
R E V I E W Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Xu et al. Molecular Cancer          (2022) 21:208 
https://doi.org/10.1186/s12943-022-01670-1

the sophisticated pathogenesis of malignancies and 
develop effective approaches for cancer treatment.

Dating back to the 1880s, Stephen Paget proposed 
the “seed and soil” hypothesis and revealed that certain 
tumor cells displayed preferential affinity to invade spe-
cific organs, highlighting the critical role of the micro-
environment in regulating metastasis growth [2, 3]. 
Nowadays, it is widely accepted that the tumor micro-
environment (TME) constitutes the immediate niche 
surrounding tumor tissues and is implicated in tumori-
genesis [4, 5]. As an essential element of the TME, the 
tumor stroma affects tumor biology and contributes to 
cancer initiation, progression, metastasis, and therapeu-
tic resistance [6].

The tumor stroma is highly dynamic, heterogeneous 
and commonly tumor-type specific. It is mainly com-
posed of noncellular compositions such as the extracel-
lular matrix (ECM) and the unique cancer-associated 

Introduction
Although tremendous progress has been achieved, cancer 
remains a multifactorial disease with limited therapeu-
tic strategies and one of the leading causes of prema-
ture death. In 2020, there were an estimated 19.3 million 
new cancer cases and approximately 10.0 million deaths 
caused by cancer worldwide [1], which indicated that 
malignant tumors seriously threaten public health. 
Therefore, it is necessary to comprehensively investigate 
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Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the 
tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type 
specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-
associated vascular system as well as a wide variety of cellular components including activated cancer-associated 
fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated 
fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the 
past few decades, numerous studies have been conducted to study the interaction and crosstalk between 
stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the 
investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting 
the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in 
the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel 
approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to 
bedside.
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vascular system as well as a diverse cellular components 
including, but not limited to, activated cancer-associated 
fibroblasts (CAFs), mesenchymal stromal cells (MSCs), 
pericytes [7–12]. These abundant stromal components 
form a dynamic milieu to support cancer progression 
and can potentially be regarded as biomarkers in can-
cer [13]. Importantly, the low tumor-stroma ratio (TSR) 
is remarkably correlated with poorer survival outcomes, 
and the TSR can be a valuable predictor for evaluating 
the prognosis and treatment outcome of cancer patients 
[14–18]. Except for tumor-promoting actions, stromal 
components can also restrain tumor growth, especially in 
pancreatic ductal adenocarcinoma, because the complete 
ablation of stroma resulted in a more invasive tumor phe-
notype and reduced overall survival [19–22]. In the early 
stages of tumorigenesis or metastatic dissemination, the 
stroma can be considered tumor suppressive [6]. How-
ever, the tumor stroma is constantly changing rather than 
a static entity, and our researches mainly focus on the 
roles and mechanisms by which stromal elements accel-
erate cancer initiation and progression, aiming at pro-
viding theoretical rationales and preclinical evidence for 
tumor-stroma-targeted therapy [23–25].

Over the past few decades, we have witnessed an expo-
nential increase in the investigation and recognition of 
the critical role of stroma in solid tumors. Coupled with 
the significant progress of new insights to explore intra-
stromal communication, we are beginning to see the 
deployment of stroma-targeted cancer therapy. A series 
of clinical trials targeting the tumor stroma have been 
launched continually. In this review, we detailed intro-
duce current advances in the understanding of various 
stromal elements and their roles in cancer. Furthermore, 
we summarize recent knowledge regarding the interplay 
between those various stromal compartment and elabo-
rate on potential approaches for tumor-stroma-based 
therapeutic targeting.

Components of the tumor stroma
Tumor tissue is a heterogeneous mixture of both can-
cer cells and various stromal components. In solid 
tumors, stromal elements interact with neoplastic cells 
to influence tumor behavior. Tumor cells can alter their 
surrounding stroma, forming a permissive microenviron-
ment to support their growth. Interestingly, tumor cells 
can also transdifferentiate into stromal-like cells through 
different signal transduction pathways to enhance tumor 
angiogenesis and facilitate cancer development [26–28].

The tumor stroma participates in tumorigenesis, can-
cer progression, and therapy resistance, and it also 
profoundly affects many hallmarks of cancer [29–31]. 
Stromal elements contain the ECM, vasculature, and 
various cellular components such as activated CAFs, 
MSCs, pericytes, and osteoblasts. These components 

affect anti-tumor immune and determine neoplastic pro-
gression (Fig. 1). For example, osteoblasts are responsible 
for attracting cancer cells to bone marrow and driving 
malignant cells’ bone metastasis [32]. Adipocytes, as a 
population of active facilitators, affect cancer metabo-
lism and are involved in tumor establishment, progres-
sion, and therapeutic resistance [33–36]. In recent years, 
oncologists have investigated the functions of osteoblasts 
and adipocytes in cancer, but their detailed description is 
beyond this Review’s scope. Herein, we mainly focus on 
the functions of ECM, stromal vasculature, tumor-associ-
ated endothelial cells, CAFs, MSCs, and pericytes.

Extracellular matrix (ECM)
The extracellular matrix has a pivotal role in modulating 
and maintaining tissue development and homeostasis, 
but the dysregulation and mechanical features of ECM 
can determine cancer aggressiveness and impact the sen-
sitivity to drug therapy [37–39]. The altered and stiffened 
ECM affects virtually every facet of cancer hallmarks 
including avoiding immune destruction, tumor-promot-
ing inflammation, activating invasion and metastasis, and 
inducing angiogenesis [29, 40–42]. Therefore, the ECM 
not only influences the tumor behavior and histopathol-
ogy but also be regarded as an integral and remarkable 
feature of cancer [43].

The ECM is an intricate and dynamic structure that is 
constantly remodeled by the synthesis and degradation of 
numerous ECM proteins [44, 45]. In general, the complex 
ECM network consists of fibrillar or non-fibrillar colla-
gens, proteoglycans, glycoproteins, laminins, fibronectins 
and other macromolecules. Among them, collagens are 
the most abundant components of ECM [46]. Commonly, 
the deregulation of ECM homeostasis leads to cancer 
evolvement through two distinct mechanisms. On the 
one hand, ample molecules mainly derived from CAFs 
induce the pro-fibrotic response and result in excessive 
deposition of ECM, thereby protecting tumor cells from 
immune destruction and mediating therapeutic resis-
tance. On the other hand, continuous ECM breakdown 
contributes to reducing the cancerous cell-ECM adhe-
sion, promoting tumor cells’ invasive and migratory abili-
ties, and inducing malignant cells intravasation via the 
regulation of invadopodia formation [47–51].

It is now accepted that excessive deposition of collagen 
and crosslinking of fibrillar collagens and elastin result 
in the dense ECM and increase the stroma stiffness, 
which has profound impacts on cancer progression [52]. 
Increased ECM deposition represents a crucial physi-
cal barrier that inhibits antitumor immunity [53]. Apart 
the formation of a natural barrier, the stiff ECM can also 
increase the expression of PD-L1 in lung cancer cells in a 
actin-dependent manner, thereby protecting tumor cells 
from the host immune attack [54]. The ECM together 



Page 3 of 38Xu et al. Molecular Cancer          (2022) 21:208 

with tumor cell’s architecture also constitute a physical 
barrier for drug delivery [55]. In PDAC, stiffened ECM 
can reduce vascular density and induce epithelial-mesen-
chymal-transition, which results in the embeddedness of 
vessels into the matrix and subsequently creates a tough 
barrier to prevent drug perfusion [56, 57]. The stiff matrix 
can compress the micro blood vessels, and thus impedes 
the successful access of anti-tumor drugs into core tumor 
tissues through the vasculature [58, 59]. Tumor cells 
surrounded by the stroma can adhere to various ECM 

proteins, which decreases the chemotherapy efficacy, 
known as cell adhesion-mediated drug resistance [60]. 
Intriguingly, stiffened ECM can mechanoactivate glycol-
ysis and glutamine metabolism to coordinate the flux of 
nonessential amino acid in the tumor tissue, which mod-
ulates tumor metabolism and potentially provides ener-
gies for tumor growth and aggressiveness [61]. Moreover, 
abundant ECM deposition potentiates the adhesion of 
metastatic malignant cells to the tumor endothelium, 

Fig. 1  Major components of the tumor stroma and their tumor-promoting functions
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thus promoting cancer intravasation and subsequent 
metastasis [62].

Tumor cells often exhibit higher mobility in the 
remodeled ECM. Simultaneously, the remodeled ECM 
facilitates cancer cell-directed migration toward the vas-
culature, favoring the metastatic dissemination of these 
cells [63, 64]. When integrin binds to its ECM ligand, 
the FAK/Src complex is assembled at the cytoplasmic 
tail of integrin, which promotes the activation of down-
stream signals PI3K/AKT and RAS/MEK/ERK circuits 
to maintain cell survival and migration [65, 66]. Ras Sup-
pressor-1 (RSU-1) is a cell-ECM protein and is obviously 
upregulated in breast cancer cells embedded in stiffer 
3D collagen I gels. RSU-1 silencing resulted in the inhi-
bition of MMP-13 and urokinase plasminogen activator, 
thereby reducing cancer cell invasion and migration [67]. 
Furthermore, some matrix metalloproteinases (MMPs) 
can degrade the ECM network, which mediates the pro-
invasive phenotype of cancer cell and augments the cell 
mobility throughout the ECM [68, 69].

MMPs belong to ECM proteins that are involved in 
nearly all important steps during carcinogenesis and 
progression. More than 20 MMPs have been identified 
so for and most of them exist in the human proteome 
[70]. The activity of these enzymes is low under nor-
mal circumstances, but in the setting of tumor develop-
ment their activity can be increased. Among all these 
MMP family numbers, MMP9 and MMP2 are perhaps 
the best-studied type and they can degrade the IV col-
lagen to regulate ECM remodeling [71, 72]. MMP9 can 
also accelerate angiogenesis, tumor invasion and metas-
tasis. Given its important role in tumorigenesis, MMP9 
is currently considered as a biomarker and a legitimate 
therapeutic target for many cancer types [73]. Homoplas-
tically, MMP2 induces tumor neovascularization through 
the activation of pro-angiogenic factors such as vascu-
lar endothelial growth factor (VEGF) and TGF-β, and it 
also promotes the proteolytic degradation of extracellular 
proteins to drive tumor metastasis [74, 75]. Apart from 
MMP9 and MMP2, other MMPs that are present in ECM 
also have tight association with oncogenic advancement. 
For example, MMP1, MMP3 and MMP10 have been 
found to promote cancer cell initial invasion and distant 
dissemination. MMP7 and MMP13 contribute to tumor 
cell growth and proliferation. Moreover, some MMPs can 
prevent the apoptosis of early cancer cell, such as MMP7, 
MMP10 and MMP11 [74]. An alternative key function of 
MMPs in cancer metastasis is to regulate the formation 
of invadopodia that is implicated in breaching basement 
membrane ao as to allow the extravasation and move-
ment of tumor cell through tissues [76–78]. The targeted 
delivery and exocytosis of MMP2, MMP9 and MMP14 is 
required for invadopodia maturation, and thus the pres-
ence of these MMPs is usually regarded as one of the 

marks of functional mature invadopodia. In addition, the 
potency of invadopodia to degrade ECM and facilitate 
invasion is partially attributed to MMPs appearance [79, 
80].

The ECM serves as an indispensable reservoir for many 
growth factors and cytokines that orchestrate diverse 
developmental processes and can trigger a series of sig-
nal transduction to induce sustained malignant trans-
formation [59, 81]. As such, the degradation of ECM 
also contributes to tumor development by these secre-
tory factors. For example, transforming growth factor-β 
(TGF-β), an essential cytokine for the activation of tumor 
stroma, is significantly overexpressed in the dysregula-
tion ECM and induces immunosuppression within the 
TME [82]. The release of VEGF is sometimes accompa-
nied by the remodeling ECM and further contributes to 
angiogenesis [83]. Hepatocyte growth factor (HGF) is a 
pleiotropic cytokine. Mature HGF retained in the ECM 
is able to bind its receptor c-MET to mediate cancer pro-
gression [84]. Furthermore, Oncostatin M (OSM), a pro-
inflammatory cytokine, was demonstrated to induce the 
expression of lysyl oxidase like-2 (LOXL2) that catalyzed 
ECM transformation by crosslinking collagen I. The over-
expressed OSM and LOXL2 had an evident correlation 
with a worse prognosis in patients with breast invasive 
ductal carcinoma [85]. The dynamic ECM also promotes 
the presentation of growth factors to their receptors [86, 
87].

