6% (7). Thus,
continuous home monitoring with smart device–
based photoplethysmography (PPG) technology
could be a feasible approach for AF screening.
Nevertheless, it has not yet been investigated
whether the prediction of AF onset can be improved
with the use of the PPG signals from smart devices.

The objectives of this prespecified ancillary anal-
ysis from the Huawei Heart Study were to develop,
optimize, and validate an ML-based model for pre-
dicting the onset of AF from normal sinus rhythm in
patients at high risk of incident AF, eg, those with
paroxysmal AF.

METHODS

POPULATION AND DATA SOURCE. The development
of the primary ML-based model relied on the AF
screening phase, conducted from February 1, 2019, to
July 31, 2019, of the Mobile Health Technology for
Improved Screening, Patient Involvement, and Opti-
mizing Integrated Care in Atrial Fibrillation (mAFA II)
study (Huawei Heart Study), using Huawei smart
devices (7). The design of the mAFA II study has been
published (8). In brief, adults (age $18 years) could
freely use an AF screening app with compatible
Huawei smart devices based on PPG technology
(Huawei Technologies Co) across China. Subjects
aged <18 years and those unable to use a smartphone
or a smart device were excluded. The diagnostic
ability of the PPG algorithm for AF episodes (AF
detection model [M0], developed by Huawei) and
smart devices were validated before being used for
the generaL population screening study (9,10).

The primary ML-based model for AF onset predic-
tion (M1) was further optimized and tested into the
optimized ML-based model for AF onset prediction
(M2), which was compared with M0 and clinical
diagnosis of AF episodes, from August 1, 2019, to
October 31, 2019. M2, based on continuing PPG
monitoring signals, was then prospectively validated
in a population at high risk of AF onset and compared
with continuous 72-hour Holter electrocardiography
(ECG) monitoring from September 1, 2019, to
November 5, 2019. The flowchart of the study proto-
col is shown in Figure 1. The study was approved by
the Central Medical Ethics Committee of
Chinese PLA General Hospital (approval number:
S2017-105-02) and registered at www.chictr.org.cn
(ChiCTR-OOC-17014138).

DEVELOPMENT OF THE PRIMARY ML-BASED AF

PREDICTION MODEL (M1). The continuing good
quality of PPG signals and feature extraction were the
key aspects for developing the ML model. Forty-
eight–second raw waves in static state from the pe-
riodical measurements per 10 minutes were filtered,
quality assessed, and then used for developing the
model. After exploring XGBoost, Random Forest,
Support Vector Machine, and Gradient Boosting De-
cision Tree with no significant difference, we decided
to use XGBoost to develop the ML-based model in this
study (Supplemental Figure 1).

Using radial PPG recording data of 273,743 subjects
from the Pre-mAFA study with 554 participants to
detect AF, we identified the following 17 features
from the PPG data regarding: 1) heart rate: minimum
value of all RR intervals (MinHR), mean value of all
RR intervals (MeanHR), median value of all RR in-
tervals (MedianHR), and skewness of all RR intervals
(SkRR); 2) heart rate variability: coefficient of varia-
tion of all RR intervals (CVRR), standard deviation of
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FIGURE 1 Flowchart of the Development, Optimization, and Validation of the Machine Learning–Based Atrial Fibrillation Prediction Model

*Data were obtained from the Huawei Heart Study from February 1, 2019, to October 31, 2019, which was the first stage of the mAFA II (Mobile Health Technology for

Improved Screening, Patient Involvement, and Optimizing Integrated Care in Atrial Fibrillation) study, using Huawei smart technology. AF ¼ atrial fibrillation;

ECG ¼ electrocardiography; ML ¼ machine learning; PPG ¼ photoplethysmography.
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all NN intervals (SDNN), SD ratio, and NN50 count
divided by the total number of all NN intervals
(pNN50); 2) user-defined features: probability of AF
detection output (AFprob); and 4) mathematical fea-
tures: sample entropy, Poincaré stepping, frequency
domain, Shannon entropy, approximate entropy,
difference, and PPG monitoring time. The features
were chosen depending on the sensitivity of feature
change and the extent of abnormal changes when
closer to AF episodes.

