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Abstract

Purpose Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome
present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most
common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the
underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of
IRAKI1 overexpression on the canonical NF-kB signaling as a possible cause for excessive inflammation in these patients.
Methods NF-kB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the
IRAK1 phosphorylation and degradation as well as the IkBa degradation upon stimulation with IL-1p and TLR agonists
in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome,
respectively.

Results Both, MECP2/IRAK-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon
activation with IL-1p and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and con-
trols had a similar response of cytokine production after stimulation with IL-1p and TLR4/2/6 agonists. Patients and controls
had equivalent patterns of IRAK1 phosphorylation and degradation as well as IkBa degradation upon stimulation with IL-1.
Conclusion Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-kB signaling in immor-
talized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic
suppression of this pathway.

Keywords Xq28 Duplication syndrome - Methyl CpG binding protein 2 (MECP2) duplication syndrome - Methyl CpG
binding protein 2 (MECP2) - Interleukin-1 receptor—associated kinase 1 (IRAK1) - Canonical NF-kB signaling - Inborn
errors of immunity

Introduction with duplications in Xq28 of varying sizes but encompass-

ing at least the MECP2 and interleukin-1 receptor—associ-

Patients with duplication of methyl CpG binding protein
2 (MECP2) on chromosome Xq28 were first described
in 2005 [1, 2]. The clinical phenotype is characterized by
developmental delay, hypotonia, epileptic seizures, as well
as recurrent infections [1, 2]. Approximately 1% of severe
X-linked intellectual disability in males might be explained
by MECP2 duplication syndrome (MDS) [3]. Reviewing
the literature, we identified 102 articles describing patients
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ated kinase 1 (IRAK1) gene, 14 of them published before the
initial description of MDS (Table 1). From 1987 until now,
at least 545 cases with confirmed genotype were published
(504 males and 41 symptomatic females) (Table 1). Addi-
tionally, the duplication was suspected in 39 related patients
(Table 1). However, the numbers of patients might be under-
estimated regarding the unevenly distributed origin of publi-
cations (43 European, 25 North American, 23 East-Asian, 5
rest of Asia including Russia, 3 Australian, 2 South Ameri-
can, 1 African) (Table 1). Most females with MECP2 dupli-
cation are unaffected carriers showing a favorably skewed X
chromosome inactivation (XCI) pattern [1, 4-6]. However,
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some females show a mild to severe phenotype. The main
hypotheses are that symptoms in females might be caused,
on the one hand, by the location of the duplicated material
into an autosome or, on the other hand, by an unfavorable
skewed X chromosome inactivation (XCI) [7-20]. However,
the extent of the symptoms in females with MECP2 duplica-
tion cannot be correlated with their XCI pattern, at least as
assessed in peripheral blood [21].

Seventy-eight percent of reported patients (376/479)
suffer from recurrent or severe infections (Table 1). Most
common are respiratory infections with 98% of reported
cases (316/324), but patients also present with otitis media,
urinary tract infections, and sepsis (Table 1). Early death
(defined as <25 years) is reported with a frequency of 4 to
55% [1, 57, 92, 95]. Among the 67 patients with described
cause of early death, 58 (87%) died in the context of a severe
infection at the age of 3 weeks to 24 years (median 11 years;
data available for 43 patients only) [1, 2, 5-7, 9, 12, 25, 26,
32,33, 38, 39, 43, 54-57, 63, 67, 70, 75, 76, 80, 84, 86, 87,
90, 92, 93, 95, 97, 99, 104]. Eighty-two percent (328/398) of
males suffer from recurrent or severe infections but only 61%
(20/33) of the described females. Few studies further exam-
ined the detailed infectious and the underlying immunologi-
cal phenotype of the patients. In contrast to the widespread
notion of “recurrent severe infections,” information about
identified pathogens is only available for 19 patients [7, 12,
16, 54,76, 100, 105]. Among the 55 isolated pathogens were
45 bacteria (most of all S. pneumoniae, H. influenzae, E.
coli, and S. aureus), 6 viruses, and 4 Candida (Table S1).
However, as the total viable counts are not stated, it remains
unclear if these were the disease-causing pathogens. Bron-
choalveolar lavage for the identification of pathogens was
only performed in 7 patients [76, 105].