Cancer-associated vasculature
During malignant transformation, tumor tissues estab-
lish sophisticated compositions to support their growth. 
These compositions include an immunosuppressive 
TME, a nutritional environment suitable for tumor 
growth, and the unique cancer-associated vascular sys-
tem. Angiogenesis is central to the growth and survival 
of tumor cells and is also the main conduit for tumor 
metastasis [88]. Approximately five decades ago, Folkman 
described that neovascularization promoted tumorigen-
esis and malignant progression. He held the view that 
destroying tumor angiogenesis could restrict nutrient 
supplies to malignancies and speculated that anti-angio-
genic drugs would have potential therapeutic value for 
cancer [89].

Tumor tissue’s vascularization is a multidimensional 
process orchestrated by various molecular and cellu-
lar effectors [90]. Compared with normal stroma, the 
tumor stroma has abundant vasculature. Pancreatic duc-
tal adenocarcinoma (PDAC) represents one of the most 
stroma-rich cancer types. Cancer-associated vasculature 
constitutes an integral part of the stroma in PDAC [91]. 
Clinically, the intratumoral microvessel density (MVD) 
was associated with adverse prognosis and could be 
regarded as an independent prognostic factor [92, 93].
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The initial step of angiogenesis usually involves the 
action of diverse angiogenic stimuli such as hypoxia [94]. 
Under hypoxic conditions, tumor cells constantly con-
sume glucose and then secrete lactate to create an acidic 
stromal environment that favors angiogenesis. Hypoxia-
inducible factor (HIF) has a pivotal role in the responses 
of tumor cells and stromal cells to hypoxia [95]. HIF-1 
was upregulated within a hypoxic environment, which 
further resulted in increased expression of VEGF and 
positively affected cancer metastasis [96, 97]. The down-
regulation of HIF-1α through the CRISPR/Cas9 tech-
nique was found to dramatically inhibited the migration 
of BxPC-3 cells achieved by decreased expression of 
MMP-9 and VEGF [98]. Therapeutic modalities based 
on anti-VEGF can repress human PDAC cells’ growth 
in murine models and reduce microvessel density, ulti-
mately leading to depleted tumor angiogenesis [12].

A wide spectrum of pro-angiogenic factors and related 
cognate receptors partake in the activation of “angiogenic 
switch” and the formation of tumor vasculature [99]. 
Among all pro-angiogenic factors, VEGFs represent one 
of the most potent angiogenesis inducers and function by 
binding to their specific receptors VEGFR or co-recep-
tors. VEGFA is the key angiogenesis regulator and the 
most investigated member of VEGF family [100]. Other 
key secretory factors involved in abnormal angiogenesis 
include fibroblast growth factor (FGF), platelet-derived 
growth factor (PDGF), HGF and angiopoietins [88]. Fur-
thermore, several chemokine signaling axes also con-
tribute to tumor vasculature generation such as CXCLs/
CXCR2, SDF1/CXCR4, and CCL2/CCR2 axis directly or 
indirectly [88].

Cancer-associated vasculature not only provides 
nutritional supplies for tumor tissues but also acceler-
ates the transformation of pre-malignant to malignant 
and aggressive tumor phenotypes. Continuous vascular 
remodeling is an important characteristic of the estab-
lished microvasculature of growing tumors. During can-
cer progression, host vasculature can be used as trails for 
the invasion of glioma cells into adjacent tissues, which 
make tumor cells acquire an aggressive character [101].

Taken as a whole, while the stromal composition vary 
across distinct cancer types, some major components 
are indispensable for solid tumors, especially the cancer-
associated vasculature that has been shown to promote 
tumor growth and mediate the invasive tumor phenotype 
[23, 102]. All the above preclinical studies indicate that 
targeting stromal vasculature may be an effective tac-
tic for cancer treatment. Unfortunately, the use of anti-
angiogenic drugs to treat cancer patients often shows 
limited benefit and even has been a clinical failure, which 
poses a significant challenge in terms of how best to 
design this therapeutic option to ultimately elicit an effi-
cacious antitumor response [99].

Tumor-associated endothelial cells
Recent studies have identified the central roles of tumor-
associated endothelial cells (TECs) in instigating cancer 
initiation and progression. TECs usually exhibit pheno-
types distinct from normal endothelial cells, because they 
are aneuploid and their centrosomes are abnormal [103]. 
Functionally, TECs actively promote the proliferative and 
aggressive capacity of cancer cells, as well as induce resis-
tance to anti-tumor agents [104, 105].

TECs acquire high proliferative and invasive abilities 
and accelerate tumor cell growth by secreting soluble fac-
tors in a paracrine manner [106, 107]. Furthermore, TECs 
support malignant cell aggressive behavior by mediat-
ing the epigenetic dysregulation of secreted molecules 
and activating metastasis-associated signaling circuits 
[108, 109]. Activated TECs can also be released in the 
blood circulation system from the primary tumor mass 
and accompany with cancer cells to migrate to distant 
secondary sites [110]. Compared with low-metastatic 
tumor-derived TECs, those high-metastatic TECs pos-
sess higher mRNA expression level of stemness-related 
gene stem cell antigen and mesenchymal marker CD90, 
as well as higher levels of vascular secretion factors [111].

TECs mediate drug resistance and convert naive cancer 
cells into chemoresistant tumor stem-like cells [112, 113]. 
For a long time, TECs have been recognized as a group 
of normal diploid cells that would not induce therapeu-
tic resistance. However, mounting researches found that 
TECs usually showed aneuploidy and had hallmarks of 
chromosomal instability, which may contribute to thera-
peutic resistance in antitumor treatment [103, 114, 115]. 
Indeed, scientists unveiled their drug resistance ability in 
different cancer types, such as renal carcinoma-derived 
TECs inducing vincristine resistance and hepatocellular 
carcinoma-derived TECs resistance to adriamycin, 5-flu-
orouracil and sorafenib [115–117]. It was also elucidated 
that TECs could upregulate the expression of p-glyco-
protein (p-gp), one of the ABC transporters, to impair 
antitumor therapy. Inhibition of p-gp with verapamil 
abrogated TECs resistance, restored the chemosensitivity 
of tumor cell to paclitaxel and depleted tumor angiogen-
esis in the mouse model [118, 119].

Altogether, in addition to promoting angiogenesis, 
TECs serve as key players to partake in various steps of 
malignant transformation, and this is a relatively unex-
plored field that can potentially provide crucial insights 
into tumor progression.

Cancer-associated fibroblasts
Among all stromal cellular components, cancer-asso-
ciated fibroblasts (CAFs) are one of the prominent and 
abundant cell populations. Activated fibroblasts found 
in primary or metastatic tumors are referred to as CAFs. 
They provide a physical support for cancerous cells 
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and affect cancer initiation, progression and metasta-
sis (Fig.  2) [120–122]. Of note, CAFs exert both protu-
morigenic and antitumorigenic effects during disparate 
stages of oncogenic advancement in an organ or context-
specific manner, which brings challenges to the area of 
CAFs-targeted therapy for cancer treatment [123, 124].

CAFs tend to exhibit heterogeneity and complexity 
with distinct origins, cellular states and functions. In con-
trast to normal fibroblasts, CAFs have been described as 
proliferative, migratory, and highly secretory cells [125]. 
Although it is generally accepted that most CAFs possi-
bly originate from the activation of local tissue-resident 
fibroblasts [126], researchers have also identified other 
major cellular origins of CAFs including endothelial cells 
[127], adipocytes [128], bone marrow-derived mesen-
chymal stem cells [129–131], and pancreatic or hepatic 
stellate cells [132, 133]. Hence, it is difficult to precisely 
define where these cells originate from.

After being activated by diverse signaling pathways, 
CAFs derived from various cellular precursors exert 
many of their functions in cancer [134]. More recently, 

Silvia Affo et al. discovered that HGF produced by CAFs 
together with its receptor MET highly expressed in can-
cer cells instigated the proliferative activity of intrahe-
patic cholangiocarcinoma (ICC) tumor cells, which is 
primarily associated with the ERK and AKT phosphory-
lation. Furthermore, hyaluronan synthase 2 derived from 
CAFs, but not type I collagen, could effectually regulate 
the promoted effect on ICC [135]. Intriguingly, tumor 
cells not only attract fibroblasts and transform them into 
CAFs but can also be regulated by CAFs to sustain their 
proliferation and migration [136]. Cancer cell usually 
undergo metabolic reprogramming during tumorigen-
esis that can be modulated by CAFs [137]. As opposed 
to normal cells, tumor cell utilize glycolysis as their pre-
ferred energy source, which is often accompanied by 
increased production of lactate, known as the “Warburg 
effect” [138, 139]. Recently, Pavlides et al. proposed a 
novel hypothesis termed as “reverse Warburg effect” that 
might represent a general feature of CAFs. Tumor cells 
induce the Warburg effect in adjacent stromal CAFs. 
Then, in response to changes in the TME, these CAFs 

Fig. 2  A brief summary of CAFs functions and related mechanisms in cancer initiation and progression. Activated CAFs are involved in nearly all stadges 
of cancer development through diverse means. By releasing numerous secretory factors and activating signaling pathways, CAFs contribute to maligan-
ant transformantion, tumor growth and proliferation, cancer cell invasion, and the establishment of pre-metaststic niche. These pro-tumorigenic cells also 
affect tumor metabolism in distinct manners as shown in the figure. All these functions collectively determain tumor development and drug resistance
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secrete pyruvate and lactate that can be used by epi-
thelial cancerous cells to generate energy and enhance 
their proliferative capacity via oxidative phosphorylation 
(OXPHOS) [140]. The metabolism of tumor cells is also 
influenced by CAFs-modulated autophagy and oxidative 
stress pathway to promote tumor cell proliferation and 
drug resistance [141–145].

CAFs mediate the invasion and migration of malignant 
cell and are positively associated with the dedifferentia-
tion and aggressiveness of cancers [136]. Recently, four 
CAFs subsets, named CAF-S1 to -S4, were identified 
in metastatic lymph nodes (LNs) of breast cancer (BC). 
Among them, both CAF-S1 and CAF-S4 subpopula-
tions could be preferentially detected in tumor tissues 
and were proven to be closely related to tumor cell inva-
sion in a complementary manner [146, 147]. CAF-S1 
stimulated BC cell motility and epithelial-mesenchymal 
transition (EMT) initiation via CXCL12/TGF-β signal 
whereas CAF-S4 remodeled the matrix and promoted BC 
cell invasiveness in 3-dimensions via NOTCH-mediated 
pathways [147]. Currently, our studies about the function 
of CAFs subsets mainly converge on CAF-S1. In addition, 
the enrichment of CAF-S1 was correlated positively with 
PD-1+ and CTLA-4+ CD4+ T cell content but negatively 
with CD8+ T cells infiltration in tumor. CAF-S1 subset 
also can enhance the expression of PD-1 and CTLA-4 
at the surface of CD4+ CD25+ FOXP3+ T lymphocytes 
to participate in the formation of immunosuppressive 
environment within tumor mass[148]. Clinically, the 
enrichment of CAF-S1 in stroma was significantly cor-
related with cancer recurrence [149]. Additionally, CAF-
S3 subset was mainly detected in juxta-tumors whereas 
CAF-S2 equally distributed between the tumor mass and 
juxta-tumors [146]. While the distribution of CAF-S2 
and CAF-S3 in tumors have been reported, their specific 
effects of CAF-S2 and CAF-S3 in tumorigenicity remain 
to be fully characterized and identified.

Secretory proteins derived from CAFs also partake in 
tumor cells invasion in an autocrine or paracrine man-
ner. For instance, Lumican, an ECM protein expressed in 
human gastric CAFs, was found to have promoting effect 
on GC cells growth and migration in vitro by activating 
the integrin β1-FAK signal [150]. A great variety of sol-
uble paracrine growth factors, cytokines, and exosomes 
secreted by CAFs also profoundly impacted malignant 
cells migratory and aggressive capacity in established 
tumors. These factors comprise, but are not restricted to, 
interleukin‑1β (IL-1β), IL-8, IL-32, CXCL12, and TGF-β 
[151–156].

In metastatic process, the pre-metastatic niche (PMN) 
acts as a fertile “soil” that supports the homing and 
engraftment of circulating tumor cells. CAFs are actively 
involved in the formation of PMN [157, 158]. CAFs-
derived IL-33 was responsible for establishing the PMN 

in lung that facilitated pulmonary metastasis of breast 
cancer. This promoting effect was associated with type-2 
inflammation and the recruitment of diverse immune 
cells such as eosinophils, neutrophils and inflammatory 
monocyte to the lung microenvironment [159]. Likewise, 
in the lung metastatic niche, high-metastatic hepatocel-
lular carcinoma cells typically exhibited great ability to 
convert normal fibroblasts into CAFs, which was medi-
ated by exosomal miR-1247-3p derived from HCC cells 
that activated CAFs via the B4GALT3-β1-integrin-NF-κB 
axis. And then, activated CAFs further accelerated cancer 
cells diffusion and metastasis by secreting pro-inflamma-
tory IL-6 and IL-8 [160].

