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Dynamic contrast-enhanced
magnetic resonance imaging-
based radiomics for the
prediction of progression-free
survival in advanced
nasopharyngeal carcinoma

Wen-zhu Li1†, Gang Wu2†, Tian-sheng Li1, Gan-mian Dai1,
Yu-ting Liao3, Qian-yu Yang1, Feng Chen1*

and Wei-yuan Huang1*

1Department of Radiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical
University, Haikou, China, 2Department of Radiotherapy, Hainan General Hospital, Hainan Affiliated
Hospital of Hainan Medical University, Haikou, China, 3Department of Pharmaceutical Diagnostics,
GE Healthcare, Guangzhou, China
To establish a multidimensional nomogram model for predicting progression-

free survival (PFS) and risk stratification in patients with advanced

nasopharyngeal carcinoma (NPC). This retrospective cross-sectional study

included 156 patients with advanced NPC who underwent dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI). Radiomic features were

extracted from the efflux rate constant (Ktrans) and extracellular extravascular

volume (Ve) mapping derived from DCE-MRI. Least absolute shrinkage and

selection operator (LASSO) Cox regression analysis was applied for feature

selection. The Radscore was constructed using the selected features with their

respective weights in the LASSO Cox regression analysis. A nomogram model

combining the Radscore and clinical factors was built using multivariate Cox

regression analysis. The C-index was used to assess the discrimination power

of the Radscore and nomogram. The Kaplan–Meier method was used for

survival analysis. Of the 360 radiomic features, 28 were selected (7, 6, and 15

features extracted from Ktrans, Ve, and Ktrans+Ve images, respectively). The

combined Radscorektrans+Ve (C-index, 0.703, 95% confidence interval [CI]:

0.571–0.836) showed higher efficacy in predicting the prognosis of advanced

NPC than Radscorek
trans (C-index, 0.693; 95% CI, 0.560–0.826) and

RadscoreVe(C-index, 0.614; 95% CI, 0.481–0.746) did. Multivariable Cox

regression analysis revealed clinical stage, T stage, and treatment with

nimotuzumab as risk factors for PFS. The nomogram established by

Radscorektrans+Ve and risk factors (C-index, 0.732; 95% CI: 0.599–0.864) was

better than Radscorektrans+Ve in predicting PFS in patients with advanced NPC. A

lower Radscorektrans+Ve (HR 3.5584, 95% CI 2.1341–5.933), lower clinical stage

(hazard ratio [HR] 1.5982, 95% CI 0.5262–4.854), lower T stage (HR 1.4365, 95%

CI 0.6745–3.060), and nimotuzumab (NTZ) treatment (HR 0.7879, 95% CI
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0.4899–1.267) were associated with longer PFS. Kaplan–Meier analysis showed

a lower PFS in the high-risk group than in the low-risk group (p<0.0001). The

nomogram based on combined pretreatment DCE-MRI radiomics features,

NTZ, and clinicopathological risk factors may be considered as a noninvasive

imaging marker for predicting individual PFS in patients with advanced NPC.
KEYWORDS

dynamic contrast-enhanced magnetic resonance imaging, nasopharyngeal
carcinoma, nimotuzumab, progression-free survival, radiomics
Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma

with a distinct geographical distribution, mainly occurring in

Southern China and Southeast Asia (1). More than 70% of

patients are diagnosed with advanced-stage (III–IVB) NPC at

presentation, owing to its nonspecific clinical symptoms and

concealed anatomical location (2). The standard treatment for

patients with advanced NPC is cisplatin-based concurrent

chemoradiotherapy (CCRT) with or without induction

chemotherapy (IC) according to National Comprehensive

Cancer Network (NCCN) guidel ines (3) . However,

locoregional recurrence and distant metastasis are the main

causes of treatment failure in advanced NPC, with 5-year

overall survival (OS) rates of 67–77%, and 2-year progression-

free survival (PFS) rates of 72.9% after standard treatment (4–6).

Thus, accurately identifying patients at high risks for

locoregional recurrence and distant metastasis before

treatment can help to determine the need for more aggressive

treatments. Modifying chemoradiation protocols or using anti-

epidermal growth factor receptor (EGFR) monoclonal

antibodies and immunotherapy can reduce locoregional

recurrence and distant metastasis in these patients (7, 8).