Few studies have examined patients for their immuno-
logical phenotype [33, 39, 76, 88, 100]. The most common
characteristic is a poor response to vaccination especially
against Streptococcus pneumoniae which was described
in 15/26 patients [33, 39, 76]. Some patients show selec-
tive deficiency of immunoglobulin (Ig) A (11/47) and/or
I1gG2 (7/24) [23, 26, 30, 33, 39, 46, 56, 63, 75, 76, 88, 100,
104]. Moreover, several patients present with episodes of
unexplained fever and remarkably high C-reactive protein
(CRP) values during non-invasive infections [24, 43, 54, 70,
76, 105]. In 2015, Bauer et al. suggested the substitution of
polyvalent IgG in patients with an IgG2 subclass deficiency
and/or low post-vaccination titers against pneumococci who
suffer from recurrent infections—eventually combined with
prophylactic antibiotics [76, 105]. In the 26 studies pub-
lished since 2016, only three evaluated the immunoglobulin
levels, and none mentioned the response to vaccination [88,
100, 103]. Four patients were mentioned to receive antibiotic
prophylaxis [93, 100, 105]. As infections still limit the qual-
ity of life and are the most common cause of death in MDS

patients, there seems to be an unmet clinical need regarding
pneumological and microbiological diagnostics as well as
targeted anti-infectious treatment [92].

It remains unknown whether recurrent fever and strong
acute phase response in these patients are rather driven by
infections which are difficult to clear and/or by autoinflam-
mation. Throughout the manuscript, we use the term auto-
inflammation which describes systemic inflammatory pro-
cesses due to a non-infectious (auto)activation of the innate
immune system. Both hypotheses, the one of an “infectious
fever” and the one of an “autoinflammatory fever,” are not
mutually exclusive [31, 104, 106, 107]. In 2009, Kirk et al.
suspected a link between IRAKI duplication and suscepti-
bility to infection [43]. IRAK1 participates in multiple IL-1
and TLR—driven signaling processes that regulate immunity
and inflammation [108-114]. For instance, IRAK1 plays an
important role in the regulation of both, the interleukin-1
(IL-1)-mediated and the Toll-like receptor (TLR)—mediated,
so-called canonical signaling pathways of NF-xB (nuclear
factor “kappa-light-chain-enhancer” of activated B cells)
(Fig. 1). Upon binding, IL-1 receptors with their respec-
tive cytokine or TLR with their respective ligand recruit the
adaptor protein myeloid differentiation primary response 88
(MyD88) which associates with IRAK4 via a homophilic
interaction between their death domains. IRAK4 induces
the phosphorylation of IRAK1. The hyperphosphorylated
IRAKI1 then dissociates from the complex and associates
with TNF receptor—associated factor 6 (TRAF6) to activate
TAK-1/TAB (TGF-B-activated kinase/TAK1-binding pro-
teins). The latter enhances the activity of the IkB kinase
(IKK) complex, which in turn leads to phosphorylation and
degradation of inhibitors of nuclear factor kappa B (IxB).
Thereby, NF-xB dimers comprising p65 (RelA), c-Rel, and
p50 are activated and migrate into the nucleus which results
in gene transcription and the induction of inflammatory
cytokines such as tumor necrosis factor o (TNF-o), IL-1p,
IL-6, and IL-12 [108-114].

Della Mina et al. examined the canonical NF-kB signal-
ing in an /RAK-null patient [115]. The patient’s fibroblasts
showed poor responses upon stimulation with TLR2/6 and
TLR4 agonists but unimpaired responses to IL-1f. The
patient’s peripheral blood mononuclear cells (PBMCs)
responded normally to IL-1p as well as TLR2/6 and TLR4
agonists [115]. Responses to TLR3 agonist Poly(I:C) were
not influenced as it signals via TRIF-dependent pathways
[115].

