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ABSTRACT
At a time when complex diseases affect globally 280 million people and claim 14 million lives 
every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. 
Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or 
pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we 
consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased 
susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented 
with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 
117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine 
diseases. We thus propose the term ‘autophagopathies’ to group together a class of complex human 
diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly 
related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated 
trafficking. The future of precision medicine for common diseases will lie in our ability to exploit 
these ATG SNP x environment relationships to develop new polygenetic risk scores, new manage
ment guidelines, and optimal therapies for afflicted patients.
Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal 
dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive 
pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, 
head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide 
association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated 
form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; 
MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, 
overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol- 
3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, 
methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated 
regions; WHO, World Health Organization.
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The rising incidence of complex illnesses and their costs have 
revolutionized basic research needs and approaches, but also 
patient management, and societal needs. Between 70 to 90% 
of the risk of developing a disease is due to the air we breathe, 
the water we drink, the diet we eat, and the surroundings in 
which we work and live [1]. Visibly polluted, infected, or not, 
the fact remains that we are now more than ever exposed to 

environmental risks. Thus, an unhealthy environment can be 
considered as a pandemic, affecting 280 million people world
wide and claiming 14 million deaths every year from hun
dreds of diseases, including neurodegenerative, autoimmune, 
inflammatory illnesses, and cancer [2]. Though critical in 
identifying the people at risk, the causal environment compo
nents (pathogens and/or pollutants) and the compromised 
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physiological mechanisms are not yet well understood. When 
it comes to environmental stress, we are not equal. However, 
presented with the same environment, regardless of the 
pathogens and pollutants we are challenged with, only 
a small fraction of individuals will develop pathologies. We 
thus reasoned that the efficiency of our inherited “environ
mental response machinery” may determine our susceptibility 
to illness.

Introduction

A. Overview of the autophagy pathway: an immediate 
cellular response to environmental challenges

Among the many mechanistic pathways, we focus on macro
autophagy (hereafter referred to as autophagy), a homeostatic 
pathway that also provides an immediate adaptive cellular 
response to environmental injury that ensures cell repair [3]. 
As suggested by its name (auto = self; phagy = eating), auto
phagy enables, in all eukaryotic cell types, the turnover of all 
organelles and most long-lived proteins by a pathway that 
begins with the formation of a double-membrane compart
ment, termed a “phagophore,” which captures these compo
nents from the cytosol. The phagophore expands into 
a completed vesicle, an “autophagosome.” Subsequently, the 
autophagosome rapidly fuses with a lysosome to become an 
“autolysosome,” in which the content is finally degraded. 
Successful completion of autophagy requires the coordinated 
orchestration of more than 69 different autophagy-related 
(ATG) and other proteins as well as regulators acting at 
different steps of the process, namely:

(1) ULK (unc-51 like autophagy activating kinase) com
plex (ULK1, ULK2, ATG13, RB1CC1/FIP200, and 
ATG101) initiates the induction step.

(2) Once activated, ULK1 phosphorylates BECN1 and 
ATG14, two components of the class III phosphati
dylinositol 3-kinase (PtdIns3K CIII) complex 
(PIK3C3/VPS34, PIK3R4/VPS15, ATG14, BECN1, 
and NRBF2), thereby enhancing PIK3C3 activity 
and phagophore membrane formation.

(3) WIPI1 (WD repeat domain, phosphoinositide inter
acting 1) and WIPI2 bind phosphatidylinositol- 
3-phosphate (PtdIns3P), generated by the PtdIns3K 
CIII; these effectors then recruit ATG16L1 that med
iates phagophore expansion through ubiquitination- 
like reactions.

(4) In the first ubiquitination-like reaction, ATG5 and 
ATG12 are conjugated to each other in the presence 
of ATG7 and ATG10. The attachment of the complex 
containing ATG5, ATG12, and ATG16L1 on the 
phagophore membrane induces the second complex 
to covalently conjugate phosphatidylethanolamine to 
LC3 (LC3-II), which facilitates closure of the phago
phore into the autophagosome.

(5) ATG9 (the ATG9-ATG2-WIPI1/Atg18 complex) is 
another factor essential for expanding the phago
phore, which cycles between endosomes, the Golgi, 
and the phagophore; ATG9 is a lipid scramblase that 

functions along with ATG2 to transfer lipid compo
nents for membrane expansion.

(6) ATG4 first primes LC3 for conjugation, and later 
removes LC3-II from the outer surface of newly 
formed autophagosomes; LC3 on the inner surface 
is eventually degraded when the autophagosome fuses 
with a lysosome.

(7) The fusion between an autophagosome and 
a lysosome involves several proteins, including 
LAMP, RAB7, and the second complex of PtdIns3K 
CIII (PIK3R4, PIK3C3, UVRAG, and BECN1), result
ing in vesicle breakdown and cargo degradation into 
autolysosomes by lysosomal hydrolases.