Therefore, predicting the high risk of poor prognosis among

patients and optimizing personalized treatment strategies

are critical.

The tumor-node-metastasis (TNM) staging system is widely

used to predict prognosis and facilitate treatment stratification in

patients with NPC. However, this system may not be sufficiently

precise, as patients with the same TNM staging show different

therapeutic responses and clinical outcomes (9). While some

clinical and histopathological biomarkers are associated with

survival in NPC patients (10, 11), the clinical utility of these

biomarkers is limited and unclear. Thus, an important challenge

in clinical practice is defining effective and non-invasive

biomarkers for prognosis to help in the selection of patients

who can most benefit from specific treatments and predict the

long-term therapeutic consequences.
02
Radiomics is a rapidly emerging field in medicine that

transforms medical images into mineable high-dimensional

quantitative features via a large number of automatically

extracted data-characterization algorithms associated with

tumor diagnosis, prognosis, and prediction of response to

treatment (12, 13). In NPC, radiomic analysis from

multiparametric MR images has been successfully performed

to predict individual PFS in advanced NPC (4, 14). Moreover,

the radiomics features of MR images are useful for predicting

treatment response to chemoradiotherapy (15) and IC (16, 17)

in patients with NPC. However, most previous studies focused

on conventional MR sequences. Dynamic contrast-enhanced

(DCE)-magnetic resonance imaging (MRI) is an MR perfusion

technique that consists of a series of rapid contrast-enhanced

T1-weighted acquisitions. With proper quantitative analysis, the

data provides functional information on blood flow, vascular

permeability, and angiogenesis, in addition to the morphological

tumor characteristics used in clinical practice (18). Quantitative

DCE-MRI parameters can be easily derived for each pixel within

the tumor using commercially available software and can be

visualized in a separate image for each parameter (19). This

makes DCE-MRI a powerful prognostic tool. Our team also

confirmed that DCE parameters can distinguish hypoxia-

inducible factor-1a (HIF-1a), EGFR, and Ki-67 expression,

which mediates prognosis in NPC tumors (20). Recent studies

showed that DCE-MRI-based radiomics is more efficient than

conventional MR sequences in predicting the prognosis and

treatment response in malignant gliomas (21), breast cancer (22)

and rectal cancer (23). To our knowledge, no published study

has used DCE-MRI-based radiomics to predict individual PFS in

patients with advanced NPC.

This study established a nomogram model combining

radiomic features based on DCE-MRI, NTZ treatment, and

clinical risk variables to predict individual PFS in patients with

advanced NPC (stage III–IVB). Patients were divided into high-

and low-risk groups based on the nomogram model to evaluate

the model efficiency. This may provide a novel tool for risk

stratification and individualized therapy protocols for NPC.
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Materials and methods

Patients

The Hainan Affiliated Hospital of Hainan Medical

University Institutional Review Board for Medical Ethics

approved this retrospective analysis of anonymous data and

waived the requirement for informed consent. Consecutive

patients newly diagnosed with NPC in our hospital between

April 2018 and December 2020 were included. The inclusion

criteria were: (1) pathologically confirmed stage III–IV NPC; (2)

application of pre-treatment DCE-MRI; (3) Karnofsky score

≥70; and (4) complete clinical and MR image data. The

exclusion criteria were: (1) contraindications for MR

examination; (2) poor imaging quality; (3) history of head or

neck radiotherapy or chemotherapy; (4) other primary tumors;

and (5) lost to follow-up.

All patients underwent MRI of the nasopharynx and neck,

computed tomography (CT) scans of the chest, abdominal

ultrasound or CT with enhancement, and bone scan. Patients

at risk of distant metastases also underwent whole-body 18F-

fluorodeoxyglucose positron emission tomography (PET)/CT.

TNM status and clinical stage were determined according to the

eighth edition of the International Union Against Cancer/

American Joint Committee on Cancer (UICC/AJCC) staging

system (24).