The combination of the clinical phenotype in MDS and
the duplication of the IRAKI gene brings up the question if
IRAKIT overexpression causes increased canonical NF-kB
signaling and detrimentally increased acute phase responses.
Considering the results of Della Mina et al., we hypoth-
esized that patients with MECP2/IRAKI duplication might
show enhanced cytokine production in fibroblasts upon
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Fig. 1 Canonical pathway of NF-kB signaling. Upon binding of
ligands, such as IL-1 to the IL-1R, LPS to TLR4, or diacylated lipo-
peptides like PAM2CSK4 to TLR2/6, the inflammatory signaling is
mediated via the myddosome complex which consists of MyD88 and
IRAK family kinases. MyD88 associates with IRAK4 via a homo-
philic interaction between their death domains. IRAK4 induces the
phosphorylation of IRAKI1. The hyperphosphorylated IRAK1 then
dissociates from the complex and associates with TRAF6 to acti-
vate TAK-1/TAB complex. The latter enhances the activity of the
IKK complex which then leads to phosphorylation and degradation
of IkB. Thereby, NF-kB dimers such as p65 (RelA) and p50 are acti-
vated and migrate into the nucleus which results in gene transcrip-
tion and the induction of inflammatory cytokines. (Adapted from
Heller S, Kolsch U, Magg T, et al. T Cell Impairment Is Predictive
for a Severe Clinical Course in NEMO Deficiency. J Clin Immunol.
2020;40(3):421-434. Used with permission.) IkBa, NF-xB inhibitor
a; IKK, IkB kinase; IL-1R, interleukin-1 receptor; IRAK, interleu-
kin-1 receptor—associated kinase; LPS, lipopolysaccharide; MyD88,
myeloid differentiation primary response 88; TAB, TAKI-binding
proteins; TAK-1, TGF-f—activated kinase 1; TLR, toll-like receptor;
TRAF, TNF receptor—associated factor. The canonical NF-kB path-
way can be disturbed through disease-causing mutations within mul-
tiple genes. Described correlations between phenotype and genotype
are listed in the OMIM database (OMIM numbers: IkBa*164,008,
IKKa*600,664, IKKB*603,258, IKKy*300,248, IRAKI1%300,283,
IRAK4*#606,883, MyD88*602,170, p50*164,011, p65*164,014)

@ Springer

simulation with TLR2/6 and TLR4 agonists. Therefore, we
evaluated the production of proinflammatory cytokines as
well as the IkBa degradation and IRAK1 phosphorylation
upon stimulation with IL-1p and TLR agonists in SV40-
immortalized fibroblasts of 9 patients with MECP2/IRAK1
duplication syndrome, respectively. Additionally, we investi-
gated the production of proinflammatory cytokines not only
in PBMCs but also whole blood.

Methods
Patients

The study was conducted in accordance with the ethical
standards of the 1964 Helsinki declaration and the insti-
tutional research committee (Charité-Universititsmedizin
Berlin, Germany, EA2/063/12). Informed consent was
obtained from each patient or the patients’ parents. Our
cohort consists of 9 male patients diagnosed with MDS. We
recruited them by contacting patients who participated as
well as physicians who cooperated in our previous study
[76]. Five of the patients were described before [76, 105,
116]. A duplication of at least MECP2 and IRAK1 was con-
firmed in all patients enrolled by array-based Comparative
Genomic Hybridization (array-CGH) prior to this study. We
standardized the ranges of the duplications to Genome Ref-
erence Consortium Human Build 37 (GRCh37) by the NCBI
Genome Remapping Service to compare the duplication size
of all patients.

Material

Fibroblasts of P1, P2, P3, and P4 as well as of 4 healthy
individuals were obtained by skin biopsies and immortal-
ized by simian virus (SV40) as described previously [76,
117]. Blood samples of P3, P5, P6, P7, P8, and P9 as well
as of healthy controls were acquired in parallel to routine
blood tests. As P1 and P2 deceased, and we were not able to
contact P4 recently, we were not able to obtain current blood
samples from P1, P2, and P4. P5-9 did not donate fibro-
blasts. We isolated the PBMCs and performed the analysis
in our laboratory with the same methods and equipment.

Cell Stimulation and Cytokine Determination (ELISA)

Levels of IL-6 and IL-8 production were assessed in
SV40-fibroblasts of P1, P2, P3, and P4 as well as of
healthy controls and IRAK1-deficient and IRAK4-defi-
cient controls incubated for 24 h in the presence of IL-1p
(1 ng/ml, R&D Systems), TNF-a (20 ng/ml, R&D Sys-
tems), Phorbol-12-Myristat-13-Acetat (PMA)/lonomycin
(Ix 1077 M/1x107° M, Sigma-Aldrich), or TLR agonists
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(TLR4 agonist LPS (10 pg/ml, Sigma-Aldrich), TLR2/6
agonist PAM,CSK, (10 pg/ml, Invivogen), or TLR3 ago-
nist Poly(I:C) (25 pg /ml, Invivogen)), as well as in PBMCs
of P3, P5, P6, P7, P8, and P9 as well as of healthy con-
trols incubated for 48 h in the presence of IL-1f (1 ng/ml,
R&D Systems), TNF-a (20 ng/ml, R&D Systems), PMA/
Tonomycin (1 X 1077 M/1x107° M, Sigma-Aldrich), or TLR
agonists (TLR4 agonist LPS (1 ng/ml, Sigma-Aldrich) or
TLR2/6 agonist PAM,CSK, (1 pg/ml, Invivogen)). Cytokine
concentrations in cell culture supernatants were assessed
by enzyme-linked immunosorbent assay (ELISA) using
“PeliPair reagent” sets (Sanquin) for human IL-6 and IL-8
according to the manufacturer’s protocol. The experiment
was conducted three times.