Drug resistance remains one of the major hurdles in 
cancer management. Stromal CAFs have been associated 
with resistance to anticancer agents by secreting numer-
ous proteins, cytokines and extracellular vesicles. These 
factors can activate different signaling cascades to protect 
cancer cells from elimination and possibly cause recur-
rence [161, 162]. High levels of IL-8 released by CAFs 
have been identified to be associated with poor response 
to neoadjuvant chemotherapy. Mechanistically, IL-8-me-
diated resistance to cisplatin was achieved by NF-κB acti-
vation and ATP-binding cassette subfamily B member 1 
upregulation [163]. CAFs-derived exosomal miR-98-5p 
was reported to suppress ovarian cancer (OC) cells apop-
tosis and promote their proliferative capacity by targeting 
cyclin-dependent kinase inhibitor 1 A that contributed to 
the sensitivity of OC cells to cisplatin [164]. Another sec-
retome makes contribution to chemotherapeutic resis-
tance, such as IL-1β [165], IL-6 [166], insulin-like growth 
factors (IGF) 1 and 2 [167], TGF-β [168], etc. Radiation 
therapy also leads to expansion and survival of stromal 
CAFs, which conversely provides signals stimulating 
malignant cell proliferation and enhances radioresis-
tance.This radioresistance involved various mechanisms 
including paracrine IGF-1/IGF-1R signaling initiated by 
CAFs, signaling transduction regulated by exosomal miR-
NAs or exosomes derived from CAFs, and increased level 
of ROS mediated by CAFs-derived molecules [169–172].

Circulating-CAFs (cCAFs), similar to circulating tumor 
cells (CTCs), can be detected in approximately 88% of 
patients with metastatic breast cancer (BC) and 23% of 
patients with localized BC. These circulating-CAFs exist 
as homotypic cCAF clusters individually or present as 
heterotypic clusters together with CTCs and leukocytes 
[173]. Sharma et al. unveiled that CD44 acted as an indis-
pensable mediator in cCAF-CTC heterotypic clustering 
and the cCAF-CTC clusters existed in nearly all clini-
cal stages of BC [174]. Circulating fibroblast-like cells 
were also detected in blood of metastatic prostate can-
cer patients and could potentially serve as a prognostic 
marker [175].
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Senescence is another characteristic of CAFs. Senes-
cent CAFs usually acquire tumor-promoting properties, 
termed as senescence-associated secretory phenotype, 
which promotes malignant transformation by secreting 
molecular factors or driving downstream signal pathways 
[176]. By activating JAK/STAT3 signaling, senescent 
CAFs (s-CAFs) enhanced GC cells proliferative activ-
ity and contributed to peritoneal tumor formation of 
GC in vivo [177]. Specific induction of s-CAFs apoptosis 
remarkably enhanced radiosensitivity of non-small cell 
lung cancer cells [178].

To date, studies on the role of CAFs in cancer progres-
sion have gained momentum with increasing attention. 
Our understanding of their definitive functions in various 
cancer types will quickly evolve in the near future. The 
continuous exploration of new pro-tumorigenic molec-
ular mechanisms for CAFs is likely to have profound 
implications for anticancer therapy.

Mesenchymal stromal cells (MSCs)
Mesenchymal stromal cells (MSCs) represent a group 
of pluripotent nonhematopoietic stem cells that have 
self-renewal ability and play substantial roles in tissue 

regeneration. MSCs have capacity to differentiate into 
osteoblasts, chondrocytes, or adipocytes in culture and 
then perform their different functions depending on the 
circumstances [179, 180]. Notably, MSCs can migrate 
to tumor tissue where they further evolve into tumor
associated MSCs (TAMSCs) that probably are distinct 
from those of normal tissue MSCs and have a pro-tumor-
igenic phenotype [181, 182] (Fig. 3).

The recruitment and migration of MSCs to tumor sites 
are affected by chemokines and growth factors, which in 
turn promotes cancerous development. The CXCL12/
CXCR4 axis represents one of the most intensively stud-
ied pathways in the tumor tropism of MSCs [183, 184]. 
Tumor conditioned medium could upregulate CXCL12 
expression that facilitated the migration of human BM-
MSCs to tumor sites by activating JAK2/STAT3 and 
MEK/ERK1/2 pathways [185]. The capacity of MSCs to 
move toward tumor tissue is also mediated by other fac-
tors, such as chemokines CCL2, CCL5, CXCL16 [186–
188], diffusible cytokine IL-8, as well as growth factors 
IGF1, PDGF, VEGF, and TGF-β [189, 190].

Compared with normal MSCs, TA-MSCs appear 
to transform into an “activated” state and undergo 

Fig. 3  The tumor-promoting functions and related mechanisms of MSCs and TA-MSCs
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epigenetic reprogramming modulated by the TME. This 
reprogramming mediates a partial mesenchymal-to-
epithelial transition that results in enhanced binding of 
TA-MSCs to cancer cells, thereby effectively favoring 
the colonization of TA-MSCs and tumor cell complex in 
metastatic sites [191]. In a mouse lymphoma model, fol-
lowing co-culturing with TA-MSCs, BM-MSCs acquire a 
tumorpromoting phenotype that depends on the recruit-
ment of macrophages to tumor sites mediated by CCR2 
[192]. However, the ability to become TA-MSCs might 
depend on a particular tissue or cancer type because the 
observation that breast cancer TME could reprogram 
BM-MSCs into TA-MSCs that dramatically promoted 
cancer cells growth whereas the ovarian TME could not 
[193].

After reaching at the tumor niche, TA-MSCs influence 
tumor development through direct and indirect man-
ners. The direct cell-to-cell interplay between co-injected 
MSCs and MDA-MB-231 significantly increased intratu-
moral cancer cells viability and promoted their prolifera-
tion [194]. Following isolating and identifying from the 
primary tumor tissue, TA-MSCs manifested the homog-
enous immunophenotype and were shown to have dif-
ferentiation potential. Furthermore, TA-MSCs could 
secrete epidermal growth factor (EGF) which activated 
the downstream PI3K/AKT signaling to modulate cancer 
cells proliferative activity [195]. TA-MSCs also activate 
neutrophils with enhanced expression of IL-8, CCL2, 
TNFα, and oncostatin M, as well as affect the chemotaxis 
of neutrophils to protect them from spontaneous apop-
tosis. TA-MSCs-educated neutrophils promote GC cells 
growth and migration in a cell contact-dependent man-
ner [196]. Moreover, TA-MSCs were determined to facil-
itate tumor cell proliferation by increasing cancer stem 
cell numbers and augmenting BMP production [197]. 
Except for assisting malignantly transformed cell growth 
as mentioned above, TA-MSCs help cancer cells defend 
against senescence via the P53/P21 pathway and then 
prolong their survival cycle [198].

TA-MSCs also play critical roles in creating a favorable 
condition for successful metastasis of tumor cells. After 
being isolated from human colon cancer, TA-MSCs were 
shown to dramatically enhance the invasive activity of 
HCT-116 cells in vitro. IL-6 existing in the TA-MSCs-
conditioned medium induced the enhanced surface 
expression level of CD44 in HCT-116 and HT-29 cell 
lines via Notch signaling to promote colon cancer pro-
gression [199]. On the basis of the initial inspection that 
visible tumor metastasis occurred in the tumor cell plus 
TA-MSCs group rather than the tumor cell-only group, 
Waghray et al. found that GM-CSF was the only cytokine 
secreted by the TA-MSCs in all tested patient samples 
and it can induce tumor cells EMT to drive metastasis 
[200]. Analogously, TA-MSCs contributed toward the 

M2 polarization of macrophages, which further signifi-
cantly augmented the EMT process of GC cells [201]. 
The mutual transcriptome modulation between MSCs 
and tumor cells also impacts metastasis process. Tumor 
cells along with stromal factors partake in promoting 
normal MSCs conversion toward TA-MSCs, and in turn, 
TA-MSCs cause the upregulation of tumor metastasis-
associated genes in primary lung cancer cells and selec-
tively foster their migration and dissemination [202].

After being stimulated by cancer cells, TA-MSCs can 
produce the chemokine CCL5, which in turn acts on 
tumor cells in a paracrine manner to induce their motil-
ity and metastatic ability [203]. Other chemokines or 
cytokines secreted by TA-MSCs have also been shown to 
drive metastasis, such as CCL2, CCL7, CCL20, CXCL10, 
TGF-β, PDGF, IL-8, IL-6, and HIFs [204–212]. They col-
lectively act as an extra driving force to support the suc-
cessful dissemination of tumor cells from primary mass 
to metastatic sites. Furthermore, TA-MSCs-derived exo-
somes facilitated cancer cell growth and migration as well 
as potentially could served as biomarkers for GC [213]. 
Some scientists have suggested that TA-MSCs play a role 
in preparing PMNs for cancer cells, but the underlying 
mechanisms are not fully understood and merit further 
study for years to come [190].

TA-MSCs render tumor cell resistant to chemotherapy. 
In addition to sustaining tumor cells growth and assisting 
their metastatic ability, IL-6 was also reported to reduce 
cisplatin-triggered apoptosis in breast cancer cells via 
the STAT3 pathway [214]. The drug resistance effect and 
stemness of cancer cell is also expedited by TA-MSCs 
mediated-LncRNA secretion. There are reports suggest-
ing that MSC-associated MSC-AS1 and AGAP2-AS1 
mediate drug resistance through the PI3K/Akt signaling 
pathway and regulation of CPT1 expression, respectively 
[215, 216]. Targeting these MSCs or suppressing the 
cytokines and LncRNA expression they adjust may be a 
optimal approach to resensitize the tumors to anticancer 
therapy.

In short, TA-MSCs perform their tumor-promoting 
properties by sustaining tumor cell growth and prolifera-
tion, altering tumor cell phenotype and conferring them 
an aggressive or migratory ability, decreasing treatment 
response to various drugs, and even preparing a pre-
metastatic niche for circulating tumor cells. Accumulat-
ing evidence unraveling the role of TA-MSCs in multiple 
cancer types at different steps of tumor development pro-
vides a novel insight for us to understand the important 
function of stroma in cancer.

Pericytes
Long known as regulators of vascular morphogenesis 
and function, pericytes represent a cell type neighboring 
the microvascular periendothelial mesenchyme and have 
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been reported to participate in multiple pathological 
processes, especially malignant tumors [217]. Pericytes 
can interact with tumor cells or stromal cells to alter the 
TME and exert immunomodulatory functions, thereby 
contributing to tumorigenic processes and metastatic 
dissemination [218, 219]. Interestingly, tumor cells have 
potential to generate pericytes, since the observation 
that, in glioblastoma xenografts, approximately 89% of 
vascular pericytes originate from glioblastoma stem cells 
[220].

It has been shown that a pericyte co-culture system 
promoted ovarian cancer cells’ growth and invasion in 
vitro. In the xenograft model, tumor cell OVCAR-5 or 
OVCAR-8 along with pericytes were co-injected into 
nude mice, which resulted in accelerated tumor growth 
and invasive metastasis compared with injection of can-
cer cell alone, without altering and affecting tumor vascu-
lature. The high pericyte score was highly predictive for 
poor prognosis of cancer patients [221]. Some secreted 
factors from pericyte were involved in oncogenic devel-
opment. For example, pericytes secreted insulin-like 
growth factor 2 was found to have a pro-proliferative 
effect on breast cancer cell and contributed toward the 
formation of brain metastasis [222]. It was also found that 
deletion of β3 integrin in pericytes accelerated primary 
tumor growth and exacerbated cancer progression with-
out influencing tumoral angiogenesis [223]. As for the 
pro-metastatic effects, preparing a PMN for cancer cells 
is a key section mediated by pericytes [224]. Further-
more, pericyte can be induced by PDGF-BB to transdif-
ferentiate into fibroblast, which is important to facilitate 
tumor metastasis and offers a novel targeted option for 
anti-metastasis therapy [225].

Even though these valuable results have been obtained, 
it should be noted that our current comprehension 
regarding the concrete roles of pericytes in cancer is still 
relatively insufficient, and additional exploration is also 
warranted.

Interplay and crosstalk between intrastromal 
components
The tumor stroma is not a quiescent entity. Instead, it is 
a highly dynamic and constantly changing environment 
with complex elements that can interact with cancer cells 
to affect tumor behavior. Apart from directly interplaying 
with malignancies, the stromal components work in con-
cert with one another, presumably impacting the unre-
stricted growth, invasion and propagation of a tumor 
through the body. The intrastromal crosstalk orches-
trates multiple biological processes (Fig. 4), and a better 
understanding of their reciprocities is expected to shed 
substantial light on the investigation of tumor stroma and 
their roles in cancer.