Patient baseline clinical characteristics and pathologic data

were obtained from their medical records and included age, sex,

Epstein–Barr virus (EBV), clinical stage, TNM stage,

pathological type, HIF-1a, EGFR, Ki-67, tens of homolog

deleted on chromosome ten (PTEN), and vascular endothelial

growth factor (VEGF) protein expression.
Treatment protocols

The treatment regimens were selected according to the

NCCN guidelines (3). All enrolled patients underwent radical

three-dimensional conformal and intensity-modulated radiation

therapy (IMRT) with the following dose distribution:

nasopharyngeal tumor volume (GTVnx) and cervical lymph

node volume (GTVnd), 66–73 Gy and 63–70 Gy, respectively;

high-risk area of primary focus (CTV1), 62–64 Gy; low-risk area

of primary focus and cervical lymph node drainage area (CTV2),

54–58 Gy; and planning target volume (PTV1) and PTV2, 54 Gy

and 50 Gy, respectively. All patients received one fraction per

day for 5 days a week, with 31–35 segmentations. IC consisted of

cisplatin and docetaxel and was administered at 75 mg/m2 by

intravenous drip on day 1, or 25 mg/m2 by intravenous drip on

days 1–3, every 3 weeks for 2–4 cycles. CCRT consisted of

cisplatin 75 mg/m2 on day 1 (or 25 mg/m2 days 1-3) once every 3
Frontiers in Oncology 03
weeks. NTZ treatment (200 mg weekly throughout

radiotherapy) were performed when satisfy: (1) EGFR

expression levels higher than 2+ staining patterns; (2) the

patient’s preference; (3) the patient’s affordability.
Follow-up and clinical endpoint

Patients were assessed every 3 months in the first 2 years,

every 6 months in years 3–5, and then annually. The follow-up

period was defined as the period from therapy initiation to the

last clinical visit or death. The study endpoint was PFS, which

was defined as the time from the date of treatment initiation to

the date of the first disease recurrence, metastasis, death from

any cause, or last follow-up, whichever came first. Disease

progression was confirmed by biopsy pathology and/or

imaging methods such as CT, MRI, or FDG-PET/CT.
MRI protocols and analysis

For all patients, MRI was performed within 1 week before

treatment. MRI was performed on a 3.0T MR scanner (Skyra,

Siemens Medical Solutions, Erlangen, Germany) utilizing a 20-

channel combined head and neck coil. The imaging protocol was

as follows: (1) spin-echo (SE) sequence to obtain axial T1-

weighted (T1W) images (repetition time [TR]=625 ms, echo

time [TE]=9.0 ms, field of view [FOV]=180×180 mm2,

matrix=256×256, and 4.0 mm slice thickness); (2) turbo spin-

echo (TSE) sequence for the acquisition of axial proton density-

weighted (PdW) images (TR=4070 ms, TE=30 ms,

FOV=180×180 mm2, matrix=384×384, and 4.0 mm slice

thickness); (3) fast low-angle shot (FLASH)/vibe sequence to

obtain DCE including 50 dynamic acquisitions, 4.9 s per

dynamic acquisition, with the following parameters: TR=4.09

ms, TE=1.47 ms, flip angle=9°, phase=75%, bandwidth=400 Hz,

thickness=4 mm, slice gap=0 mm, FOV=180×180 mm2,

matrix=192×144, TA=245 s; (4) FLASH/vibe sequence for T1-

mapping before DCE-MRI with five different flip angles (3°, 6°,

9°, 12°, and 15°). Gadodiamide (Omniscan, GE Medical Systems,

Amersham, Ireland) was injected intravenously (dosage, 0.1

mmol/kg; rate, 2 mL/sec followed by a 25-mL saline flush at

3.5 mL per second) via a power injector at the third

dynamic acquisition.