IL-6 and IL-10 levels were measured in heparinized
whole blood of P3, P5, P6, P7, P8, and P9 incubated for
48 h in the presence of IL-1p (20 ng/ml, R&D Systems),
TNF-a (20 ng/ml, R&D Systems), PMA/Ionomycin
(1x 1077 M/1 x 107> M, Sigma-Aldrich), or TLR agonists
(TLR4 agonist LPS (1 ng/ml, Sigma-Aldrich) or TLR2/6
agonist PAM,CSK, (100 ng/ml, Invivogen)). The cytokine
concentrations were measured by ECLIA by Labor Berlin on
an IMMULITE® 1000 (Siemens) and compared to a cohort
of healthy controls assessed in our laboratory (n=179)
[118].

Western Blots

To analyze IRAK1 expression and IkBa degradation, we
stimulated SV40-immortalized fibroblasts of P1, P2, P3,
and P4 as well as of healthy controls and IRAK1-deficient
and IRAK4-deficient controls with IL-1p (10 ng/ml, R&D
Systems) and TNF-a (20 ng/ml, R&D Systems) for 15, 30,
45, 60, and 90 min as well as with IL-1$ (10 ng/ml, R&D
Systems), TLR4 agonist lipopolysaccharide (LPS) (10 pg/

IRAK 1+
MECP2+
P1+
P2-
P3-
P4+
P5-

ml, Sigma-Aldrich), and TNF-a (20 ng/ml, R&D Systems)
for 20, 60, 120, and 240 min, respectively. The further steps
were performed as described previously using the follow-
ing antibodies: IkBa (610,690, BD Biosciences), IRAK1
(sc-7883, Santa Cruz Biotechnology), IRAK-4 (ADI-
KAP-ST206-E, Enzo), glycerinaldehyd-3-phosphat-dehy-
drogenase (GAPDH) (sc-25778, Santa Cruz Biotechnology),
Goat Anti Rabbit IgG (111-035-045, Dianova), and Goat
Anti Mouse IgG (115-035-062, Dianova) [118]. Detailed
protocols are available upon request.

Graphs and Statistical Information

Graphs were created using GraphPad Prism 9 software
(GraphPad Software Inc.) and PowerPoint (Microsoft
Office). Statistical analyses were performed using SPSS
Vv28.0.1.0 (IBM). Data sets were tested for normal
distribution, and statistical comparisons were done using a
Mann—Whitney U test. For comparison of multiple groups,
Kruskal-Wallis test was used. P values of less than 0.05
after adjusting by Bonferroni method were considered
significant. *P <0.05, **P <0.01, ***P <0.001,
*EEEP <0.0001.

Results

Patients with MECP2/IRAK1 Duplication Suffer
from Recurrent Respiratory Infections

Our 9 patients show duplications of variable sizes at least
encompassing the neighboring genes MECP2 and IRAK1
(Fig. 2). In patients 5 and 8, part of the region is triplicated.
The exact boundaries and the included genes are shown in
the Supplementary Information. All patients suffered from

—

P6 [

P7-
P8
P9~

Fig.2 Size of duplications on chromosome Xq28 based on human
genome assembly GRCh37 (hgl9) in mega base pairs (Mb). Posi-
tion of /RAK] is indicated in red and position of MECP2 is indicated
in green. Vertical dotted lines show the minimal duplicated region