Interaction between stromal cellular elements and 
angiogenesis
During malignant transformation, tumor cells acquire 
a capacity to reshape and educate surrounding stroma 
to meet their nutrient requirements, which eventually 
induces unremitting angiogenesis. Simultaneously, the 
mobilization and activation of stromal cells and the infil-
tration of capillaries into tumor tissues are thought to be 
a prerequisite for tumor growth and metastasis. Because 
ECM usually serves as an essential repository of diverse 
effector molecules, it is not surprising that ECM pro-
foundly impacts on the formation of cancer-associated 
vasculature. Following being affected by a series of pro-
angiogenic signals, endothelial cells tend to migrate into 
the interstitial matrix and release MMP that can remodel 
the basement membrane surrounding the vasculature. 
Moreover, considerable tenascin, fibronectin, remodeled 
type I and III collagens existing in ECM stimulate angio-
genesis [37, 226]. The stiffened ECM also drives angio-
genesis by facilitating the activation of splicing factors 
to enhance the production of PKC βII and VEGF 165b 
alternative splice variant in endothelial cells [227]. The 
ECM also contributes to the expression of VEGFR and its 
internalization in endothelial cells, which helps endothe-
lial cells survive by sustaining the ERK signaling [228].

The stimulative effects of CAFs on neovascularization 
are principally achieved by many secretory pro-angio-
genic factors including CXCL12, WNT2, VEGFA, FGF2, 
PDGFC, secreted frizzled-related protein 2 (SFRP2), 
CSF3, and osteopontin [90, 229–231]. Also, CAFs can 
indirectly attune tumor vascularization via the biome-
chanical modulation of ECM stiffness, elasticity and 
interstitial fluid pressure [90, 232, 233]. Analogously, 
extensive studies regarding the role of TA-MSCs in build-
ing cancer-associated vasculature largely concentrate on 
pro-angiogenic chemokines or growth factors such as 
VEGF, IL-6, and the CXCL12/CXCR4 axis [234–236]. It 
has also been demonstrated that TA-MSCs drive angio-
genesis through transdifferentiation into endothelial 
cells or the recruitment of endothelial progenitors [190]. 
Furthermore, MSCs can release exosomes that transfer 
miRNA to endothelial cells and contribute to angiogen-
esis in vitro, but whether the semblable result exists in 
the context of tumor deserves to further verify [237]. The 
recruitment of pericytes is indispensable for vasculature 
formation and maturation, since they can interact with 
endothelial cells to stimulate basement membrane matrix 
assembly, relay growth factors such as VEGF to modulate 
the survival of endothelial cells, and respond to VEGF by 
expressing VEGFR1 [238, 239].

Interaction between CAFs, the ECM and MSCs
Nowadays, mounting evidence has linked CAFs with 
the tumor ECM. On the one hand, CAFs may be the 
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most effective cell type in building up and remodeling 
the structure of ECM, which is partially attributed to 
their ability of assisting tumor cells to migrate through 
the stroma and interact with other stromal elements. 
CAFs can synthesize and release many ECM proteins 
including collagens, laminin and fibronectin. Moreover, 
matrix-crosslinking enzymes produced by CAFs along 
with force-mediated ECM reconstitution are responsible 
for the enhancive stiffness of tumor tissues [121, 126]. 
On the other hand, the activation of CAFs is affected by 
some physical changes in the ECM. For example, one of 
the signature features of CAFs is to activate YAP tran-
scription factor required for CAFs to induce increased 
matrix stiffness, and intriguingly, stiffened ECM in turn 
sustains CAFs phenotype by promoting the activation of 
YAP [240]. Additionally, the convergence of both ECM 
composition and elasticity together with TGF-β can 
influence the phenotypic heterogeneity of CAFs, which 
has potential value for further development of stroma-
targeted treatment [241]. It has also been implied that 
TA-MSCs are capable of producing MMPs and then 
degrading ECM to impact the configuration of pro-meta-
static tumor ECM [190].

During the interplay with cancer cells, MSCs can be 
induced to differentiate into CAFs. In the setting of pro-
longed exposure to cancer-conditioned medium, human 
MSCs could possess up-regulation of CAFs-associated 
genes and display functional properties of CAFs char-
acterized by consistent expression of SDF-1 and higher 
expressed levels of α-SMA, vimentin, and fibroblast sur-
face protein [131]. Specifically, the mobilization of MSCs 
to tumor sites and the transdifferentiation of MSCs into 
CAF-like cells are partially mediated by TGF-β1 derived 
from both cancer cells and tumor-educated-stromal cells 
[242]. Additionally, under the sustained stimulation with 
pro-inflammatory cytokines TNFα and IL-1β, MSCs con-
verted into CAFs, and importantly, these CAFs release 
diverse factors to stimulate CCR2, CCR5, CXCR1/2 and 
Ras-activating receptors existing in cancer cell surfaces, 
thereby enhancing cancer cell dispersion and metastasis 
[243].

Stromal elements and the immune system
The immune system is typically thought to be a master 
mediator for cancer and plays crucial roles throughout 
the tumor initiation and progression. Arguably, immune 

Fig. 4  Interactions between stromal elements and each others
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cells exist in large quantities in the TME and attune the 
body’s response to malignant tumors. Most of stromal 
elements, if not all, jointly contribute toward forming of 
an immunosuppressive TME that enables cancer cells to 
evade surveillance and attack from body’s immune sys-
tem (Fig. 5) [244].

The ECM and the immune system
It has been illustrated that the ECM participated in 
modulating the differentiation, migration, infiltration 
and polarization of immune cells residing in the TME, 
and therefore supporting or compromising antitumor 
immunity. The ECM not only provides crucial migratory 
cues for immune cells but also also serves to affect their 
function [245–247]. Loose regions of fibronectin and col-
lagen assist T cell motility and migration in chemokine-
dependent ways, whereas dense ECM areas impede T 
cell trafficking and lead to reduced number of infiltrating 
CD8+ T-cells, suggesting that thickened ECM interferes 
with antitumor responses by governing the motility and 
positioning of T cell [248–250]. Furthermore, a recent 
study uncovered that interfering with collagen stabili-
zation could deplete the content and stiffness of ECM, 

resulting in increased efficacy of anti-PD-1 therapy and 
effective T cell infiltration [251]. As for the contribution 
of ECM to immune cell’s function, an important aspect is 
their repressive role on T cell. In regard to this, stiffened 
ECM can impair the antigen presentation by APCs and 
decrease the production of IL-2 that is responsible for 
promoting Th1 cells’ differentiation and T cell’s prolifera-
tion [41, 252]. Furthermore, the ECM protein Tenascin-
C can interact with α5β1 integrin on the T cell surface 
to impair reorganization of the actin-based cytoskeleton 
that is necessary for T cell activation [253].

Tumor areas that exhibit the highest levels of collagen 
cross-linking tend to demonstrate ample macrophage 
infiltration in the condition of breast cancer. Therapeutic 
ablation of these accumulated macrophages can reduce 
metastasis and stromal stiffening, which indicated that 
collagen cross-linking likely contributed to the recruit-
ment of macrophages and drove tumor metastasis [254]. 
The tumor ECM also favors the infiltration of macro-
phages within tumor tissue and drives their polarization 
to M2-like phenotype to exert immunosuppressive func-
tion [255–257].

Fig. 5  Interactions between stromal cells and diverse immune cells
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Cancer-associated vasculature and the immune system
Cancer-associated vasculature not only provides nutri-
ent supply for tumor growth but also impedes effective 
drug delivery to tumor sites sometimes because of its 
abnormal structure. Importantly, tumor vasculature con-
tributes to the formation of an immunosuppressive TME 
by limiting entry of effector T cells [258]. Also, hypoxic 
surroundings within a tumor caused by abnormal blood 
perfusion can accelerate the differentiation of tumor-
infiltrating myeloid cells to M2-like tumor-associated 
macrophages (TAMs)[259, 260]. Meanwhile, hypoxia 
also supports the differentiation and function of MDSCs 
and Tregs via various immunosuppressive molecules to 
mediate antitumor immune escape [261]. Combination 
of vasculature targeting and immune checkpoint inhibi-
tor was demonstrate to elicit potent antitumor response 
in preclinical study, which endow the further applica-
tion of inhibiting vasculature plus immunotherapy high 
promise [262].

TECs and the immune system
TECs are responsible for protecting tumor cells from the 
host immune attack[263]. TECs-derived secreted pro-
tein mediated the M2 polarization of macrophages by 
activating the PI3K/AKT/mTOR pathway [264]. Notably, 
TECs can express the death mediator Fas ligand follow-
ing the cooperatively inducing by several factors includ-
ing VEGF-A, IL-10, and prostaglandin E2 (PGE2), thus 
obtaining the ability to kill effector CD8+ T cells rather 
than regulatory T cells (Treg) to enhance tumor cell 
escape [265]. TECs also induce CD8+ T cell infiltration 
and exhaustion via the expression of glycoprotein non-
metastatic melanoma protein B in hepatocellular car-
cinoma [266]. Moreover, TECs tend to exhibit elevated 
PD-L1 phenotype, so as to bind to programmed death 
1(PD-1) in activated lymphocytes and hinder the body’s 
immune response [267, 268].

Activated CAFs and the immune system
Activated CAFs play structural and functional roles 
within the immune system through diverse man-
ners including remodeling the ECM to create a physi-
cal immune barrier, regulating the antitumor activity 
of tumor-infiltrating immune cells, and facilitating 
the expression level of immune checkpoint molecules 
[269–271].

In the innate immune response, TAMs are perhaps 
the most predominant cells neighboring CAF-popu-
lated areas and have multidimensional interactions with 
CAFs. CAFs actively promote the recruitment of mono-
cytes into tumor areas where they further evolve into 
the protumorigenic M2 macrophage subset [272–274]. 
Specifically, CAFs attract monocytes and promote their 
M2 polarization via the secretion of IL-8. This M2-like 

polarization can synergize with CAFs to restrain natu-
ral killer cells function [275]. CAFs also produce CCL2, 
CXCL12, IL-6, IL-10, glycoprotein CHI3L1, macrophage 
colony-stimulating factor to promote the migration of 
monocytes into tumor tissue and support their transdif-
ferentiation into the M2 phenotype [276–282]. Interest-
ingly, TAMs are reported to regulate the activation of 
CAFs by releasing CXCL12 and IL-6, thereby forming a 
positive loop to endorse cancer progression [282].

Analogous to the phenotypic macrophages, neutrophils 
can be roughly separated into two different polarized 
populations: N1 neutrophils with antitumor phenotype 
and N2 neutrophils with pro-tumor phenotype [283]. 
CAFs-derived IL-6 participated in the activation of 
STAT3 signal in tumor‑associated neutrophils (TANs), 
which sustained the survival and function of TANs and 
inhibited T cell’s attack ability via the PD1/PD-L1 signal-
ing [284]. Cardiotrophin-like cytokine factor 1 derived 
from CAFs upregulated the CXCL6 and TGF-β expres-
sion levels in cancer cells, which promoted the polariza-
tion of the N2 neutrophil phenotype [285].

Myeloid-derived suppressor cells (MDSCs) are a het-
erogeneous cell population that consists of immature 
myeloid cells and myeloid progenitor cells, with immu-
nosuppressive activity in tumor development. MDSCs 
can regulate both innate and adaptive immune responses 
[286, 287]. They are influenced by CAFs to inhibit the 
antitumor activity of effector T cell. In short, CAFs 
facilitate MDSCs generation and infiltration mainly by 
releasing multiple secretory factors including chemo-
kine CCL2, CXCL1, CXCL2, CXCL12 and cytokine IL-6, 
TGF-β, etc. [288]

As an indispensable population of antigen-presenting 
cells, dendritic cells (DCs) are affected by CAFs to induce 
tumor cells immune evasion, usually accompanied by 
impaired DCs maturation and blocked antigen presen-
tation [289]. CAFs are found to recruit DCs and confer 
them a capacity to produce indoleamine 2,3-dioxygen-
ase (IDO). These DCs inhibit T cells proliferative ability 
and upregulate the production of Treg in a IL-6-STAT3-
dependent manner [290]. Furthermore, CAFs assist the 
proliferation and migration of mast cells (MCs) by the 
CXCL12/CXCR4 axis and potentiate MCs protumori-
genic function [291]. The CAFs precursors, stellate cells, 
can stimulate MCs to secrete IL-13 and tryptase, which 
creates a fibrotic TME and mediates restrained antitumor 
immunity [292]. Reciprocally, tryptase derived from MCs 
potentiates CAFs-induced early malignant morphol-
ogy changes of prostate epithelial cells [293]. CAFs also 
induce natural killer (NK) cells dysfunction and mediate 
their functional and phenotypic alterations by releasing 
PGE2 and IDO [294, 295].