DCE-MR images were analyzed using Omni-Kinetics

software (GE Healthcare, China). The extended toft linear

model was selected, using the intracranial internal carotid

artery as the standard arterial input function (AIF) curve. The

Ktrans (efflux rate constant), kep (reflux rate constant), Ve(the

extracellular extravascular volume), and Vp(the intravascular

plasma volume fraction) maps were automatically calculated.
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Tumor segmentation and radiomics
feature extraction

A three-dimensional (3D) region of interest (ROI) covering the

whole tumor was manually drawn on the DCE-MR images using

ITK-SNAP (version 3.8.0, USA, http://www.itksnap.org) by a

radiologist with 5 years of head and neck radiological diagnosis

experience (Wenzhu Li) and was validated by a senior radiologist

with 12 years of experience (Weiyuan Huang) who was blinded to

the clinical and pathological information of the patients. The ROIs

were then used to extract quantitative radiomics features for

analysis. Intraclass correlation coefficient (ICC) values were

applied to assess the stability and robustness of radiomics feature

extraction. Fifty randomly selected patients were used to test the

ICC. The radiological attending physician (Wenzhu Li) and the

senior physician (Weiyuan Huang) independently delineated the

ROI who were blinded to the clinical and pathological information

of the patients. ICC values under 0.4, between 0.4 to 0.75, and above

0.75 indicated weak, moderate, and strong agreement respectively.

The radiomic features of the lesions were extracted using AK

software (Analysis Kit; GE Healthcare). A total of 360 features

were extracted from Ktrans and Ve mapping derived from DCE-

MRI, including histogram features, gray-level size zone matrix

(GLSZM) features, form factor features, gray-level co-

occurrence matrix (GLCM) features, and run-length matrix

(RLM) features. To eliminate the differences in the value scales

of the extraction features, all features were normalized before

selection. Each feature for all patients was normalized with Z-

scores, subtracting the mean value and dividing by the standard
Frontiers in Oncology 04
deviation. Next, dimensionality reduction was performed on the

data to eliminate those with similar characteristics after

calculating the Pearson correlation coefficients. When the

coefficient is larger than the threshold value (currently, the

default is 0.9), one of them is removed randomly. This method

ensures that the similarity of features after dimensionality

reduction is not high. The radiomics workflow is shown

in Figure 1.
Model building and evaluation

To reduce the dimensionality and decrease redundant

information, two steps were performed for feature selection.

First, univariate Cox regression was performed for each feature.

Features with p<0.05 were considered to be potentially

associated with PFS and, thus, included in the following

process. Least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was subsequently performed

to identify the significant prognostic features, and 10-fold cross-

validation was applied for parameters perfected and over-fitting

reduction. LASSO achieves this by imposing a constraint on the

model parameter (l), which causes the regression coefficients of

certain variables to shrink toward zero. All features with nonzero

coefficients were selected in this step. A radiomics signature

(Radscore) for each patient was built via a linear combination of

selected features weighted by their corresponding non-zero

coefficients. The Radscores of Ktrans images (Radscorektrans) Ve

images (RadscoreVe), and the combination of Ktrans and
FIGURE 1

Workflow of radiomics analysis for predicting the prognosis of advanced nasopharyngeal carcinoma. The steps were: (1) Three-dimensional
manual segmentation on Ktrans and Ve images, (2) the calculation of six types of features for each patient from the defined segmentation, (3)
LASSO Cox regression for feature selection and data dimension reduction, and (4) multivariate Cox regression to develop a radiomics
nomogram model. Kaplan-Meier analyses were then performed to assess the prognostic value of the model. Abbreviations: VOI, volume of
interest; GLSZM, gray-level size zone matrix; GLCM, gray-level co-occurrence matrix; RLM, run-length matrix; LASSO, least absolute shrinkage
and selection operator; C-index, Harrell’s concordance index; K–M curve, Kaplan–Meier analysis curve.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2022.955866
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.955866
Veimages (Radscorektrans+Ve) were then calculated for each

patient. The clinicopathological characteristics of each patient

were assessed using univariate Cox regression analysis.

To develop an optimal model, we developed a combination

model (Radscore incorporating independent clinical predictors)

using multivariable Cox regression analysis. Multicollinearity was

assessed using variance inflation factor (VIF), and multicollinearity

was considered when the VIF value exceeded 2. The VIF value was

<2 indicating no multicollinearity among the predictors.

Furthermore, a nomogram model was constructed based on

Radscore and significant clinicopathological features to visualize

the NPC prognosis. The optimal thresholds of the radiomics

nomogram-defined score were identified using X-tile software

(Yale University, New Haven, CT, USA). The patients were

divided into high- or low-risk groups based on the score

threshold. Kaplan–Meier analysis (log-rank tests) was used to

analyze differences in PFS between the high- and low-risk groups.