-
=
—

—

Mb

including /RAKI and MECP2. *Black bars with a star indicate trip-
licated segments. This figure was created using Prism 9 (GraphPad).
The exact boundaries and the included genes are shown in the Sup-
plementary Information
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recurrent or severe infections, mostly respiratory infections, # 3
which often required hospitalization. E =
Patient 3 is a 25-year-old patient who is followed-up in K _:”:é) R
our department at least 4 times a year and was clinically § i % % % % %
and molecularly characterized before [P1 in 76, 105]. Array 8 (EJ 2222c®
comparative genome hybridization (array-CGH) confirmed a8 = @ i i i i i
a duplication of 1.1 Mb at Xq28. He first presented with 3 5 3993 (E) (2) LE) (2) %
global developmental delay, muscular hypotonia, and spastic @ S c o ooRR@man
tetra paresis. He suffers from epilepsy and recurrent severe 5 .
infections. Of his in total 64 episodes of pneumonia, he had e g
developed 47 until his 14th y/a. After starting an immuno- § g
globulin substitution (at 12 y/a) as well as supportive meas- g Lé A
ures and antibiotic prophylaxis (at 14 y/a), the frequency of '§ Elao ANZZZZ ~
infections declined, leading to 3 episodes of pneumonia only = — _
in the following 8 years. Despite this treatment, we recorded E 5 |~ % A % —~ o« % "
an increase of hospital admissions due to infections in the £ .
last 2 years including 12 episodes of pneumonia and 2 epi- c5“): % " a
sodes of sepsis (Fig. S1). Throughout the last years, the boy g “ |oe~Ao~o o2&
developed chronic aspiration and shows bronchiectasis in @ 5|8
his latest CT scans (Fig. S2). We are now detecting oppor- I} g|g
tunistic pathogens such as a multidrug-resistant Citrobac- = g § 4 o o . —
ter freundii as well as Candida glabrata and Trichosporon £ Zle =@ wmaoon A
asahii in bronchoalveolar lavages. He is currently under %
prophylactic anti-infective treatment with cotrimoxazole, % g é
penicillin, and fluconazole. In all infectious episodes, our 5 g3
patients presented with fever above 39 °C and high CRP é § % § N
levels, typically above > 100 mg/dl, already during the first S |FEE et S
3 days of the infection. The boy shows a normal total immu- & 2 2
noglobulin titer but deficiency of IgG2, IgG4, IgA, and IgM. S |53 A A e
A polysaccharide-specific antibody deficiency persisted 7 > Ko omZ oK R~ o~ LB
despite repeated vaccinations. é e
The baseline clinical features of all patients in our cohort 3 = g
are summarized in Table 2. Detailed case reports of P1, P2, E Lg £ <)
= —_ = Koo X K K XK X K XK O
and P4-P9 are provided in the Supplementary Information. § .
z 2>
IRAK1 Duplication Leads to Increased Protein Levels £ |Z é
in Patient-Derived Fibroblast Cell Lines Z o lZs
First, we characterized the SV40-immortalized fibroblasts 5 38 £
cell lines of both patients and healthy controls for their E g’ § 5 SRS 2 é
expression of IRAK1, IRAK4, and GAPDH (Fig. 3). We £ . ‘é
used an IRAK1-deficient and an IRAK4-deficient cell line “i ; z E g . EE o g g =
as negative controls. The patients’ cells (P1-P4) contained .= & % & % g ] é g % %
at least twice as much IRAK1 as the cells of the healthy 5 = Cm0mmma 00 £
controls (C1-C4) (Fig. 3). The calculated ratios are stated fg _ & =
in the Supplementary Information. S 28 3
IRAK1 Duplication Does Promote Excessive Cytokine g < E |29 8 ca2wo2 §
Production Neither in Fibroblasts Nor in PBMC 5 E 0 00 0 oo o o o 3
Nor in Whole Blood §-§ ; SSSssSssssss :; -
= £ 3
We hypothesized that the susceptibility to infection could % ;ﬁ: § 32 g
be caused by a hyperinflammatory immune response due S E|E S AP H o =~ o & £ R
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C1
c2
Cc3
C4

IRAK1
IRAK4 ' —
GAPDH

Fig.3 Characterization of SV40-immortalized fibroblasts. Western
blot analysis of IRAK-1 and IRAK-4 protein levels in cell lysates
from SV40-immortalized fibroblasts of healthy controls (n=4),

to increased canonical NF-kB signaling because of IRAK1
overexpression. Therefore, we determined the impact of the
MECP2 and IRAKI duplication on the canonical NF-xB
signaling. Hence, we performed an ELISA to measure the
cytokine production in the cell culture supernatants of SV40-
immortalized fibroblasts, PBMCs, and whole blood upon
stimulation with IL-1p as well as the TLR agonists LPS
(TLR4), PAM,CSK, (TLR2/6), and Poly(I:C) (TLR3). We
used TNF-a and PMA/Ionomycin as NF-kB-independent
intra-assay controls.