The implications of CAFs on adaptive immunity are 
mainly achieved by regulating T lymphocytes activity. 
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The antigen crosspresentation driven by CAFs could 
negatively modulate T cells function and survival [296]. 
Mechanistically, PD-1 ligand 2 (PD-L2) expressed by 
CAFs induces T cell anergy and even death through the 
interaction with PD-1. CAFs also express FAS ligand 
(FASL) to induce the apoptosis of CD8+ T cell express-
ing FAS [297]. In addition, TGF-β was uncovered to abate 
the antitumoral immune via the exclusion of CD8+ T 
cells [298, 299]. CAFs-derived CXCL12 is also necessary 
for blocking the access of CD8+ T cell and the failure of 
the treatment of T-cell checkpoint antagonists [300, 301].

CAFs can directly interfere with T cell’s activity by reg-
ulating the expression of immune checkpoint molecules 
including PD-L1, PD-L2, B7-H3, and B7-H4. Among 
them, PD-L1 and PD-L2 are the best-studied types. They 
can bind to the PD-1 receptor on T cell surface to impair 
T cell’s function. [297, 302–304]. CAFs also affect Th cell 
subsets, mainly Th2 cell subpopulations, and Treg trans-
formation to inhibit antitumor response [270].

TA-MSCs and the immune system
MSCs are tightly correlated with both innate and adap-
tive immune, in particular mediating antitumor immune 
response. The immune modulatory functions of MSCs 
are mainly attribute to their capacity to block effector 
cells’ activated surface receptors expression, support 
regulatory cells expansion, and impair the maturation of 
antigen-presenting cells [305–308].

TA-MSCs isolated from cervical cancer dramatically 
repressed antigen-specific T cell recognition of tumor 
cells by cytotoxic T lymphocytes (CTLs) and provided 
immune protection for tumor cells growth. Mechanis-
tically, TA-MSCs induced the downregulation of HLA 
class I molecules on cancer cells membrane in an IL-
10-mediated manner, whereas HLA class I is important 
for the recognition by CTLs [309]. After co-culturing 
with MSCs, the proliferative potential of FoxP3+Treg was 
significantly enhanced, accompanied by the reduction of 
antitumor Th1 cytokines and the increase of Th2 cyto-
kines, which mediated cancer cells immune evasion and 
contributed to disease progression. This finding can be 
partially explained by the elevated levels of MSC-gener-
ated TGF-β1 [310]. Another mechanism regarding MSCs 
restraining effective immune response is to destroy DCs 
mature as shown by the decreased expression of CD83 
on DCs surface [311]. Furthermore, TA-MSCs usually 
exhibit a remarkable antiproliferative effect on mononu-
clear cells and abate NK cell activity [312].

Numerous chemokines participate in the communica-
tion between TA-MSCs, tumor cells and macrophages, 
which is driven by the HIF signal and substantially 
stimulate the invasion and metastasis of MDA-MB-231 
cell [313]. On the one hand, CXCL10 secreted by TA-
MSCs bind to its cognate receptors CXCR3 presented 

in cancer cells, and simultaneously, CXCL16 derived 
from cancer cell bind to CXCR6 on TA-MSCs surface, 
eventually potentiating the recruitment of TA-MSCs 
into tumor areas. On the other hand, TA-MSCs release 
CCL5 to bind to CCR5 on breast cancer cells, and then, 
signal-received cancer cells express CXCL12 to drive the 
migration and recruitment of TAMs and MDSCs [313]. 
Interestingly, there are bidirectional interactions between 
TA-MSCs and immune cells. TA-MSCs are plastic and 
can be modified by CD4+ T cell to induce tumor growth 
[314]. Following stimulating by CD4+ T cell, the immun-
ophenotype of TA-MSCs undergoes significant changes, 
as they acquire the ability to overexpress PD-L1 in a 
STAT3-dependent manner and subsequently activate 
cancer cell-intrinsic PD-1/mTOR signaling to assist gas-
tric cancer development [314].

Pericytes and the immune system
Pericytes exert their immunosuppressive functions by 
releasing multiple factors such as nitric oxide, IL-6, IL-33, 
CXCL12, PGE2 and TGFβ [218, 315]. Furthermore, the 
accumulation of pericytes affects cytotoxic lymphocytes 
activity, as they hinder allogeneic and mitogen-activated 
T cell responses in vitro[316]. Meanwhile, Bose et al. 
firstly confirmed that tumor-derived pericytes had a 
negative influence on the proliferation and activation of 
CD4+ T cell as well as resulted in CD4+ T cell dysfunction 
even anergy in response to antigen in an IL-6-dependent 
manner, which possibly hampered effective antitumor 
immune responses and shielded tumor cells from the 
host immune attack [317]. Pericytes are also responsible 
for recruiting MDSCs into the stroma to create an immu-
nosuppressive surrounding that is favorable for tumor 
growth [318].

Targeted therapy based on tumor stroma
Traditionally, the rationale for anticancer therapies 
mainly focuses on eliminating tumor cells only while 
largely ignoring the ambient non-malignant-cell com-
ponents of a tumor. In recent years, we have witnessed 
a great upgrade of precision medicine, and among all, 
molecular targeted therapy has been widely developed 
and introduced into clinical practice. Also, cancer ini-
tiation, progression and metastasis usually elicit a broad 
spectrum of dynamic evolutions and alterations in host 
tissues, which contributes to establishing complicated 
stromal surroundings that in turn cover a wide range of 
tumor cell activities and support cancer development. 
Accordingly, tumor stroma may be a fertile ground for 
developing effective therapeutic strategies to hopefully 
augment existing treatment options and realize personal-
ized cancer therapy, especially for those stromal-rich and 
refractory cancers.
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Approaches to targeting the tumor stroma include 
directly targeting both cellular or noncellular elements 
located in the stroma, disrupting and inhibiting related 
secretory factors and signaling pathways, and recently 
proposed reshaping or normalizing the tumor stroma 
that aims to slow or reverse tumor progression (Fig.  6). 
Herein, we summarize recent advancements targeting 
stromal components and highlight related potential ther-
apeutic values, with the aim to promote the leap from 
bench to bedside.

Targeting the ECM
Compared with the normal ECM, tumor ECM is more 
abundant, denser and stiffer. The tumor ECM typically 
undergoes a series of changes such as deposition, deg-
radation, and post-translational modification [319]. To 
date, several strategies have been designed to inhibit or 
decrease the ECM with tumor-promoting functions, such 
as inhibiting the ECM synthesis and deposition, enhanc-
ing the degradation of different ECM components, and 
blocking signaling molecules that contribute toward 
cell-matrix interactions and protumorigenic feedback. 

Some targeted drugs are being assessed in clinical trials 
(Table 1).

One of the promising options for inhibiting ECM 
deposition is to disrupt its crosslinking and stabilization. 
Among these strategies, targeting lysyl oxidase (LOX) 
activity that is frequently upregulated in diverse cancer 
types and responsible for catalyzing collagen crosslink-
ing is emerging as a optimal one, which can reduce the 
stroma density and consequently enhance the outcome 
of anticancer treatment [320–326]. Simtuzumab is an 
antibody targeting LOXL2 and has been tested clinically 
to appraise its efficacy and safety. A phase II trial of sim-
tuzumab combined with gemcitabine was conducted to 
treat adult patients with metastatic pancreatic adenocar-
cinoma. Although this therapeutic regimen was tolerable, 
the progression-free survival (PFS), overall survival (OS) 
or objective response rate(ORR) in patients have not been 
improved [327] (NCT01472198). Simtuzumab in combi-
nation with FOLFIRI was also used to treat patients with 
colorectal cancer, and the ultimate result suggested that 
addition of simtuzumab did not improve the clinical out-
come [328] (NCT01479465). PAT-1251 and PXS-5382 A 
are developed to target LOXL2 and LOX respectively, and 

Fig. 6  Therapeutic approaches based on the stromal components
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clinical trials have studied their safety and tolerability in 
healthy adult subjects. Their anticancer potencies need to 
be rigorously explored (NCT02852551, NCT04183517).

Another rational approach to targeting ECM deposi-
tion or degradation is to degrade hyaluronic acid (HA) 
that typically accumulates cancer and can mechanically 
increase the ECM elastoviscosity [329–332]. PEGPH20 
was designed to inhibit HA and underwent clinical tri-
als as a single agent or in combination with other thera-
peutic drugs. Two similar studies have been conducted 
to evaluate its safety, tolerability and pharmacokinet-
ics in patients with solid tumor, but the results have not 
been disclosed (NCT01170897, NCT00834704). A phase 
Ib study reported the effect of docetaxel in combina-
tion with PEGPH20 in patients with lung cancer. This 
strategy seemed to manifest an acceptable safety profile 
[333] (NCT02346370). In a randomized phase II trial, 
researchers investigated the effects of PEGPH20 in com-
bination with standard nab-paclitaxel plus gemcitabine 
(PAG) to treat pancreatic cancer patients. The results 
showed that patients with HA-high tumors who received 
PAG had the largest FAS improvement, and importantly, 
the related clinical data also supported the potential 
application of tumor HA as a predictive biomarker for 
cancer patients [334] (NCT01839487). Notwithstanding, 
the results have been mixed. Owing to the negative trial 
outcome that didn’t meet its primary end point of OS, a 
similarly subsequent phase III study had to be terminated 
[335] (NCT02715804). Another phase IB/II randomized 
study tested the clinical efficacy of PEGPH20 with modi-
fied fluorouracil, leucovorin, irinotecan, and oxaliplatin 
(mFOLFIRINOX) to treat patients with metastatic pan-
creatic cancer. Unfortunately, compared with mFOL-
FIRINOX alone, this therapeutic scheme led to increased 
toxicity and decreased treatment duration, suggest-
ing that the addition of PEGPH20 yielded detrimental 
effect in patients unselected for tumor HA status [336] 
(NCT01959139).

The connective tissue growth factor (CTGF) is respon-
sible for enhancing matrix deposition in cancers, and 
anti-CTGF therapy can reduce matrix deposition in 
murine pancreatic cancer model [337]. To date, using 
pamrevlumab to target CTGF in patients with pan-
creatic cancer have entered phase III clinical trials 
(NCT03941093, NCT04229004). Integrin is a critical 
mechanosignal transducer that can perceive the ECM 
mechanical force and mediate signal transductions to 
intracellular proteins. Hence, targeting integrin may 
be a promising approach to delaying tumor progres-
sion, and meanwhile, a series of clinical trials have been 
launched continually to evaluate its therapeutic pros-
pects (NCT00689221, NCT04177108, NCT00066196).

Among all signaling molecules that are involved in 
ECM deposition, TGF-β represent an optimal target to Ta
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inhibit collagen synthesis and subsequently ECM depo-
sition. Several TGF-β-targeted drugs have been actively 
assessed in clinic to potentiate antitumor effects [338, 
339] (NCT01401062, NCT02581787). An alternative 
method is to target FAK, an important downstream 
effector of integrins [340]. FAK inhibitors have shown 
antitumor activity in preclinical studies [341–343]. 
Based on the above successful practices, defactinib (also 

known as PF-04554878) has been tested in phase clini-
cal trials, mainly in malignant pleural mesothelioma 
and advanced solid tumors. Even though this drug was 
well tolerated, using defactinib alone or in combina-
tion with other therapies to treat patients with differ-
ent cancers showed limited outcome or even failed 
to show clinical benefits [344–347] (NCT01951690, 
NCT00787033, NCT01870609). Furthermore, a previous 

Table 2  Some major clinical trials targeting cancer vasculature
Target Drug Combination Condition Phase Status Trial number
VEGF/VEGFR Bevacizumab No Solid tumors IV Completed NCT01588184

Bevacizumab Chemotherapies Ovarian cancer III Active, not 
recruiting

NCT00565851

Bevacizumab Erlotinib Lung cancer II Completed NCT01562028

Bevacizumab Erlotinib Hepatocellular Carcinoma II Completed NCT01180959

Bevacizumab Niraparib Ovarian Cancer I/II Completed NCT02354131

Olaparib Chemotherapies Ovarian Cancer III Active, not 
recruiting

NCT02477644

Olaparib Enzalutamide, abiraterone 
acetate

Prostate Cancer III Active, not 
recruiting

NCT02987543

Bevacizumab Osimertinib Lung Cancer I/II Completed NCT02803203

Bevacizumab Osimertinib Lung Cancer III Recruiting NCT04181060

Ramucirumab Erlotinib, Gefitinib, Osimertinib Metastatic NSCLC III Active, not 
recruiting

NCT02411448

Ramucirumab Paclitaxel Gastric Adenocarcinoma III Completed NCT01170663

Ramucirumab No Gastric Cancer and 
Adenocarcinoma

III Completed NCT00917384

Ramucirumab No Hepatocellular Carcinoma III Completed NCT01140347

Ramucirumab No Hepatocellular Carcinoma III Completed NCT02435433

Ramucirumab No Hepatocellular Carcinoma III Completed NCT02435433

Aflibercept FOLFIRI Metastatic Colorectal Cancer III Completed NCT00561470

Aflibercept Levofolinate, Irinotecan, 5-FU Metastatic Colorectal Cancer II Completed NCT01882868