Harrell’s concordance index (C-index) was used to evaluate the

discriminative ability of the prognostic models (Radscore,

nomogram model) based on calculating the net benefit for

patients at each threshold probability. Bootstrap analyses with

1,000 resamples were used to obtain C-index statistics that were

corrected for potential overfitting. The value of the C-index ranges

from 0.5 to 1.0, with 0.5 indicating random chance and 1.0

indicating perfectly accurate discrimination between the predicted

probability and actual outcome.
Statistical analysis

All statistical analyses were performed using R software

(version 3.5.2, https://www.rproject.org). Univariate and

multivariate Cox regression was performed using the “stats”

package to identify independent prognostic factors. The

“glmnet” package was used for LASSO Cox regression. The

“survival” package was used for Kaplan–Meier analysis (log-rank

tests) analyses. The “Rms” package was used to build the

nomogram models. Harrell’s concordance index (C-index) was

used to evaluate the nomogram models. X-tile (Yale University,

New Haven, CT, USA) software was used to determine the

optimal cut-off values of the radiomics nomogram-defined

score. Statistical significance was set at p<0.05.
Results

Patient characteristics

A total of 217 consecutive patients with newly diagnosed stages

III–IV NPC were identified in our hospital within the selected time

frame. Sixty-one patients were excluded for images degraded by an

artifact (n=14), incomplete immunohistochemical results (n=12),

incomplete treatment (n=15), second primary tumor (n=6), and
Frontiers in Oncology 05
loss to follow-up (n=14). Thus, the analysis included 156 patients.

Their detailed clinical information, histological characteristics, and

treatment protocols are shown in Table 1. The median follow-up

time was 12.4 months (range, 2–32 months) and the median PFS

was 11.5 months (range, 2–29 months). During follow-up, 23

patients developed disease progression, including 6 local

progression, 6 local recurrence, 3 distant metastases and 8 deaths.
TABLE 1 Characteristics of 156 patients with NPC.

N (%)

Age(years) 49.99 (21-77)

Gender

Male 118 (75.64%)

Female 38 (24.36%)

Pretreatment EB Virus

Negative 48 (30.77%)

Positive 108 (69.23%)

Histology

undifferentiated non-keratinized carcinoma 142 (91.03%)

differentiated non-keratinized carcinoma 13 (8.33%)

keratinized squamous cell carcinoma 1(0.06%)

Primary tumour staging

T1 3 (1.92%)

T2 29 (18.59%)

T3 78 (50.00%)

T4 46 (29.49%)

Nodal staging

N0 5 (3.21%)

N1 33 (21.15%)

N2 74 (47.44%)

N3 44 (28.21%)

Metastasis

M0 138 (88.46%)

M1 4 (2.56%)

MX 14 (8.97%)

Clinial stage

III 83 (53.21%)

IV 73 (46.79%)

Ki-67(%) 58% (10%-95%)

HIF-1a

0 69 (44.23%)

1 51 (32.69%)

2 28 (17.95%)

3 8 (5.13%)

EGFR

0 2 (1.28%)

1 21 (13.46%)

2 59 (37.82%)

(Continued)
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Feature selection and
Radscore construction

The ICC value of the Ktrans and Ve maps was 0.990 (0.957,

0.994) and 0.993 (0.977, 0.996), respectively [median (lower

quartile, upper quartile)]. Of the 360 radiomic features, 28 (7, 6,

and 15 features extracted from Ktrans, Ve, and Ktrans+Ve images,

respectively) were selected using the LASSO Cox regression

model based on repeated 10-fold cross-validation (Figure 2).