(8) Under both baseline conditions and times of stress, 
several autophagic receptors (including SQSTM1/p62, 
NBR1, CALCOCO2/NDP52, OPTN, DRAM1, 
WDFY3/ALFY, and TOLLIP) are recruited to recog
nize and facilitate the selective elimination of ubiquiti
nated protein aggregates and damaged/dysfunctional 
organelles by sequestration within autophagosomes; 
these aggregates and organelles would otherwise accu
mulate during the life of the cell (Figure 1).

Throughout development and life, autophagy is required for 
the maintenance, self-renewal, and differentiation of stem-like 
cells, such as in the hematopoietic system. Likewise, such an 
intracellular ‘renewal’ (i.e., recycling) process also plays an 
essential role in determining the homeostasis, functionality, 
and longevity of post-mitotic cells such as cardiomyocytes and 
neurons. In a state of emergency, exposure of all cell types to 
environmental challenges as varied as nutrient starvation, 
pathogens, and chemical pollutants massively and transiently 
upregulates the entire autophagy machinery to repair cells and 
meet their energy needs. Such an intricate interplay between 
autophagy and the environment is essential for cell/indivi
duals’ adaptation to changing conditions and, when impaired, 
predisposes to disease.

B. The long and winding road from ATG variations to 
disease susceptibility

Over the last twenty years, the completion of the human 
genome project and the remarkable progress of the genome- 
wide association study (GWAS) have accelerated the identifi
cation of hundreds of susceptibility loci for diseases, some of 
which concern autophagy-related genes. In December 2021, 
a PubMed search for “autophagy AND (susceptibility OR 
polymorphism OR SNP OR variant OR variation OR muta
tion)” yielded 9,076 entries. 243 relevant studies totaling 
3,504,075 participants (2 million patients and 1.5 million con
trols) – 77 are GWAS – have identified 263 common SNPs for 
69 ATG genes associated with 185 autoimmune, inflamma
tory, cardiovascular, neurological, and lung diseases and traits; 
all are common complex diseases.

We conducted a comprehensive survey of this ATG SNP 
list using the dbSNP (https://www.ncbi.nlm.nih.gov/snp/) [4], 
LitVar (https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/ 
Demo/LitVar/) [5], HaploReg (https://pubs.Broad-institute. 
org/mammals/haploreg/haploreg.php, v4.1) [6], and GTEx 
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(Genotype-Tissue Expression; https://www.gtexportal.org/ 
home/v8-release) [7] public databases:

i) The variety of defects in autophagy that are involved in 
human pathogenesis resulting in disease initiation, progres
sion, and treatment efficacy is considerable. Strikingly, most 
diseases are highly polygenic, influenced by many ATG var
iants, each giving a small effect.

ii) Rather than being a mere inventory of correlations, 
several ATG variations have pleiotropic effects affecting multi
ple ‘apparently’ unrelated diseases. Likewise, many of these 
SNPs have protective effects, allowing them to be maintained 
in the population. This antagonistic pleiotropy is undoubtedly 
related to the essential, ubiquitous, and double-edged roles of 
autophagy in pathologies [8]. These two features, polygenic 
and pleiotropic inheritances, make it challenging to identify 
causal SNPs [9] (see Tables S1-S7).

iii) The SNP-disease correlations are even more confusing as 
90% of the diseases associated with ATG alleles localize to non- 
coding genomic regions (intron, intergenic, 5’ and 3’ untrans
lated regions [UTRs]). Nearly one-third are regulatory SNPs, 
also called expression quantitative trait loci (eQTL), associated 
with a difference in transcript abundance. As such, these non- 
coding regulatory variations can dramatically affect the rate of 

autophagy flux and how individuals respond to environmental 
stimuli. However, very few functional genomic studies have so 
far investigated this ATG SNP x environmental interaction, 
which represents another critical bottleneck for SNP-disease 
correlations.

With this in mind, the present review aims to provide the 
scientific and clinical community with a comprehensive auto
phagy genomic resource to embrace health risk assessment, 
precision medicine, and new potential therapeutic opportunities.

Pleiotropy: opening pandora’s box

As autophagy is ubiquitous and essential for the survival of all 
cell types, its dysfunction can manifest like a ‘constellation’ of 
symptoms that affect any organ. Within each organ, we will 
briefly outline here the range of diseases associated with auto
phagy SNPs (Figures 2–5, Figures S1-S3, and Tables S2-S7). In 
these figures, panel A will emphasize that diseases can be inflam
matory, autoimmune, degenerative (right panel), or associated 
with cancer (left), and influenced by environmental cues, regard
less of their nature. Panel B will help to visualize the autophagic 
genes, the variation in which may give rise to similar clinical 
manifestations, i.e., the disease module. In keeping with this, 

Figure 1. Overview of the autophagy pathway in response to environmental challenges. Schematic illustrating the molecular machinery of autophagy including the 
major autophagy-related proteins and complexes. Associations of ATG polymorphisms with cancers (red) and non-cancer diseases (blue).
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panel C, when included, will present some preclinical mouse 
models linking a dysfunction in autophagy to the pathogenesis 
of major complex diseases (see a review [8] for more details 
on C).