Production of IL-6 and IL-8 upon stimulation with IL-1f
or TLR2/6 agonist PAM,CSK, was increased in fibroblasts
of both healthy controls and MECP2/IRAKI-duplicated
patients, but we did not see a difference between the two
groups (Fig. 4a and 4b). Interestingly and in contrast to our
hypothesis, the data suggests that the cytokine production
upon stimulation with TLR4 agonist (LPS) in immortalized
fibroblasts of MECP2/IRAKI-duplicated patients is lower than
in healthy controls. In IRAK4-deficient fibroblasts, cytokine
production upon stimulation with IL-1, TLR4 agonist LPS,
and TLR2/6 agonist PAM,CSK, was absent (Fig. 4a and 4b).
In IRAK-deficient fibroblasts, we found no response to TLR4
agonist LPS and TLR2/6 agonist PAM,CSK, but an almost
unimpaired response to IL-1p (Fig. 4a and 4b). All fibro-
blasts showed increased cytokine production upon activation
with TLR3 agonist Poly(I:C), TNF-«, and PMA/Ionomycin
(Fig. 4a and 4b). The response upon stimulation with IL-1p,
TLR agonists, and TNF-a was similar for PBMCs and whole
blood in both groups (Fig. 4c—f). P values for significant dif-
ferences are indicated in Fig. 4. If there was no statistically
significant difference (patients vs. IRAKIy/-; patients vs.
IRAK4-/- and IRAK 1y/- vs. IRAK4-/-), P values were not plot-
ted (Fig. 4a and 4b).

These results indicate that MECP2/IRAK 1 duplication does
not lead to a higher amount of inflammatory cytokines upon

IRAK1y/-
IRAK4-/-

owem — -

patients (n=4), an IRAK1-deficient patient, and an IRAK4-deficient
patient. Pictures were cropped and adjusted. Quantitation is shown in
Table S2

stimulation in immortalized fibroblasts, PBMCs, and whole
blood.

Normal IRAK1 and IkBa Degradation Indicates
Regular NF-kB Signaling in Patient-Derived
Fibroblasts with JRAK1 Duplication

Having observed that MECP2/IRAK1 duplication does not
cause an increased acute inflammatory response in vitro, we
hypothesized that canonical NF-«B signaling may be altered
regarding the phosphorylation and degradation of involved
proteins such as IRAK1 and IxkBa. To further delineate this
pathway, we performed Western blots on whole cell lysates
of SV40 fibroblasts of P1-P4, a healthy control (C), as well as
IRAK1- and IRAK4-deficient controls stimulated with IL-1
as well as TNF-a as an NF-kB—independent intra-assay con-
trol (Fig. 5a). Upon activation, IRAK1 is phosphorylated lead-
ing to a higher mass of the molecule. Phosphorylated IRAK1
becomes hence visible as a smear above the band of non-
phosphorylated IRAK1. It appears as if there is still non-phos-
phorylated IRAK1 left 90 min after stimulation with IL-1p
(Fig. 5a). In a second experiment, we assessed the IRAK1
phosphorylation upon IL1p and TNF-« for longer time frames
up to 240 min and additionally stimulated the SV40 fibroblasts
with TLR4 agonist LPS (Fig. 5b). Both, the patients’ and the
control’s cells showed a similar pattern of IRAK1 phospho-
rylation and degradation upon activation with IL-1f, whereas
it was absent in IRAK4-deficient fibroblasts (Fig. 5a and 5b).
Self-explanatory, the IRAK1-deficient fibroblasts did not
contain any IRAKI1 protein, and therefore, it could not be
phosphorylated or degraded (Fig. 5a and 5b). IRAK1 phos-
phorylation and degradation could not be induced by LPS or
TNF-a stimulation in any of the cell lysates (Fig. 5a and 5b).
The time pattern of IkBa degradation upon IL-1p stimulation
and the reoccurrence of non-phosphorylated IkBa was similar
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Fig.4 Cytokine production upon
stimulation measured in cell
culture supernatants. Bars indicate
median values. a and b Cytokine
production in patients’ SV40-
immortalized fibroblasts (n=4)
upon stimulation with IL-1f
(1 ng/ml), TLR agonists (LPS for
TLR4 (10 pg/ml), PAM,CSK, for
TLR2/TLR6 (10 ug/ml), Poly(I1:C)
for TLR3 (25 pg/ml)), PMA/Iono
(1x1077 M/1x 107> M), and
TNF-a (20 ng/ml). SV40-immor-
talized fibroblasts of healthy
controls (n=4), an IRAKI-null
patient, and an /RAK4-null patient
were used as intra-assay controls.
The experiment was conducted
three times. a IL-6 production. b
IL-8 production. ¢ and d Cytokine
production in patients’ PBMCs
upon stimulation with IL-1f
(1 ng/ml), TLR agonists (LPS for
TLR4 (1 ng/ml), PAM,CSK, for
TLR2/TLR6 (1 pg/ml)), PMA/
Tono (1x1077 M/1x 107> M),
and TNF-a (20 ng/ml). PBMCs
of healthy controls were used
as intra-assay controls. ¢ IL-6
production (n=38 for patients and
n=11 for healthy controls). d
IL-8 production (n="7 for patients
and n=9 for healthy controls).
# zero values. e and f Cytokine
production in patients’ whole
blood (rn=6) upon stimulation
with IL-1p (20 ng/ml), TLR
agonists (LPS for TLR4 (1 ng/
ml), PAM,CSK, for TLR2/
TLR6 (100 ng/ml)), PMA/
Tono (1x1077 M/1x 107> M),
and TNF-a (20 ng/ml). The
analyses were performed in
comparison to a cohort of healthy
controls assessed in our labora-
tory (n=179, whiskers 5-95
percentile). e IL-6 production. f
IL-10 production. This figure was
created using Prism 9 (Graph-
Pad). *P<0.05, **P<0.01,
*#%P<0.001, #+*¥P<0.0001,
ns, not significant. If there was no
statistically significant difference
(patients vs. IRAK 1y/-; patients
vs. IRAK4-/- and IRAK1y/- vs.
IRAK4-/-), P values were not
plotted (Fig. 4a and 4b). IRAK1,
IL-1 receptor—associated kinase
1; IL-1B, interleukin-1p; LPS,
lipopolysaccharide; PAM,,
PAM,CSK,; PMA/I, phorbol
myristate acetate/ionomycin;
TLR, toll-like receptor; TNF-a,
tumor necrosis factor o
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Fig.5 Immunplogical pheno— a IL-1B TNF-a b IL-18 LPS TNF-a
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in cells of the patients and the control tested, whereas it was
absent in IRAK1- and IRAK4-deficient fibroblasts (Fig. 5a).
Overall, our data suggests that there is no difference in the
activity of the canonical NF-kB signaling in MECP2/IRAKI-
duplicated patients.