Figure 3 shows the selected features. A radiomics signature was

constructed using the selected features and their respective

weights. The Radscore calculation formula consisting of these

features is presented in the Supplementary Materials. The C-

index was used to evaluate the predictive accuracy

(discrimination) of the Radscore, the results of which are

shown in Table 2 Radscorektrans+Ve showed higher efficacy in

predicting the PFS of patients with NPC compared to

Radscorektrans and RadscoreVe Radscorektrans (hazard ratio

[HR] 4.1263,95% confidence interval [CI] 2.2519–7.561,

p<0.0001 RadscoreVe(HR 2.8549, 95%CI 1.7060–4.778,

p<0.0001) and Radscorektrans+Ve (HR 3.5584, 95%CI 2.1341–

5.933, p<0.0001) were independent prognostic factors associated

with PFS in patients with NPC in multivariate Cox analyses,

which indicated that patients with higher Radscores had a higher

recurrence rate and poorer survival.
Frontiers in Oncology 06
Nomogram construction and evaluation

Univariate Cox regression analyses identified clinical stage,

T-stage, and NTZ treatment as significant prognostic factors.

The VIF values of clinical stage, T stage, NTZ treatment and

Radscorektrans+Ve was 1.652, 1.674, 1.130 and 1.099 respectively,

indicating no multicollinearity among the predictors. Therefore,

three Radscores combined with T-stage, clinical stage, and NTZ

treatment were utilized to develop the prediction models. The

C-indices for the models are shown in Table 2. The

Radscorektrans+Ve-clinical model yielded a maximum C-index

of 0.732. Therefore, we developed the Radscorektrans+Ve-clinical

nomogram (Figure 4). A lower Radscorektrans+Ve (HR 3.5584,

95%CI 2.1341–5.933), lower clinical stage (HR 1.5982, 95%CI

0.5262–4.854), lower T stage (HR 1.4365, 95%CI 0.6745–3.060),

and receiving NTZ treatment (HR 0.7879, 95%CI 0.4899–1.267)

were associated with longer PFS (Figure 5). Moreover,

Radscorektrans+Ve had higher classification contributions

compared to clinical variables in building the combined

model. X-tile software identified an optimal Radscorektrans+Ve-

clinical nomogram cutoff score of 3.1 for PFS prediction. Based

on this threshold, the patients were assigned to high-risk (n=38,

24.36%) and low-risk (n=118, 75.64%) groups. Kaplan–Meier

analysis showed a much lower PFS in the high-risk group than in

the low-risk group (p<0.0001) (Figure 6).
Discussion

This study developed a nomogram based on DCE-MRI-

based radiomics, clinical stage, T-stage, and NTZ treatment to

individually predict PFS in patients with advanced NPC. The

radiomics features from the combination of Ktrans and Ve images

had better prognostic performance than those from either Ktrans

or Ve images alone. Integrating radiomics features with

independent clinical factors adequately improved the

predictive efficiency compared to the Radscore model. We

then used the risk scores derived from the optimal model to

classify patients into high- and low-risk groups, demonstrating

its promise as a new biomarker for prognostic prediction in

advanced NPC.

DCE-MRI allows the quantification of various vascular

biomarkers that reflect the tumor microenvironment. It

assesses the process of gadolinium leakage from the

intravascular to extravascular compartments, which depends

on multiple factors, including blood flow, vascular

permeability, microvascular attenuation, and fractional volume

of extracellular extravascular space (18). The Ktrans and Ve of

DCE-MRI quantitative parameters are well-established

permeability parameters of tumors (25, 26). Ktrans stands for

the amount of contrast agent transferred from blood to tissue
TABLE 1 Continued

N (%)

3 74 (47.44%)

VEGF

0 62 (39.74%)

1 73 (46.79%)

2 16 (10.26%)

3 5 (3.21%)

PTEN

Negative 6 (3.85%)

Positive 150 (96.15%)

Nimotuzumab

No 70 (44.87%)