OPTIMIZATION OF THE ML-BASED AF PREDICTION

MODEL (M2). The M1 was further optimized using
feature extension (HRR features: combination of
current RR features with history of RR features; CHRR
features: HRR features with context information)
(Supplemental Figure 1) and hyperparameter optimi-
zation on the basis of 554 individuals in whom AF was
detected by the PPG algorithm. Of these, 266 detected
AFs were further confirmed by clinical evaluation
(including medical history and ECG) by a medical
practitioner. The dataset of the 554 individuals with
detected AF was randomly divided (3:1) into a
training cohort and a testing cohort, with a total of
469,267 PPG signals available for the optimization of
the model (Supplemental Figure 2). Test 1 included
testing with 30,640 PPG signals for AF and 89,359 PPG
signals for non-AF of 138 detected AF by PPG
algorithm and further confirmed by doctors. Test 2
included testing with 30,640 PPG signals for AF and
89,359 PPG signals for non-AF from a total of 554
detected AF.

The real-time predictive ability of M2 for AF onset
was tested among 1,709 individuals with detected AF
from the pre-mAFA study from September 12, 2019, to
December 10, 2019 (test 3) (Figure 1).

PERFORMANCE OF THE OPTIMIZED MODEL

COMPARED WITH 72-HOUR HOLTER

ECG MONITORING

Fifty individuals were enrolled to validate the pre-
dictive ability of M2 compared with 72-hour Holter
ECG (test 4). Inclusion criteria were as follows adult
age ($18 years) and paroxysmal AF without current
onset of AF. Exclusion criteria were age <18 years,
presence of a pacemaker, and persistent/permanent
AF. All subjects were required to monitor their pulse
rhythm with a PPG-based wrist band while using 12-
lead ECG monitoring continuously for 3 days. Thus,
AF events were recorded simultaneously by the PPG
algorithm (M0) and ECG.

M2 was evaluated by comparing it with the PPG
monitoring data and the 72-hour Holter ECG moni-
toring data (Figure 2). The “AF onset” events (AF
onset lasting >30 seconds) predicted by M2,
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FIGURE 2 AF Onset Predicted With the ML-Based Model Compared With AF Detected by PPG algorithm and ECG

(A) The risk of AF onset according to the AF ML model compared with AF detected by the PPG algorithm. (B) The risk of AF onset according to the AF ML model

compared with AF episodes detected by ECG. Abbreviations as in Figure 1.
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compared with AF detected by the PPG algorithm
(M0) and AF episodes detected by ECG, are shown in
Figure 2. AF detected by the PPG monitoring and AF
episodes detected by the ECG monitoring needed to
overlap at least 1 second to be considered the same AF
event, taking detected AF and AF episodes as the
“real” AF onset events (Figure 2).

STATISTICAL ANALYSIS. Continuous variables were
tested for normality by means of the Kolmogorov-
Smirnov test. Normally distributed data are pre-
sented as mean � SD. Categoric variables are reported
as n (%). The chi-square test was used to compare
categoric variables. Receiver operating characteristic
curve (ROC) analysis was used to evaluate the ML-
based AF prediction model. The sensitivity,
specificity, PPV, negative predictive value (NPV), and
accuracy were also evaluated to analyze the perfor-
mance of the model.

M1 was optimized to M2 by feature extension and
hyperparameter optimization. M1 and M2 were both
verified with the use of 2 randomly split data sets
(Supplemental Figure 2). The area under the ROC
curve (AUC), accuracy, F1 score, precision, and
precision-recall graphs were used to analyze the
predictive ability of M2 and compare it with that of
M1. Using the DeLong equality test, we compared the
AUC and C-statistic of M2 with those of M1. The false-
positive rate was used to assess the predictive ability
of the ML-based AF prediction model after
optimization.