Aflibercept Capecitabine Metastatic Colorectal Cancer I/II Completed NCT01661972

TKI Sorafenib No Hepatocellular Carcinoma III Completed NCT00692770

Sunitinib AGS-003 Kidney Cancer II Completed NCT00678119

Sunitinib Nivolumab, Pazopanib, 
Ipilimumab

Renal Cell Carcinoma I Completed NCT01472081

Pazopanib No Ovarian Cancer I/II Completed NCT01238770

Pazopanib No Renal Cell Carcinoma IV Completed NCT01521715

Pazopanib Paclitaxel Ovarian Cancer II Completed NCT01644825

Pazopanib GSK1120212 Solid Tumors, Thyroid Cancer I Completed NCT01438554

ANG-VEGF Vanucizumab Atezolizumab Solid Tumors I Completed NCT01688206

Vanucizumab Bevacizumab, Selicrelumab Solid Tumors I Completed NCT02665416

Plus 
immunotherapy

Bevacizumab Nivolumab, Rucaparib Peritoneal Cancer,Ovarian Can-
cer, Fallopian Tube Cancer

II Recruiting NCT02873962

Bevacizumab Nivolumab and 
chemotherapies

Non-small Cell Lung Cancer I Completed NCT01454102

Bevacizumab Pembrolizumab Clear Cell Renal Carcinoma I/II Completed NCT02348008

Bevacizumab Pembrolizumab Glioblastoma II Completed NCT02337491

Bevacizumab Pembrolizumab Ovarian, Fallopian Tube, or 
Primary Peritoneal Cancer

II Completed NCT02853318

Bevacizumab Durvalumab Glioblastoma II Completed NCT02336165

Bevacizumab Durvalumab Metastatic Breast Cancer I Completed NCT02802098.

Bevacizumab Tremelimumab Colorectal Cancer With Liver 
Metastases

I Active, not 
recruiting

NCT02754856

Vanucizumab Atezolizumab Metastatic Solid Tumors I Completed NCT01688206
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study uncovered that blocking the fibrotic Hedgehog sig-
naling pathway could decrease fibrosis in cancer, which 
enhanced the delivery of chemotherapy and contrib-
uted to prolonged survival times in tumor-bearing mice 
[56]. Hitherto, several Hedgehog inhibitors such as vis-
modegib and sonidegib (LDE225) have been studied 
in clinical trials to mainly treat patients with basal cell 
carcinoma and solid tumors, which are summarized in 
Table 1.

Cancer vaccine is emerging as a promising therapeu-
tic strategy for solid tumors and being intensively evalu-
ated in both preclinical and clinical studies [348]. Several 
ECM components have recently been used as antigens 
for designing cancer vaccine. During tumor matrix 
remodeling, the alternatively spliced extra domain-A 
(ED-A) of fibronectin was reported to reexpress, which 
enabled them to become an ideal target. Targeting ED-A 
with immunization in the therapeutic condition could 
inhibit cancer metastasis and decrease the tumor burden, 
which suggested that the ECM might behave as a suit-
able candidate for designing effective cancer vaccines and 
warranted further study in clinical trials [349].

Targeting cancer vasculature
In 2004, the American FDA granted an unprecedented 
approval to a humanized anti-VEGFA monoclonal anti-
body, named as bevacizumab, to treat patients with 
metastatic colorectal cancer [350]. Since then, targeting 
cancer vessels has aroused great interest of an increasing 
number of scientists and been utilized in clinical prac-
tices. The conventional tactic is to inhibit proangiogenic 
signaling or factors activity, but in some conditions, this 
application has not yielded long-term clinically survival 
benefits and even unexpectedly promotes drug resis-
tance or limits agent delivery, ultimately leading to tumor 
metastasis [351, 352]. As such, an attractive possibility 
is remodeling aberrant tumor blood vessels, which can 
restore the structure and function of vasculature and 
then improve the drug penetration, as well as achieve 
better outcomes, currently known as “vascular normal-
ization” [351, 353]. In this section, we summarize the 
clinical trial progress in antiangiogenic therapies and the 
strategies for vascular normalization (Table 2).

Among all proangiogenic signalings, VEGF/VEGFR is 
the best-studied pathway, and related mAb or inhibitors 
have been widely used in clinic. Bevacizumab that can 
target VEGF-A and inhibit its interaction with VEGFR-1 
and − 2 has been tested in various human cancer types, 
both as monotherapy and in combination with other anti-
tumor drugs [354, 355]. A recent clinical study evaluated 
the safety of long-term administration of bevacizumab in 
patients with solid tumors. No treatment-related adverse 
effect was happened and patients obtained clinical ben-
efit over an extended period (NCT01588184) [356]. 

However, previous studies indicated that side effects usu-
ally increased when bevacizumab was combined with 
chemotherapies [357, 358]. These opposite results indi-
cate that the clinical responses and toxic side effects may 
depend on the specific therapeutic schemes and condi-
tions [359]. As for its therapeutic outcomes in combina-
tion with chemotherapies, some published meta-analyses 
assessed the additional effect of chemotherapy plus beva-
cizumab, and the results indicated that, compared to che-
motherapy alone, the combinational strategy improved 
the PFS and OS in cancer patients [360–363]. Nonethe-
less, disappointing outcomes are still existed. In a large 
randomized phase III trial, researchers assessed the effect 
of standard chemotherapy with or without bevacizumab 
for women with newly diagnosed ovarian cancer, and 
the antitumor response was not as promising as initially 
hoped with no increased OS in the study population was 
observed [364]. This contradictory phenomenon may be 
attributed to the different dose usage and particular can-
cer types [365].

Aside from in combination with chemotherapy, beva-
cizumab plus targeted therapy often exhibits antitumor 
activity and yields clinical benefits in cancer patients. For 
example, erlotinib, an epidermal growth factor receptor 
(EGFR) tyrosine kinase inhibitor, has shown synergistic 
effects when combined with anti-VEGF therapies, mainly 
in patients with advanced non-small cell lung cancer and 
colorectal cancer [366–370]. Compared to erlotinib alone 
in EGFR-positive NSCLC patients, the combinational 
utilization of bevacizumab plus erlotinib brings clinical 
benefits to patients with the improvement of their pro-
gression-free survival (NCT02759614, NCT01562028) 
[371–373]. Furthermore, this combined regimen has also 
been verified in liver cancer patients and has shown a sig-
nal of survival benefit, which supports the further clinical 
studies of this strategy (NCT01180959) [374]. In addition 
to erlotinib, many other molecular targeted drugs such 
as olaparib, niraparib and osimertinib in combination 
with bevacizumab have been approved and introduced 
across several indications in the clinic, and it was feasible 
to expand the application of these dual-targeted thera-
pies owing to the observation of progression-free sur-
vival benefits in patients (NCT02477644, NCT02354131, 
NCT02987543, NCT02803203 NCT04181060) 
[375–378].

Other anti-VEGF signaling drugs have also been 
assessed in the clinic, both as single agents and in combi-
nation with chemotherapy or targeted therapy. Ramuci-
rumab, also known as Cyramza, is a humanized antibody 
approved by the FDA that targets the VEGFR-2 extra-
cellular domain, and exhibits some degree of efficiency 
in prolonging PFS and OS in patients with lung cancer, 
gastro-oesophageal junction adenocarcinoma, and liver 
cancer (NCT02411448, NCT01170663, NCT01140347) 
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[379–382]. Aflibercept is a recombinant fusion protein 
that can inhibit the combination of VEGF and VEGFR, 
and has been approved in combination with FOL-
FIRI to treat patients with metastatic colorectal can-
cer (NCT00561470, NCT01882868, NCT01661972) 
[383–386].

Alternative options that may represent attractive thera-
pies are using tyrosine kinase inhibitors (TKIs) and tar-
geting other proangiogenic signalings, such as inhibiting 
FGF/FGFR and PDGF/PDGFR, which have been tested 
or are undergoing phase clinical trials [387]. Among 
those approved TKIs, sorafenib has gradually become 
the research hot spot for the treatment or alleviation of 
a variety of cancer conditions, especially in liver can-
cer [388, 389]. Other TKIs such as sunitinib and pazo-
panib, together with inhibitors of FGF/FGFR and PDGF/
PDGFR axis have also generated some degree of clinical 
benefits [387], as listed in Table 2.

In spite of some promising results have been observed, 
the clinical activity of anti-angiogenic therapies is usu-
ally partial and eventually, followed by relapse. Mecha-
nistically, previous methods that inhibit angiogenesis are 
cutting off their blood supply, but this strategy simultane-
ously exacerbates the formation of an anoxic TME, leads 
to the increased compensatory proangiogenic factors 
production, and creates an immunosuppressive circum-
stances, thus facilitating pathological angiogenesis and 
disease progression [390–393]. Therefore, “vascular nor-
malization” that aims to judiciously use antiangiogenesis 
treatment rather entirely destruction or excessive prun-
ing and keep the balance between proangiogenic and 
antiangiogenic signalings becomes an advisable direction 
and is hopefully to accelerate the development of antitu-
mor therapy due to its potential to improve tumor oxy-
genation and perfusion, enhance the efficiency of drug 
delivery and delay tumor progression [392].

Long-term vascular-targeted therapies in high doses 
usually give rise to tumor hypoxia, and meanwhile, some 
specific cancer types are susceptible to anti-VEGF treat-
ments, which underscores the importance of selecting 
appropriate doses and time ranges of anti-angiogenic 
drugs’ administration to achieve vascular normaliza-
tion as initially expected, termed as “normalization win-
dow” [394, 395]. High-dose administration of anti-VEGF 
agents cannot lead to beneficial outcomes, and instead 
forms an immunosuppressive TME accompanied by the 
recruitment of nonclassical Ly6Clow monocytes, which 
also promotes the occurrence of therapeutic resistance to 
anti-VEGF [396–398]. Clinically, patients with rectal can-
cer receiving a relatively low dose of bevacizumab (5 mg/
kg) had favorable delivery efficiencies and enhanced peri-
cyte coverage of blood vessels, whereas patients receiv-
ing higher dosage of bevacizumab (10  mg/kg) did not 
exhibit the same benefits, suggesting that the choice of 

drug dosage is a key consideration in cancer treatment 
[399]. Likewise, low-dose intensity of bevacizumab con-
fers a greater survival benefit than the usage of high-dose 
and can be regarded as a significant independent prog-
nostic survival factor in glioblastoma patients [400–402]. 
In the context of the “normalization window”, antiangio-
genesis therapies have synergistic and reinforced effects 
with other anti-cancer therapeutic modalities including 
immunotherapy and chemotherapy [403]. However, it 
has been recognized that the dosage of anti-VEGF tar-
geted drugs that can achieve the window is relatively 
narrow and their effects often vary among different can-
cer types [232, 404]. Hence, how to best utilize the anti-
angiogenic strategy to benefit patients with cancer is the 
chief question we need to overcome and merits further 
mechanistic and functional investigation.

In addition to legitimately identifying the dosage of 
anti-angiogenic drugs, another noteworthy question is 
that the process of vascular normalization is transient 
and reversible, with lasting for several days or months 
after therapy began in diverse cancer types. In this 
regard, researchers unexpectedly found a compensatory 
mechanism in which ectopic expression of angiopoietin 
(Ang)-2 could inhibit vessel normalization to diminish 
the beneficial effects of VEGF-VEGFR signaling blockade 
[405]. Dual inhibition of VEGF-ANG2 has been explored 
and exhibited prolonged normalization window in mouse 
model of glioblastoma. Dual VEGF-ANG2 blockade also 
contributed to antitumor immunity [406–408]. This find-
ing motivated the initiation of multiple clinical trials 
using dual anti-VEGF and ANG2 inhibitors for tumors, 
with some trials have shown clinically survival benefits.

Immunotherapy is gradually becoming a central focus 
of cancer therapy and represents a suitable method in 
advanced solid tumors. Interestingly, tumoral vascular 
normalization has the potential to improve the infiltra-
tion of diverse immune effector cells, and vice versa as the 
discovery that the functional stimulation of immune cells 
can normalize tumor vessels, which establishes a bidirec-
tionally positive feedback loop for antitumor effects and 
provides a novel combined option for antitumor treat-
ment [409–412]. A phase II trial assessed the effect of 
nivolumab (anti-PD-1 mAb) in combination with bevaci-
zumab in patients with different cancer types and showed 
clinical benefit with improved ORR or durable response 
(NCT02873962, NCT01454102) [413, 414]. Some others 
anti-PD-1 mAb, such as pembrolizumab and durvalumab 
in combination with bevacizumab, have also been tested 
in clinical trials, as summarized in Table  2. In addition 
to anti-PD-1 drugs, anti-CTLA-4-mAb plus vascular-
targeted agents are also utilized to treat patients with 
cancers, but the related results have not been disclosed 
yet (NCT02754856, NCT01688206). Noteworthy, based 
on the advances and successful practices of engineered 
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chimeric antigen receptor (CAR) T cells therapy, dif-
ferent CAR designs have been exploited to fight against 
various diseases, in particular malignancies. Therefore, 
using CAR-T cells to target multiple antigens on tumor 

vasculature may provide new opportunities for the devel-
opment of anti-angiogenic therapy [415].