Yes 86 (55.13%)
Ki-67 expression in tumor cells was semi-quantitatively scored based on the percentage of
positively stained tumor cells.
HIF-1a: 0, no staining; 1, nuclear staining in 1–10% of cells; 2, nuclear staining in 11–50%
of cells; and 3, nuclear staining in >50% of cells.
EGFR: 0,<10% of cancer cells with incomplete and weak cell membrane staining; 1, >10%
of cancer cells showed incomplete and weak cell membrane staining; 2, >10% of cancer
cells showed moderate cell membrane staining and<10% of cancer cells showed strong
and intact cell membrane staining; and 3, >10% of infiltrating cancer cells showed strong,
complete, and uniform cell membrane staining.
VEGF: 0, no staining; 1,<25% of the total number of positive cells; 2, 25–49% of the total
number of positive cells; 3: >50% of the total number of positive cells.
NPC, nasopharyngeal carcinoma; HIF-1a, hypoxia-inducible factor-1a; EGFR,
epidermal growth factor receptor.
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and blood vessel permeability. Ve refers to the amount of

contrast agent every unit DCE-MRI allows. Previous studies

reported that pre-treatment Ktrans and Vemaps showed promise

for predicting disease-specific survival and monitoring of

treatment response in patients with NPC (19, 25, 26). In the

present study, the multivariate Cox proportional hazards model

suggested that the Radscore was the only independent

prognostic biomarker. Radscores were calculated only using

radiomic features derived from entire tumors on the DCE
Frontiers in Oncology 07
parameter maps. We confirmed that DCE is an effective

approach for predicting the prognosis and treatment response

of patients with NPC. In addition, several studies have

demonstrated that tumor heterogeneity, which is associated

with aggressiveness and treatment response, can be evaluated

by texture analysis on the Ktrans and Ve maps (27–29). Their

results indicate that Ktrans and Ve are more valuable in the

evaluation of tumor heterogeneity than other DCE-MRI

parameters. Similar to their findings, we also observed that
A

B D

E

F

C

FIGURE 2

LASSO regression for radiomic feature selection in Ktrans (A, B), Ve images (C, D) and Ktrans+Ve images (E, F). (A, C, E) Selection of the optimal
value of lambda (l). Tuning log(l) selection in the LASSO model used to perform 10-fold cross-validation via the minimum criteria. The y-axis
indicates the partial likelihood deviance, while the lower x-axis indicates the log (l) and the upper x-axis represents the average number of
predictors. (B), (D), (F): Each colored curve represents the trajectory of the change of an independent variable. Lambda values of 0.04682979 (B),
0.00985883 (D), and 0.03542502 (F) were selected as the optimal values, respectively. LASSO, Least absolute shrinkage and selection operator.
A B C

FIGURE 3

The x- and y-axes show the features and their coefficients, respectively. Finally, the 7, 6, and 15 features with non-zero coefficients were
extracted from Ktrans (A), Ve (B), and Ktrans+Ve (C) images, respectively.
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Ktrans and Ve showed good performance in predicting prognosis

by non-invasively characterizing intra-tumor heterogeneity.

Tumor heterogeneity may be associated with tumor

angiogenesis, cell proliferation, necrosis, and even different

tumor gene phenotypes (29). Higher tumor heterogeneity is

highly associated with a poorer prognosis, which could be

secondary to intrinsic aggressive biology or treatment

resistance (30–32). Moreover, several studies have reported

that radiomics features based on DCE-MRI may provide

further insights into the heterogeneity of the tumor

microvasculature and allow monitoring of pathophysiologic

changes in various aspects of tumor vascular structure and

functionality to help in evaluating tumor prognosis (23, 28,

33). Furthermore, our results also demonstrated the significant

association of DCE-MRI-based radiomics with PFS in patients

with NPC. Pak et al . (34) reported similar results

for glioblastoma.
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Our results showed that the radiomic combined model built

on Ktrans and Ve images demonstrated better prognostic

performance than the models derived from Ktrans or Ve images

alone. Radiomic models based on multiple sequences showed

greater efficiency than the model based on a single sequence (17,

35) as the combined model provides more morphological and

functional information derived from multiple sequences rather

than only a single sequence.

Subsequently, we integrated the Radscorektrans+Ve into a

nomogram with clinical risk factors (clinical stage, T stage,

and NTZ treatment) in patients with advanced NPC.

Nomograms provide a scoring system and a visual prediction

tool to help physicians rapidly evaluate individual survival post-

treatment via a simple calculation in clinical practice. Yang et al.