The real-time predictive ability of M2 for AF onset
was further evaluated among 1,709 individuals with
AF detected by the PPG algorithm (M0) on the basis of
sensitivity and specificity. Sensitivity, specificity,
PPV, NPV, and accuracy were used to evaluate M2 in
the prospective cohort at high risk of AF onset with
the use of AF episodes by 72-hour Holter and prior
PPG monitoring data at the same time. The false-
positive and false-negative rates of M2 in the valida-
tion cohort were further analyzed. The false positives
were defined as PPG signals of AF occurrence pre-
dicted by M1 or M2 after 0 and 4 hours but not vali-
dated by a PPG (identified by M0) or an ECG with real
AF occurrence. The false negatives were defined as
PPG signals of no AF occurrence predicted by M1 or
M2 after 0 and 4 hours but validated by a PPG or ECG
with real AF occurrence.

SAMPLE SIZE CALCULATION OF THE PROSPECTIVE

HIGH-RISK VALIDATION COHORT. To ensure enough
PPG signals to be used for M2 to predict AF in ECG test

https://doi.org/10.1016/j.jacasi.2021.09.004


TABLE 1 Predictive Ability of the Primary AF ML Model (M1) and the Optimized AF ML Model (M2)

Test 1 Test 2

M1 M2 M1 M2

Accuracy 0.912 (0.910-0.913) 0.935 (0.933-0.936) 0.891 (0.890-0.893) 0.934 (0.933-0.936)

Precision 0.864 (0.860-0.868) 0.914 (0.910-0.917) 0.840 (0.836-0.844) 0.912 (0.909-0.916)

Sensitivity 0.775 (0.772-0.781) 0.821 (0.817-0.825) 0.730 (0.725-0.735) 0.813 (0.809-0.827)

Specificity 0.958 (0.957-0.959) 0.974 (0.973-0.975) 0.950 (0.948-0.951) 0.973 (0.972-0.974)

F1 score 0.818 (0.815-0.821) 0.865 (0.862-0.868) 0.781 (0.778-0.784) 0.865 (0.863-0.868)

AUCa 0.942 (0.933-0.943) 0.971 (0.970-0.981) 0.932 (0.923-0.935) 0.972 (0.971-0.982)

Values are % (95% confidence interval). Test 1: testing with 30,640 PPG signals for AF and 89,359 PPG signals for “non-AF” of 138 AF detections by the PPG algorithm, which
were further confirmed by doctors. Test 2: testing with 30,640 PPG signals for AF and 89,359 PPG signals for “non-AF” from a total of 554 AF detections. aUsing the DeLong
equality test, the diagnostic accuracy of M2 was compared with that of M1 (P < 0.001).

AF ¼ atrial fibrillation; AUC ¼ area under the receiver operating characteristic curve; ML ¼ machine learning; PPG ¼ photoplethysmography.
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4, the number of high-risk patients was estimated
based on “real” AF detected by M0, considering the
effective PPG monitoring signals before detected AF
and the probability of AF occurrence.

Effective PPG monitoring signals were PPG moni-
toring signals over half of the monitoring time. Among
those with effective PPG monitoring signals, there
were 5.28 detected AF episodes per person per day,
with a total of 29,976 AF detections among 126 sus-
pected AF during 3 months from the Huawei Heart
Study. Thus, a total of 15.84 detected AF episodes per
person would be expected for 3 days, compared with
the 72-hour Holter ECG.

The probability of AF occurrence was stratified
from 10% to 100%, and at least 100 PPG signals were
required to predict AF episodes in every risk stratum
with type I error under 5% and power over 90%.
When the probability of AF occurrence was over 80%,
a total of 800 PPG signals were needed. We needed 50
high-risk individuals (800/15.84) to test the predic-
tive ability of the M2 for AF onset at 4 hours before AF
onset (Supplemental Figure 3).