A. Autophagy and neurodegenerative diseases

Roughly 40 million individuals suffer worldwide from 
Alzheimer disease and related conditions, a burden that is 
expected to explode as the population ages. To tackle this 
public health emergency, a treatment that prevents or delays 
the development of these devastating diseases is a critical 
unmet need. Critical for therapeutic intervention, the current 
consensus is that autophagy is essential to prevent the aging of 

long-lived post-mitotic neurons. A genetic defect in autopha
gy may initiate these diseases, alone or with concurrent aggre
gate-prone mutations [8]. Over the past five decades, we have 
learned how autophagy degrades selectively damaged orga
nelles and protein aggregates that would otherwise accumu
late during life. Beyond these cargos, autophagy is a quality- 
control system that degrades the aggregate-prone mutated 
proteins associated with several neurodegenerative diseases 
(such as Huntington disease, spinocerebellar ataxia, 
Parkinson disease, amyotrophic lateral sclerosis [ALS], and 
frontotemporal dementia [FTD]).

Variant discovery. To date, 30 common risk variants have 
been associated with various neurological disorders, from 
developmental to neurodegenerative diseases (Figure 2A). 

Figure 2. Deficiency in autophagy in human central nervous system diseases. (A) Summary of autophagy-related gene variations. (B) Steps of the autophagy 
pathway affected by SNPs. (C) Phenotype of autophagy-deficient mousemodels [10–25] �p -MAPT: phosphorylated-MAPT/tau.
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The most striking findings include: i) the high polygenic 
nature of these diseases linked with five to seven ATG var
iants: For example, Alzheimer disease (PIK3C3 [26], RUBCNL 
[27], ZFYVE1/DFCP1 [28], WDFY3 [29], and ATG10 [30]), 
schizophrenia (ULK1 [31], RB1CC1 [32,33], C9orf72 [34], 
PIK3C3 [35], AMBRA1 [36,37], and EGR1 [38]) and 
Parkinson disease (ULK2 [39], ATG7 [40], and LAMP1 [41]) 
among others. ii) Likewise, there is also substantial genetic 
pleiotropy across various neurological traits: AMBRA1 with 
schizophrenia [36,37], and autism [42], PIK3C3 with schizo
phrenia [35] and bipolar disorder [35], ATG7 with cerebral 
palsy [43], Huntington disease [44], and Parkinson disease 
[40] (for more details see the Tables S2-S7).

From genetics to biology. Heritability may result from both 
common and rare genetic variants that affect all steps of the 
autophagy pathway, from autophagosome formation and sub
strate sequestration to lysosomal degradation (Figure 2B). For 
instance, ALS-FTD-linked variations are rare missense, non
sense, and truncating mutations that target the ubiquitin- 
binding domains of the autophagy receptors SQSTM1 [45], 
OPTN [46], and UBQLN2 [47], thus compromising the bind
ing and the clearance of ubiquitinated aggregates. Similarly, 
other mutations are missense or whole-gene deletions of 
ULK1 [31], WIPI1 [48], WIPI2 [49], WDR45 [50], and 
GABARAPL1 [51] that impair the formation of autophago
somes. Along these lines, several autophagy-deficient mouse 
models recapitulate features of neurodegenerative diseases 10- 
25– (Figure 2C). From a clinical perspective, these loss-of- 
function mutations are associated with severe neurodegenera
tive defects that warrant a genetic diagnosis. For the more 
common, late-onset forms of diseases, 36 ATG variations are 
frequent SNPs in the promoters, introns, and 3’ UTR that 
alone confer a small risk. In the absence of a cure, we think 
identifying the causal ATG variants will be very informative 
for the early diagnosis and prognosis of these diseases.

B. Autophagy in infectious, autoimmune, and 
inflammatory diseases

More than ever, we appreciate how autophagy ensures 
our defense against infection with any pathogen, whether 
due to bacteria, viruses, parasites, or fungi. In this strug
gle, the autophagy pathway is essential for our survival as 
it immediately recognizes, captures, and kills invading 
pathogens through a selective process called xenophagy 
or virophagy when referring specifically to viruses. 
Beyond this innate clearance, autophagy promotes 
the second wave of adaptive immunity by ensuring anti
gen presentation to the T cells. All the survival, matura
tion, and effector properties of recruited troops of 
immune cells are controlled by autophagy 52. Upon reso
lution of an infection, autophagy limits the inflammatory 
response by the degradation of components of inflamma
somes (signalphagy [53]). Thus, by orchestrating overall 
defense, autophagy safeguards the host against infectious, 
autoimmune, and chronic inflammatory diseases.