Taken together, since the first angiogenesis inhibi-
tor bevacizumab was approved for cancer treatment, 
numerous vascular-targeted drugs have been designed 

Table 3  Clinical trials targeting the CAFs
Target Drug Combination Condition Phase Status Trial number
FAP-
expressing 
cells

Simlukafusp alfa 
(RO6874281)

Atezolizumab and 
chemotherapy

Advanced and/or Metastatic Solid 
Tumors

II Completed NCT03386721

Simlukafusp alfa 
(RO6874282)

Trastuzumab and Cetuximab Solid tumor I Active, not 
recruiting

NCT02627274

Sibrotuzumab (BIBH 1) No Metastatic Colorectal Cancer II Completed NCT02198274

FAP-specific CAR-T No FAP-Positive Malignant Pleural 
Mesothelioma

I Completed NCT01722149

No Malignant Solid Tumors I Recruiting NCT03932565

Vitamin D 
receptor

Calcipotriol 5-fluorouracil Skin cancer precursor immunotherapy I Completed NCT02019355

Paricalcitol Docetaxel, ixabepilone, and 
paclitaxel

Metastatic Breast Cancer I Completed NCT00637897

Paricalcitol Gemcitabine, Nab-paclitaxel Metastatic Pancreatic Cancer I/II Recruiting NCT03520790

Vitamin A 
metabolism

ATRA Gemcitabine and 
Nab-paclitaxel

Pancreatic Adenocarcinoma I Completed NCT03307148

No Advanced Adenoid Cystic Carcinoma II Completed NCT03999684

Paclitaxel and Cisplatin Non-small Cell Lung Cancer III Unknown NCT01041833

Interferon-Alpha 2a Recurrent Neuroblastoma or Wilms’ 
Tumor

II Completed NCT00001509

TGFβ LY2157299(galunisertib) Nivolumab Solid Tumor; Non-Small Cell Lung 
Cancer;
Hepatocellular Carcinoma Recurrent

I/II Completed NCT02423343

Gemcitabine Advanced or Metastatic Unresectable 
Pancreatic Cancer

I/II Completed NCT01373164

Sorafenib, Ramucirumab Hepatocellular Carcinoma II Completed NCT01246986

Durvalumab Metastatic Pancreatic Cancer I Completed NCT02734160

Radiation, Temozolomide Malignant Glioma I/II Completed NCT01220271

Capecitabine, Fluorouracil Rectal Cancer II Active, not 
recruiting

NCT02688712

Lomustine Glioblastoma II Active, not 
recruiting

NCT01582269

Minnelide No Advanced Gastrointestinal Tumors I Completed NCT01927965

No Pancreatic Cancer II Completed NCT03117920

AP 12,009 No Pancreatic Neoplasms, Melanoma, 
Colorectal Neoplasms

I Completed NCT00844064

CXCR4 Motixafortide (BL-8040) Pembrolizumab, 
chemotherapy

Metastatic Pancreatic Cancer II Active, not 
recruiting

NCT02826486

AMD3100 (plerixafor) No Advanced Pancreatic, Ovarian and 
Colorectal Cancers

I Completed NCT02179970

Mozobil Children Cancer, Solid Tumor II Completed NCT01225419

Hedgehog Itraconazole No Basal Cell Carcinoma (BCC), Skin Cancer II Completed NCT01108094

Vismodegib No Basal Cell Carcinoma II Completed NCT01700049

Gemcitabine hydrochloride Pancreatic Cancer I/II Completed NCT01064622

Gemcitabine Hydrochloride Pancreatic Cancer II Completed NCT01195415

Cisplatin, Cixutumumab, 
Etoposide

Lung cancer II Completed NCT00887159

LDE225 (sonidegib) Etoposide and Cisplatin Lung cancer I Completed NCT01579929

Paclitaxel Solid Tumor I Completed NCT01954355

Docetaxel Breast cancer I Completed NCT02027376
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and exploited in clinic. However, anti-VEGF or targeting 
other proangiogenic signalings as monotherapy some-
times yields limited clinical outcomes or even results in 
metastasis, and therefore caution must be taken. Further-
more, realizing vascular normalization without excessive 
pruning opened new avenues for cancer therapy. One of 
these approaches is to choose a rational dosage and time 
range of anti-angiogenic drugs. Further prospective and 
randomized trials using lower dose of vascular-targeted 
drugs are warranted. It is also worth noting that judi-
cious use of immune checkpoint blockade together with 
angiogenesis inhibitors has potential to improve cancer 
treatment. The next goal of both preclinical and clini-
cal studies is finding the most reasonable combinations 
to exert more robust anti-tumor immune responses and 
reduce toxic side effects. The possibilities of this field are 
virtually endless.

Targeting CAFs for cancer therapy
Numerous previous researches identified various mecha-
nisms of CAFs tumor-promoting functions. Clinically, it 
was confirmed that the infiltration of activated CAFs was 
closely related to worse prognosis, resistance to multiple 
therapies, and even disease recurrence in cancer patients 
[416–420]. Hence, targeting CAFs has evolved as one of 
the appealing strategies for cancer intervention and is 
expected to provide oncologists with clinical decision-
making (Table 3).

At present, one strategy that has already been tested is 
CAFs-depletion by targeting their cell surface markers. 
Fibroblast activation protein-α (FAP), an integral serine 
protease specifically expressed by CAFs, participates in 
nearly all steps of the carcinogenic process [421–423]. 
High-level expression of FAP can predict poor prognosis 
in high-grade serous ovarian cancer [424]. The depletion 
of FAP+ cells inhibits tumor growth primarily achieved 
by augmenting anti-tumor immunity [425, 426]. Mean-
while, widespread efforts are underway to realize the 
translation of this plausible approach into practice. It has 
been established that a DNA vaccine exclusively target-
ing FAP could suppress primary and metastatic tumor 
growth, promote the uptake of chemotherapeutic drugs 
and prolong the survival of tumor-bearing mice primar-
ily by inducing CD8+ T cell-mediated killing of CAFs 
[427, 428]. The combinational use of FAP-DNA vaccine 
and other tumor antigen-specific DNA vaccines showed 
synergic effects of anti-tumor immunity characterized 
by increased CD8+ T cell infiltration and decreased mac-
rophage infiltration [429]. Additionally, FAP-CAR-T cell 
therapies have been engineered to treat solid tumors in 
preclinical studies [430]. In the mouse model, adoptively 
transferred FAP-specific CAR-T cells inhibited FAP+ 
CAFs activity and delayed the proliferation and growth 
of multiple types of subcutaneously transplanted tumors 

without the observation of distinct toxic signs [431]. A 
phase I trial was conducted to evaluate the safety of a 
fixed single dose of 1 × 106 adoptively transferred FAP-
specific CAR-T cells given directly in the pleural effusion 
(NCT01722149), but the result was still unavailable [432]. 
A bispecific FAP-CD40 antibody that could induce CD40 
stimulation solely in the presence of FAP was designed, 
which induced predominantly intratumoral immune 
activation and exhibited well tolerance [433]. Further-
more, FAP-targeted in combination with near-infrared 
photoimmunotherapy were shown to recover the sensi-
tivity to chemotherapy in CAF-rich tumors and induce 
tumor regression [434]. Some others FAP-targeted drugs 
or inhibitors such as RO6874281, PT630 and UAMC-
1110 have been verified in several preclinical studies 
[423, 435, 436], and currently some of these agents have 
been advanced to testing in clinical trials (NCT03386721, 
NCT02627274 and NCT02198274).

The high expression of α-smooth muscle actin 
(α-SMA) is another prominent characteristic of CAFs, 
and its expression level has been identified as a novel bio-
marker of resistance to trastuzumab early-stage of HER2-
positive breast cancer [437]. Specific targeting α-SMA 
with docetaxel-conjugate nanoparticles increased drug 
delivery efficiency by enhancing vascular perfusion and 
reduced cancer metastases [438]. In the myofibroblast-
depleted mouse PDAC model, selective depletion of the 
α-SMA+ fibroblasts suppressed angiogenesis but led to 
enhanced tumor hypoxia and induced cancer stem cell-
like phenotype. This selective depletion also contributed 
toward CD3+Foxp3+Treg cells infiltration into the tumor 
stroma, which ultimately increased tumor aggressiveness 
and reduced animal survival [20]. These contradictory 
findings emphasize the importance of targeting stromal 
cells with caution, and suitable targeting α-SMA rather 
than complete depletion may deserve further exploration.

Instead of direct CAFs depletion through their cell sur-
face markers, the normalization of activated CAFs that 
aims to reprogram pro-tumorigenic CAFs into a non-
activated or quiescent state represents a plausible option. 
It has been shown that using vitamin D receptor (VDR) 
ligand calcipotriol or all-transretinoic acid (ATRA) could 
achieve CAFs normalization. Specifically, VDR servers as 
a master genomic suppressor of pancreatic stellate cells 
(PSC) activation state and has the potential to revert 
PSCs into quiescent state. In this context, calcipotriol 
destroyed several tumor-supporting signaling pathways 
and enhanced the effects of chemotherapy in multiple 
mouse tumor models, which hindered the tumor-stroma 
interplay and tumor proliferation [439–442]. Some vita-
min D analogues (e.g. calcipotriol and paricalcitol) are 
being or have been tested in the clinic (NCT02019355 
[443], NCT00637897, NCT03520790). Moreover, ATRA 
is an active metabolite of vitamin A and is intensively 
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studied because of its ability to restore the mechanical 
quiescence of PSCs and to inhibit aggressive tumors pro-
gression. The use of ATRA can suppress force-mediated 
extracellular matrix remodeling, block pro-tumorigenic 
signaling pathways and assist the migration of CD8+ T 
cells to tumor sites and juxtatumoral stromal compart-
ments [300, 444–446]. Currently, ATRA has been evalu-
ated in several clinical trials to treat patients with solid 
cancers, whether in combination or not with chemother-
apies (NCT03307148, NCT03999684, NCT01041833) 
[447–450].

TGF-β also plays crucial roles in CAFs activation and 
affects cancer progression. The blockade of TGF-β sig-
naling is excepted to realize CAFs normalization [416]. 
LY2157299 (galunisertib) is an oral small-molecule 
inhibitor of TGF-β receptor I kinase and can prevent 
the activation of CAFs and immunosuppression. Several 
trials have tested its safety and effectiveness in multiple 
human cancer types, both as monotherapy or in combi-
nation with other treatments, but the results have been 
mixed (NCT01220271, NCT01373164, NCT01246986, 
NCT02734160, NCT01582269) [451–458]. Another 
agent, minnelide, has also been studied in phased tri-
als due to its capacity to suppress the TGF-β signaling 
(NCT01927965, NCT03117920).

In addition to elimination and normalization of acti-
vated CAFs, blockade of CAF-derived signalings may 
contributes to the acquisition of clinical benefits. FAP+ 
CAFs are identified as the primary source of a chemo-
kine CXCL12 that exerts immunosuppressive function 
by binding to its receptor CXCR4 [301]. Some CXCR4 
antagonists or inhibitors have been developed from 
bench to bed [459]. Motixafortide (BL-8040) has already 
been investigated in combination with pembrolizumab 
and/or chemotherapy in pancreatic cancer patients, 
showing some degree of efficacy signs (NCT02826486) 
[460]. AMD3100 is a CXCR4 inhibitor with the poten-
tial to reverse tumor immunosuppression and has been 
utilized in clinic (NCT02179970, NCT01225419). An 
alternative approach is to target the sonic hedgehog 
(SHH)-smoothened (SMO) signaling axis responsible 
for tumor formation and growth [461]. In several clini-
cal trials, although a SMO inhibitor itraconazole showed 
antitumor activity with inhibited neoplastic growth 
(NCT01108094) [462], another SMO inhibitor vismo-
degib yielded limited or even disappointing clinical out-
comes (NCT01700049, NCT01064622, NCT01195415, 
NCT00887159) [463–466]. LDE225 (sonidegib) is 
an oral small-molecule SMO inhibitor and are cur-
rently undergoing clinical assessment (NCT01579929, 
NCT01954355, NCT02027376) [467–469].