The predictive ability of M2 for AF onset was vali-
dated in the high-risk cohort with the use of AF epi-
sodes by 72-hour Holter ECG with prior PPG 4 hours in
advance. Sensitivity analysis of the predictive ability
of M2 was performed with all AF episodes by 72-hour
Holter ECG, with or without prior PPG 4 hours in
advance.

A 2-sided P value of <0.05 was considered to be
statistically significant. The 95% confidence intervals
(CIs) were calculated using the Wilson score method
without continuity correction. Statistical analysis was
performed with the use of IBM SPSS Statistics version
25.0 and MedCalc 12.6.1.0.

RESULTS

DEVELOPMENT AND OPTIMIZATION OF THE ML-BASED

AF PREDICTION MODEL. The best performance of M1
was achieved when predicting AF onset 4 hours
before AF onset with a cutoff point of 0.5 (AUC: 0.94;
95% CI: 0.93-0.94), considering the underlying
application of AI model in the clinical practice. M2
demonstrated an improved predictive ability in terms
of the accuracy, precision, F1 score, and AUC (Table 1).
The ROC and the precision-recall curve of M1 and M2
are presented in Figure 3. M2 was superior to M1 in
predicting AF onset, with a difference between AUCs
of 0.01-0.04, in 2 randomly split data sets (DeLong
test, all P < 0.05) (Table 1, Supplemental Figure 4).
Compared with M1, the false-positive rate of pre-
dicted AF onset with M2 was significantly reduced, by
1.19 � 0.28 and 1.60 � 0.44 in 2 randomly split data
sets (all P < 0.05) (Supplemental Table 1).

The optimized model (M2) was real-time tested
among 1,709 individuals with detected AF during
3 months. During the 3-month testing period, the
sensitivity and specificity of M2 for AF prediction 0 to
4 hours before AF onset were 0.78 and 0.93, respec-
tively (Supplemental Figure 5).

The approaches of the ML-based AF prediction
models 1 and 2 are shown in Supplemental Figure 6.

PERFORMANCE OF THE ML-BASED MODEL COMPARED

WITH 72-HOUR HOLTER ECG MONITORING. In 50 pa-
tients (mean age 67 � 12 years, 40% women) with
paroxysmal AF, the mean CHA2DS2-VASc risk score
was 1.69 � 1.34, and 7 of the 50 patients (14.0%)
reported palpitation at enrollment (Supplemental
Table 2). There were 3,403 AF events from 14,847,356
ECG monitoring data over 72 hours and 7,460 PPG
monitoring data points over the same time period.
Among those, there were 2,808 AF events with prior
PPGs within 4 hours before onset, with a mean of
45.83 � 13.9 PPG signals per subject per day.

Based on 2,808 AF events with prior PPGs, M2’s
sensitivity, specificity, PPV, NPV, and accuracy for AF
prediction at 0 to 4 hours before AF onset (with a
cutoff at 0.5) were 81.9%, 96.6%, 96.4%, 83.1%, and
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FIGURE 3 Receiver Operating Characteristic Curves and Precision-Recall Curves for AF Onset, 4 Hours in Advance

(A) Primary AF ML model (M1) and optimized AF ML model (M2) with test 1. (B) Primary AF ML model (M1) and optimized AF ML model (M2) with test 2. AP ¼ average

precision; AUC ¼ area under the receiver operating characteristic curve; other abbreviations as in Figure 1.
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88.9%, respectively (Table 2). The AUC of M2 for
predicting AF onset 4 hours in advance was 82.6%
(95% CI: 81.6%-83.5%) (Supplemental Figure 6).

The false-positive rate of AF prediction at 0 to 4
hours before AF onset with the use of M2 (with a
cutoff at 0.5) was 5.58 (95% CI: 5.00-6.22). Of these
false positives, more than 85% of the “real” events
were atrial bigeminy, trigeminy, and atrial flutter
(Supplemental Table 3).