(4)established a nomogram that included radiomics, overall

stage, and other clinical factors to predict PFS in

locoregionally advanced NPC, with a C-index in the validation

cohort of 0.811. Consistent with their findings, we also

confirmed that the Radscorektrans+Ve-clinical nomogram was

highly efficient in predicting PFS in advanced NPC. The C-

index of the Radscorektrans+Ve-clinical nomogram in our study

was 0.732 (95%CI: 0.599–0.864). This is the first attempt to

include NTZ treatment as a risk factor in the nomogram to

predict PFS in advanced NPC. In addition, our results

demonstrated the association of advanced NPC treated with

NTZ treatment and longer PFS.

Furthermore, we divided patients into high- and low-risk

groups based on the optimal thresholds of the radiomics

nomogram-defined score. The Kaplan–Meier survival curves

showed a much lower PFS in the high-risk group than that in
TABLE 2 C-indexes of the Radscore and Radscore-based models.

C-index 95%CI

Radscorektrans 0.693 0.560~0.826

RadscoreVe 0.614 0.481~0.746

Radscorektrans+Ve 0.703 0.571~0.836

Radscorektrans-clinical 0.725 0.592~0.857

RadscoreVe−Clinical 0.689 0.548~0.813

Radscorektrans+Ve-clinical 0.732 0.599~0.864
C-index, index of probability of concordance; CI, confidence interval.
FIGURE 4

Radiomics nomogram for the prediction of progression-free survival in patients with advanced NPC. The radiomics nomogram was developed
including the. Radscorektrans+Ve T stage, clinical stage, and treatment with NTZ incorporated. For each patient, the value of each variable is
represented as points by projecting them onto the top line (point scale). Adding the points of all variables and projecting the total points value
downward onto the bottom line can be used to calibrate the probability of 1-year progression-free survival. NPC, nasopharyngeal carcinoma.
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the low-risk group, which indicated that the radiomics

nomogram may contribute to the precise stratification of

patients for individual therapeutic strategies in clinical

practice, thereby improving the clinical outcomes of patients

with advanced NPC.
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This study has some limitations. First, the sample size was not

large enough for validation in an independent cohort. Nevertheless,

we performed bootstrap validation, which provides a stringent

assessment, and the model demonstrated good accuracy for

predicting PFS. Second, the mean follow-up period was relatively
FIGURE 5

Representative images from three different time points during the follow-up period. The upper row shows images from Case A (T3N2M0)
treated with nimotuzumab. (A–C) Baseline DCE-MR images. (A) Slice image. (B) ktrans image. (C) veimage. (D) T2-weighted image at 3 months of
follow-up showing shrinkage of the primary tumor lesion. (E) T2-weighted image at 23 months of follow-up showing complete regression of
the primary tumor. The lower row shows images from Case B (T3N2M0) not treated with nimotuzumab. (F–H) Baseline DCE-MR images. (F)
Slice image, (G) ktrans image. (H) veimage. (I) T2-weighted image at 3 months of follow-up showing shrinkage of the primary tumor lesion. (J)
T2-weighted image at 12 months of follow-up showing the first recurrence of the disease.
FIGURE 6

Kaplan–Meier analyses were performed to estimate progression-free survival in clinical subgroups. The patients were divided into high- and
low-risk groups according to the threshold value of 3.1. Kaplan–Meier analysis showed a much lower PFS in the high-risk group than that in the
low-risk group (p < 0.0001).
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short and a longer follow-up period was required to predict the 5-

year PFS rates. Third, based on the NCCN guidelines, patients were

treated with radiotherapy alone or CCRT and chemotherapy using

varying doses of radiotherapy. This might be a confounding factor

in the evaluation of PFS. Finally, this study did not further predict

treatment response to NTZ in patients with advanced NPC due to

the imbalance of sample size in the prognosis grouping. Future

NPC studies will develop a new model based on pretreatment

radiomics features to predict the survival benefit of NTZ for

individual patients with NPC.
Conclusion

The present study developed a nomogram to estimate

individual PFS in patients with advanced NPC (stage III–IVb).

The nomogram successfully stratified individual patients into high-

and low-risk groups with distinguishable prognoses, which may

provide a non-invasive and effective tool for prognostic prediction

and risk stratification. Moreover, the nomogram also provided

additional information on the association between longer PFS in

patients with advanced NPC receiving NTZ treatment.
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