Discussion

Although research on MECP2/IRAK1 duplication syndrome
has increased, a comprehensive pathophysiological mechanism
that explains the frequency and severity of infections, the most
common cause of death, remains unknown. Numerous publica-
tions describe patients who repeatedly require hospitalization,
invasive ventilation, and intensive care admission [63, 75, 76,
103, 105]. In P3, pneumococcal immunization and antibiotic
prophylaxis reduced the number of infections per year drastically
for many years (Fig. S1). However, after successful long-term
prophylaxis on antibiotics and IgG, he has been presenting mul-
tiple times with pneumonia caused by multidrug-resistant and
rare pathogens since the age of 23. Patients like these show that
the control of infections clearly is still an unmet clinical need.
IRAKI participates in multiple IL-1 and TLR-driven
signaling processes that regulate immunity and inflammation
[108-113]. Therefore, we hypothesized that the infections

may be triggered by a strong acute phase response due to
IRAKI1 overexpression and subsequently increased canoni-
cal NF-xB signaling. However, in our cohort, we did not see
any evidence of increased IRAK1-dependent degradation of
IxkBa. We demonstrated that the production of proinflamma-
tory cytokines IL-6 and IL-8 upon stimulation with IL-1f and
TLR2/6 agonist PAM,CSK, is similar in immortalized fibro-
blasts as well as PBMCs and whole blood of patients with
MECP2/IRAK] duplication and healthy controls. Also, we
did not see an enhanced response upon stimulation with TLR4
agonist LPS in PBMCs and whole blood of patients compared
to healthy controls. The results in our healthy controls as well
as our IRAK1- and IRAK4-deficient controls were similar to
the results of Della Mina et al. [115]. Response to IL-1p and
TLR agonists seems to be normal not only in PBMC:s but also
whole blood which suggests that canonical NF-kB signaling
is also neither increased nor impaired in neutrophilic granu-
locytes of patients with MECP2/IRAK] duplication.