Sensitivity analyses of the predictive ability of M2
with the use of 3,403 AF events with or without prior
PPG within 4 hours are presented in Supplemental
Table 4. The sensitivity and NPV of M2 with 3,403 AF
events were slightly decreased, and the specificity
and PPV were consistent with those of 2,809 AF
events with prior PPG (Supplemental Table 4).

DISCUSSION

In a population-based screening cohort using PPG-
based smart devices, our ML-based AF prediction
model demonstrated high sensitivity, specificity, and
PPV for AF prediction at 0 to 4 hours before AF onset.
Such an ML approach may facilitate accurate predic-
tion of AF onset and may help with choosing disease
management options.

Clinical risk factors have been associated with
incident AF (11), leading to the derivation and vali-
dation of clinical risk prediction scores for incident
AF. Like most scores based on clinical factors, these
scores have had only moderate predictive values (C-
index: 0.6-0.7). Thus, improved risk prediction is
needed to facilitate identification of high-risk sub-
jects (eg, after stroke) who would be eligible for more
intense AF screening efforts (12).

The “traditional” diagnosis of AF requires the use
of a 12-lead ECG or 24-hour Holter ECG; however,
the diagnostic ability of paroxysmal AF is associated
with the frequency and duration of AF episodes. The
longer and more frequent that AF occurs, the easier
it is to be detected (13). Thus, an approach to
monitor high-risk patients by combining clinical risk
tools and ECG would be a reasonable cost-effective
option to identify those who most need in-
terventions. Smart technology may aid in this
context. The use of comfortable smart wearables
allows long-lasting continuous monitoring. In the
Huawei Heart Study, nearly one-third of AF episodes
were recorded after 2 weeks, without any complaints
of skin irritation, anxiety, or device pressure (7).
Similarly, in the Apple Watch Study, 75% of the
longest detected AF episodes lasted no more than 6
hours (14). With the increasing availability of
advanced monitoring technology and smart devices,
the early detection/diagnosis of AF in the general
population could be improved.

There has been much interest in the use of ML-
based models for improving the diagnostic ability of
ECG. For example, a deep neural network model has
been developed on the basis of a single-lead, patch-
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TABLE 2 Accuracy of the Optimized AF ML Model (M2) for AF Onset, With 2,808 AF Events by 72-Hour Holter and Prior PPG Monitoring

Time Before Event Sensitivity Specificity PPV NPV Accuracy

1 h 0.916 (0.897-0.931) 0.955 (0.942-0.965) 0.945 (0.929-0.958) 0.931 (0.915-0.943) 0.937 (0.926-0.946)

2 h 0.886 (0.866-0.904) 0.963 (0.950-0.972) 0.956 (0.941-0.967) 0.902 (0.884-0.917) 0.926 (0.914-0.936)

3 h 0.848 (0.825-0.867) 0.965 (0.952-0.974) 0.960 (0.946-0.971) 0.863 (0.842-0.881) 0.906 (0.893-0.917)

4 h 0.819 (0.796-0.840) 0.966 (0.953-0.975) 0.963 (0.950-0.973) 0.831 (0.808-0.850) 0.889 (0.876-0.902)

Values are % (95% confidence interval).

NPV ¼ negative predictive value; PPV ¼ positive predictive value; other abbreviations as in Table 1.
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based ambulatory ECG monitoring dataset with an
average of 1.7 ECGs per patient, and it was validated
on a test data set consisting of 328 ECG records
collected from 328 unique patients; given that this
model achieved an AUC >0.91 for all rhythm classes,
including AF, it could improve the accuracy of algo-
rithmic ECG interpretation (15). Similarly, facial
recognition techniques based on deep learning can
facilitate contact-free detection of AF from video
data. Indeed, the ML-based approach may allow
identification of AF in multiple individuals at the
same time.