Overall, CAFs are increasingly recognized as an attrac-
tive target that can be clinically intervened for therapeu-
tic benefit in cancer patients. Nevertheless, the clinical 

effects of targeting CAFs are not extremely encouraging 
and satisfactory, and no CAF-specific mAb or inhibitor 
has been approved for standardized cancer treatment 
thus for. Notably, we face numerous challenges in this 
field, and more in-depth investigations are still needed. 
First, CAFs are populations with heterogeneity and plas-
ticity and lack definitive surface biomarkers, so it is dif-
ficult to precisely and roundly target these cells. Second, 
CAFs have been confirmed to possess both tumor-pro-
moting and tumor-restraining functions depending on 
the TME to which they are exposed, which may account 
for the clinical failure of CAF-targeted therapy, or in 
other words, targeting CAFs in cancer is a double-edged 
sword and sometimes cannnot enhance tumor control as 
initially hoped. In this condition, developing an approach 
specifically targeting the tumor-promoting CAFs sub-
types may be valuable. Finally, our current researches 
are largely at the preclinical stages, and it is clear that, to 
expedite the leap from bench to bedside, we still have a 
long way to go.

MSCs as potential therapeutic target
TA-MSCs are widely appreciated for playing multiple 
roles in tumorigenesis and malignant progression, which 
theoretically provides new opportunities for designing 
feasible anticancer therapies. However, similar to CAFs 
populations, the lack of specific cell surface markers and 
controversial roles with both pro- and anti-tumorigenic 
functions make it challenging to target TA-MSCs pre-
cisely. Alternative strategies have been developed, among 
which, inhibiting MSC-related signaling pathways or 
secretory factors and using MSCs as a vehicle for thera-
peutic delivery represent promising directions [190].

The homing of TA-MSCs into the stroma can accel-
erate tumor growth and metastasis, and thus inhibiting 
TA-MSCs aggregation might potentially aid tumor con-
trol. The CXCL12/CXCR4 axis is a classic signaling that 
governs the homing of MSCs and upregulates the expres-
sion of PD-L1 to mediate selective immunosuppression 
within a tumor [470–473]. Hence, much attention has 
been paid to blocking this pathway with various methods. 
Olaptesed pegol (ola-PEG) is a high-affinity L-RNA Spie-
gelmer to CXCL12 with the ability to neutralize CXCL12 
activity. The use of ola-PEG delays tumor growth and dis-
tant colonization of multiple myeloma cell [474]. Another 
approach is to target CXCR4 with specific antagonists 
such as AMD3100. The administration of AMD3100 not 
only reduced the migration potential of MSCs but also 
significantly enhanced the effects of anti-PD-L1 treat-
ment [301, 475, 476].

Several previous studies determined the immuno-
suppressive peculiarity of TA-MSCs that exert pro-
found influence on the growth and aggressive behavior 
of cancer cells, which is mainly achieved by producing 
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immunoregulatory factors [477]. Among those secretory 
factors, IDO was found to be overexpressed in tumor, 
mediate immune escape by reducing both tumor-infil-
trating CD8+ T cells and B cells, and contribute to the 
resistance of anti-CTLA-4 therapy [478–481]. Accumu-
lated preclinical evidence is paving the way for future 
clinical evaluation, and currently using IDO inhibitors 
(e.g. navoximod and 1-methyl-DL-tryptophan) to treat 
cancer patients is undergoing phase clinical trials [482, 
483].

An emerging therapeutic paradigm is to develop MACs 
as carriers for anti-tumor payloads due to their inher-
ent tumor-homing capacity, which can also potentially 
attenuate their viability and invasive characteristics 
[484]. Genetically modified MSCs can realize the deliv-
ery of therapeutic proteins, cytokines as well as micro 
RNAs and has manifested obvious antitumor effects in 
preclinical studies. Based on the significant success of 
using IFNs, a class of cytokines with antitumor proper-
ties, to fight against various cancer types, engineered 
MSCs with the transfection IFN-α or IFN-β have been 
designed and exhibited varying degrees of anti-tumor 
activity. This strategy restricted tumor growth by induc-
ing apoptosis and enhanced both NK cells and CD8+ T 
cells activity to reinforce antitumor immune responses 
[485, 486]. Other cytokines have also been stably trans-
duced in MSCs and yielded similar antitumor outcomes, 
such as IL-12 and IL-17 [487, 488]. Tumor necrosis fac-
tor related apoptosis-inducing ligand (TRAIL) is a type 
II membrane-bound protein capable of inducing apop-
tosis in various cancer cells. TRAIL-expressing MSCs 
exhibited directional migration and infiltration toward 
tumor tissues, extended animal survival and contributed 

to overcoming drug resistance [489–491]. Furthermore, 
exogenous microRNAs delivered by MSCs also assist in 
antitumor therapy, which deserves further clinical evalu-
ation [492–494]. Another valid use of modified MSCs is 
to load various anti-tumor drugs, which has been exten-
sively tested in numerous cancer types with significant 
inhibiting tumor growth and improving the anti-cancer 
efficacy of chemotherapeutic drugs [495–497].

Although it is difficult to deplete TAMSCs directly, the 
preclinical studies regarding TA-MSCs-associated fac-
tors or modified MSCs vastly motivated the initiation 
of a series of clinical trials (Supplementary Table 4). The 
clinical trials registered on ClinicalTrials.gov. involve 
inhibiting secretory factors derived from TA-MSCs, 
using MSCs as therapeutic agents to treat cancer patients 
directly and using MSCs as carrier for delivering thera-
peutic cytokines or proteins. Most of these studies are 
aimed to evaluate the safety, maximal tolerated and 
anti-tumor activity of MSCs loaded with different drugs 
in patients with several cancer types. The others tested 
the homing of BM-MSCs to tumor sites and the capac-
ity of MSCs to improve the overall survival of patients 
(NCT01045382, NCT01983709).

In short, TA-MSCs have a multifaceted involvement 
in cancer, which leads to the springing up of a broader 
range of studies with respect to MSCs-based anticancer 
therapies. However, trying to realize and accelerate the 
clinical transformation of MSCs-based therapies remains 
a challenge we need to solve. Future research may focus 
on understanding the interplay of tumor cells and TA-
MSCs for better improving clinical safety and outcomes 
of MSCs-based treatment (Table 4).

Table 4  Clinical trials based on MSCs
Target Drug or intervation Combination Condition Phase Status Trial number
IDO Navoximod No Solid Tumor I Completed NCT02048709

Navoximod Atezolizumab Locally Advanced or Metastatic Solid 
Tumors

I Completed NCT02471846

Engineered MSC BM-MSC-INFβ No Ovarian cancer I Completed NCT02530047

MSC-TRAIL No Adenocarcinoma of lung I/II Recruiting NCT03298763

GX-051 No Head and neck cancer I Unknown NCT02079324

CELYVIR No Metastatic and refractory tumors I/II Completed NCT01844661

AdMSC-MV-NIS No Ovarian, primary peritoneal or fal-
lopian tube cancer

I/II Recruiting NCT02068794

AloCELYVIR No Diffuse Intrinsic Pontine Glioma I/II Recruiting NCT04758533

MSC-derived exosome iExosomes No Metastatic pancreas cancer I Recruiting NCT03608631

Tissue-derived MSC HB-adMSCs No Pancreatic cancer I Unknown NCT04087889

EB-CMF No Mandible tumor I/II Recruiting NCT03678467

Cord blood MSCs NeuroRegen 
Scaffold™

Rectal cancer I/II Recruiting NCT02648386

MSCs Hematopoietic 
stem cells

Leukemia, lymphoma, and myeloma II Terminated NCT01045382

IFNγ-primed bone 
marrow MSCs

No Acute leukemia I Recruiting NCT04328714
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Targeting pericytes
Apart from their acknowledged participation in main-
taining the integrity of blood vessels, pericytes also act 
as important regulators of cancer initiation and progres-
sion. Targeting pericytes for cancer treatment is growing 
vigorously and exhibits some degree of benefits in pre-
clinical studies.

One approach to target pericytes is the use of ibrutinib 
that not only improves the permeability of blood-brain 
barrier but also prolongs animal survival by enhancing 
chemotherapeutic effectiveness [498]. Some other inves-
tigations have confirmed that the inhibition of PDGFRβ+ 
pericytes with imatinib (a specific tyrosine kinase inhibi-
tor) achieved pericytes depletion and delayed lym-
phoma growth in both murine allograft and human 
xenograft models [499, 500]. Clinically, the main pur-
pose of applying imatinib is to inhibit tumor angiogen-
esis, but this scheme often showed modest or no effect 
as a single agent or in combination with chemotherapy 
(NCT01738139, NCT00785785) [501, 502]. In this con-
text, dual-targeting VEGFR and PDGFR-β blockade may 
have better outcomes for cancer treatment and needs 
further clinical verification [503]. Furthermore, peri-
cytes can protect tumor cells from immune surveillance 
and attack, which suggests that pericytes can potentially 
be viewed as a novel target or combined option for can-
cer immunotherapy. Designing novel agents addressing 
pericytes and rationally choosing therapeutic combina-
tions are expected to improve a better cancer control and 
remission.

Conclusions and perspectives
It is traditionally recognized that cancer is a malig-
nant cell-centric disease, and with the rapid advances in 
the knowledge of the TME, this view is currently being 
replaced by the understanding of dependency and inter-
play between cancer cells and the tumor stroma. Spe-
cifically, cancer initiation, progression and metastasis 
usually elicit a broad spectrum of dynamic evolutions and 
alterations in host tissues, which contributes to the estab-
lishment of complicated stromal surroundings that are a 
prerequisite for tumor cell invasion and metastasis. These 
abundant stromal elements operate with each other in 
a coordinated fashion. Some stromal components and 
their molecular changes can also be considered poten-
tial biomarkers for diagnosis, prognosis, and response 
to treatment in cancer, which endows them with clinical 
significance as the abundance of stromal cells is typically 
related to unfavorable prognosis.

The tumor stroma participates in nearly all stages of 
malignant disease progression, and thereby constituting 
legitimate targets for therapeutic intervention. At pres-
ent, a great variety of stroma-targeted modalities that 
aim to reduce or deprive the pro-tumorigenic functions 

of stroma have been developed and tested in both pre-
clinical studies and clinical trials. Furthermore, it is pos-
sible to hopefully slow or reverse tumor development 
by “normalizing” the tumor stroma, such as vascular 
normalization and CAFs normalization. Despite these 
advances and findings, stromal targeting approaches 
can only reduce tumor growth rates or slightly extend 
patients survival, and are rarely curative. Simultane-
ously, there are still several unresolved aspects deserving 
further exploration. First, the stroma has both pro- and 
anti-tumorigenic properties since complete ablation of 
the stroma leads to a more invasive tumor phenotype and 
reduces animal survival, and thus a crucial consideration 
that cannot be ignored is to suitably target tumor-pro-
moting stromal populations without hurting healthy tis-
sues. Second, some cellular components of stroma such 
as CAFs and TA-MSCs lack specific cell surface mark-
ers and even possess diverse subtypes. The next goal of 
preclinical studies is to identify the relevant stromal cells 
with a specific biomarker and explore the totality tumor-
promoting or tumor-restraining functions of a given 
stromal cell type, which will dramatically motivate the 
development of stroma-based therapies. Third, current 
mechanistic and functional investigations regarding roles 
of stromal elements in cancer largely rely on xenograft 
or syngeneic animal models, and in this condition, mea-
sures should be taken in future studies to improve the 
model design and try to expedite the leap from bench to 
bedside. Finally, in the field of cancer targeted therapies, 
combinational strategies with chemotherapy or immu-
notherapy typically exhibit more beneficial and effective 
outcomes. Furthermore, interfering with cancer-stromal 
interactions should choose optimal opportunity such as 
earlier phases of carcinogenesis rather than only the inva-
sive stage, which contributes to therapeutic intervention 
and reduces deleterious effects. Consequently, searching 
for the best administration regimens with distinct com-
binations together with legitimate sequence and time is 
expected to yield significant clinical benefits for patients.

In summary, all cellular and noncellular components 
of the tumor stroma can interact and engage in highly 
regulated reciprocal dialogues, which contributes toward 
cancer initiation, progression and therapeutic resistance. 
Importantly, these findings and insights bring stroma-tar-
geted therapies for cancer treatment onto the agenda. An 
in-depth understanding of the crosstalk between stroma 
and cancer cells is crucial for designing novel strategies 
for new therapeutic interventions, especially for those 
stroma-rich cancer types such as pancreatic carcinoma. 
Moving forwards, despite much work remaining to be 
done, it can be anticipated that, as an emerging strat-
egy for cancer treatment, stroma-targeted therapy will 
open a new avenue of research in the management of 
malignancy and reshape the therapeutic landscape with 
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the potential to bring more clinical benefits for cancer 
patients.
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