This raises the question of whether the inflammation (as
documented by high CRP levels in many patients) observed
in MDS patients might rather be driven by an infectious than
an autoinflammatory process. Ninety-one percent (411/454)
of the published patients suffered from muscle hypotonia sug-
gesting that an insufficient occlusion of the gastric sphinc-
ter, as well as swallowing difficulties, could favor aspiration
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(Table 1). Gastroesophageal reflux with subsequent aspiration
was suggested as a cause for frequent respiratory tract infec-
tions [31, 104]. However, only 55% (149/270) of the patients
were described to suffer from reflux, whereas 78% of the
patients (376/479) were described to suffer from recurrent
or severe infections ([3, 5, 6, 9, 15, 18, 26, 27, 31, 33, 38, 52,
54-56, 60, 67, 75, 84, 85, 92, 93, 95, 97, 98, 100, 103, 104,
119], Table 1).

The NF-kB signaling in fibroblasts and blood seems to be
unimpaired. However, this might be different in other tissues
such as lung epithelia. On the one hand, IRAK-1 was shown
to be essential for IL-8 production in human airway epithelial
cells [120]. On the other hand, IRAK-1 is necessary for the
rhinovirus-stimulated induction of CXCL-10 in airway epithe-
lial cells and macrophages [121]. Both excessive production
of IL-8 and CXCL-10 could contribute to lung inflammation
leading to the clinical phenotype of MDS patients. From a sci-
entific point of view, it seems interesting to study the cytokine
production and CXCL-10 induction in airway epithelial cells
of patients with MECP2/IRAK1 duplication. However, it seems
almost impossible to obtain sufficient amounts of primary lung
tissue from children with such a rare disease in a standardized
way, let alone enough to culture lung epithelia. An alterna-
tive strategy to investigate the role of IRAKI1 in lung epithelia
might be to differentiate human-induced pluripotent stem cells
(hiPSCs) to lung epithelial cells [122].

Yang et al. proposed that severe infections in MDS patients
occur due to the lack of TH1 response and subsequently low
IFN-y activity [106]. However, a generally impaired IFN-y
secretion could not be reproduced by Bauer et al. [76]. Further-
more, complete [FN-y deficiency is characterized by a selective
predisposition to infections caused by mycobacteria, Salmonella,
or Candida species [123, 124]. This does not correlate with the
clinical phenotype of MDS patients who typically show puru-
lent bronchitis caused by bacteria which are capable of building
a capsule such as Streptococcus pneumoniae or Haemophilus
influenzae [76]. In the so far published cases of MDS, an infec-
tion with mycobacteria was only described once [76].

Besides its role for canonical NF-kB signaling, IRAK1
controls the induction of interferons via interferon regulatory
factor 7 (IRF7) [109, 111, 114]. In human IRF7 deficiency,
individuals are selectively susceptible to severe infections by
influenza and SARS-CoV-2 and show an impaired type I IFN
signature [125, 126]. In vitro, IRAK-1 regulates the transcrip-
tional activation of IRF7 by directly binding and phospho-
rylating it. TLR7- and TLR9-mediated IFNo production is
abolished in IRAK1-deficient mice, whereas inflammatory
cytokine production is not impaired [111]. This brings up
the question whether duplication of the JRAK gene and thus
IRAKI1 overexpression causes an increased activation of the
TLR7- and TLR9-mediated interferon-a induction pathway
leading to an increased release of interferons and conse-
quently to a hyperinflammatory immune response. However,
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CD169 expression on monocytes, which is correlated with
systemic type I IFN levels, was normal in P3 both while he
suffered from an infection and when he was free of infections
[127, 128]. Further, MECP2-overexpressing mice had been
described as particularly susceptible for severe influenza A
infection. During infection, they show neutrophilia, increased
cytokine production, excessive corticosterone levels, defec-
tive adaptive immunity, and vascular pathology. This raises
the question if the inflammation-underlying pathomechanism
in humans suffering from MECP2 duplication syndrome is
rather caused by the overexpression of MECP2 than the over-
expression of IRAK1 [107]. In a humanized mouse model
of MDS, intracerebroventricular antisense oligonucleotide
(ASO) therapy was shown to decrease MECP2 expression
in the brain and to reduce behavioral deficits as well as to
restore/correct reduced IFN-y mRNA levels in the blood
[129]. If inflammation in MDS is rather caused by the dupli-
cation of MECP? itself, than by duplication of IRAKI, ASO
against MECP2 might be a feasible treatment option for these
patients. The effects of such ASO therapy, applied in compart-
ments such as the blood and lungs, may also warrant further
investigation.

In summary, patients with MECP2 duplication syn-
drome do not show increased canonical NF-kB signaling
in whole blood, PBMCs, or SV40-immortalized fibro-
blasts. Therefore, we assume that these patients do not
benefit from a therapeutic suppression of this pathway.
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