Moving beyond these initial studies, the real pre-
diction of AF events (ie, before their onset), rather
than identification/diagnosis of occurring AF events,
has been explored with the help of artificial intelli-
gence (AI) technology. Attia et al (16) has recently
reported that AI-enabled 12-lead ECG acquired during
normal sinus rhythm permits the prediction of AF in
advance. With a mean of 3.6 ECGs per patient in the
training, internal validation, and testing data sets, the
AI-enabled ECG–identified AF model had an AUC of
0.87, sensitivity of 79.0%, specificity of 79.0%, F1
score of 32.0%, and overall accuracy of 79.0%. An ML-
based model to predict incident AF during 6 months,
which used 200 common electronic health record
features, achieved an AUC of 0.80 and F1 score of
11.0% (17). Another ML-based AF prediction model
was developed with the inclusion of clinical risk fac-
tors, such as demographic information, medical his-
tory, body mass index, and diastolic and systolic
blood pressure. Compared with the clinical risk model
using traditional methods (including logistic regres-
sion), the AUC of the ML-based model with clinical
risk factors was higher (0.83 vs 0.72), achieving a PPV
of 11.5% (vs 6.5%) (18).

However, rather than single-point measurements
from prior studies as described above, an AI model
based on dynamic monitoring data could provide
much more accurate predictions of AF episodes. In
the present prospective validation cohort, with a
mean of 45.8 PPG signals per subject per day, our
ML-based model had a sensitivity of 81.9%,
specificity of 96.6%, F1 score of 82.0%, and overall
accuracy of 88.9% for predicting AF onset. In the
present analysis, we showed how ML-based models
could be used to improve the prediction of AF from
PPG-based smart devices. In both M1 and M2, the
C-index was >0.9, with PPV of 96.4% and NPV of
83.1%. The ML-based AF prediction model with
smart technology was able to make much more ac-
curate predictions than traditional clinical risk
assessment tools.

However, the extent to which AI technology im-
proves predictive ability compared with traditional
models possibly depends on the factors that are used
to train the AI model. An AI model with “static”
clinical risk factors might slightly or moderately
improve the predictive ability with an AUC of 0.80-
0.83 (17,18), but an AI model with more frequent,
dynamic monitoring data could achieve an AUC of
>0.90. Our study also demonstrated the application
of ML to guide patient-level individualized early
intervention. A data-driven “early warning” smart
tool might not only identify AF episodes, but it could
also predict AF onset in advance, thereby allowing
physicians/patients more time to intervene and
mitigate adverse outcomes. Of note, the predictive
ability of the AI ML model is dependent on the PPG
signals. Because a PPG-based wristband/watch pro-
vides continuous monitoring throughout the day, it
would be less affected by AF burden compared with
intermittent ECG monitoring.

This study raises many questions that need to be
clarified. The feasibility of the use of AI models in
clinical practice should be investigated, balancing the
complexity of collecting more variables with the use
of simple clinical factors in the logistic model.
Another question arises as to which cases would a
“highly predictive” AI model for AF onset be most
suitable, and for which cases would a traditional
clinical factor-based tool be better. In addition, it is
important to understand what changes an AI model
would bring to AF management. Large prospective
cohort studies and randomized trials are needed to
clarify these issues.



CENTRAL ILLUSTRATION A Machine-Learning–Based Photoplethysmography Technology Facilitated Accurate
Advance Real-Time Prediction of Atrial Fibrillation Onset

The AUC of primary AF ML model (M1)
for AF onset was 0.94% (95% CI: 0.93-

0.94) at 4 h prior to AF onset

554 detected AF with 469,267 PPGs
in 277,000 population from AF
screening phase (Pre-mAFA), mAFA
II program

Timely testing with optimized AF ML
model (M2) in 1,709 detected AF from
Pre-mAFA study

7,460 PPGs with 3,403 AF episodes,
prospectively compared to 14,847,356
ECGs

M1 M2 Validation of optimized
AF ML model

72 h Holter

The M2 had sensitivity, specificity, PPV,
NPV, and accuracy for AF prediction

at 0 to 4 h prior to AF onset, of 81.9%,
96.6%, 96.4%, 83.1%, and 88.9%,

respectively

The M2 was superior to M1 in predicting AF onset, with the
difference between AUC areas of 0.01-0.04 (Delong test,

P < 0.05), while rates of false positives of predicted AF onset
of M2 was reduced significantly by 1.2%-1.6% (all P < 0.05)

Guo, Y. et al. JACC: Asia. 2021;1(3):399–408.

AF ¼ atrial fibrillation; AUC ¼ area under the receiver operating characteristic curve; ECG ¼ electrocardiography; mAFA, mobile Health Technology for Improved

Screening, Patient Involvement And Optimizing Integrated Care in Atrial Fibrillation; M1 ¼ primary AF ML model; M2 ¼ optimized AF ML model; ML ¼ machine

learning; NPV ¼ negative predictive value; PPG ¼ photoplethysmography; PPV ¼ positive predictive value.
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STUDY LIMITATIONS. First, we did not show possible
impacts of the AI-supported AF prediction on clinical
care. We only developed, optimized, and validated
an ML-based model for predicting AF onset. In cur-
rent clinical practice, AF onset is usually predicted by
means of clinical risk scores with the use of tradi-
tional statistical models, with AUCs from 0.60 to 0.78
(12,19-22). AI technology has been used to improve
the diagnostic and predictive ability of traditional
models, and it reached AUCs of 0.80 to 0.90 (16-
18,23). In this study, the optimized ML-based model
predicted AF onset 0 to 4 hours in advance with high
sensitivity, specificity, and PPV, which demonstrates
the feasibility of AI technology based on continuing
PPG signals for real prediction, not just identification,
of AF episodes. Further studies should explore the
possibility of using AI ML models to predict AF onset
in a longer time window before the actual AF onset so
as to allow for the early intervention with upstream
drugs or lifestyle behavior change to reduce the AF
risk. Second, the ML algorithm needs to be accurate,
and although the false-positive rate of 5% may be
acceptable, 85% of the “real” events of false positives
were atrial bigeminy, trigeminy, and atrial flutter,
indicating the need to improve the discrimination of
atrial arrhythmias other than AF. Nevertheless, the
presence of frequent premature atrial contractions
(PACs) or short runs of PACs may be an independent
predictor of the development of atrial tachycardia
and AF. How and when PACs transform into AF are
questions that require further research to provide the
basis for upstream interventions to prevent AF onset
(24,25). The interpretability of methods applied to
XGBoost models to improve the predictive ability
(16,26,27), the comparison among different types of
ML models, and introduction of clinical features into
the ML model, will be further investigated. We
developed, optimized, and validated an AF ML model
in the present study, but its use in clinical practice
will require evaluation in ongoing prospective
studies.

CONCLUSIONS

In a population-based screening cohort using PPG-
based smart devices, an ML-based model demon-
strated high sensitivity, specificity, and PPV for AF
prediction at 0 to 4 hours before the actual AF onset.
The ML-based approach may facilitate accurate
prediction of AF onset (Central Illustration).



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: A machine-

learning approach using smart device-based PPG technology

facilitated accurate advance real-time prediction of AF onset.

The artificial intelligence–based model with more frequent, dy-

namic monitoring data could achieve an AUC >0.90.

TRANSLATIONAL OUTLOOK: A data-driven “early warning”

smart tool not only could identify/diagnose the AF events that

did actually happen, but also could predict AF onset in advance,

with much better predictive ability than traditional clinical

factor–based tools. This would likely change AF prevention and

management, but large prospective cohort studies and random-

ized trials are needed to address the future application.
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