Variant Discovery. Several ATG variations confer enhanced 
susceptibility to bacteria (peritonitis: CALCOCO2 [54]; Buruli 
ulcer: ATG16L1 [55,56], leprosy: IRGM [57], TOLLIP [58,59]; 

C. burnetii: ATG5 [60], MAP1LC3A [60]; sepsis: ATG5 [61], 
IRGM [62], TOLLIP [63]; uropathogenic E. coli: ATG16L1 
[64]; and tuberculosis: ULK1 [65,66], ATG10 [67], IRGM 
[68–73], TOLLIP [74–76]), viral (human papillomavirus: 
MCL1 [77]; hepatitis B virus: ATG5 [78], ATG16L1 [79], 
HIV: TOLLIP [80], and rhinovirus: TOLLIP [81,82]), and 
parasitic pathogens (leishmaniasis: TOLLIP [83]; and malaria: 
TOLLIP [84]) (Figure 3A). Regarding inflammatory bowel 
diseases, much has been written about Crohn disease (CD), 
which provides an excellent paradigm of a complex disease 
involving an autophagy defect. The first GWAS in 2007 high
lighted ATG16L1, and IRGM, as the most robust genetic loci 
so far described for CD [85,86]. Since then, 8 other genes 
(including ULK1, ATG2A, ATG4A, ATG4B, ATG4D, ATG5, 
ATG16L2, and CALCOCO2) with a total of 32 SNPs have 
been identified. All variations influencing CD are frequent 
(from 4% to 53% in the general population), and most CD/ 
variant associations are replicated across multiple ethnic 
groups (Figure 3B).

From genetics to biology. We focus on ATG16L1, which 
alone recapitulates all features of risk loci of complex diseases. 
ATG16L1 is part of the ATG12–ATG5-ATG16L1 trimeric 
complex, which defines the site where LC3 is lipidated on 
the nascent double-membrane autophagosomes [100]. 
ATG16L1 is the target of fifteen CD-associated SNPs; all 
except one are eQTLs located in introns. The most extensively 
studied SNP is rs2241880, which leads to T300A conversion 
[85,86]. Despite a massive body of work, how the T300A 
mutation alters the function of ATG16L1 remains unclear. 
The existing evidence argues that it has little or no effect on 
constitutive or starvation-induced autophagy [101–103]. 
Instead, it impairs a myriad of alternative intracellular traf
ficking pathways involved in innate immunity, such as the 
trafficking of secretory vesicles in intestinal Paneth cells 
[88,104], and the clearance of invading bacteria by xenophagy 
[101,102,104,105] (Figure 3C). Faced with an emergency, 
ATG16L1 also mobilizes LC3 and part of the autophagy 
machinery to pathogen-containing phagosomes to limit infec
tion [106]. Regardless of the pathway involved, i.e., either 
LC3-associated phagocytosis (LAP), xenophagy or both, the 
ATG16L1 T300A mutation renders CD patients very vulner
able to bacterial infections.

From one puzzling insight to another, at the molecular 
level, the function of ATG16L1 in LAP relies on 
a C-terminal tryptophan-aspartic acid (WD)-repeat 
domain that is interestingly targeted by a CD-associated 
mutation (T300A) [107]. Of note, T300A prevents the 
binding of the WD domain to a transmembrane protein, 
TMEM59, present on the phagosome, slowing down LC3 
lipidation and the LAP route [106–108]. Of interest, upon 
bacterial challenge, CASP3 (caspase 3) is also found to 
preferentially cleave the risk allele, decreasing the expres
sion of the full-length protein, leading to impaired xeno
phagy [104,105]. Even more disturbing, Atg16l1 loss in 
intestinal epithelial cells exacerbates chronic colitis by 
increasing apoptosis and/or necroptosis [109–111]. To 
guide new treatment options, the challenge will be to 
identify which of these canonical and non-canonical func
tions of ATG16L1 is turned off in CD.
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Figure 3. Deficiency in autophagy in human gastrointestinal disorders. (A) Summary of autophagy-related gene variations. (B) Steps of the autophagy pathway 
affected by SNPs. (C) Phenotypes of autophagy-deficient mouse models [87–93,93–99].
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C. Autophagy and cancer

More than 20,000 articles in PubMed NCBI have addressed 
the impact of autophagy on tumor development. However, no 
consensus has yet been reached, as two opposing hypotheses 
of pro- and anti-tumor autophagy still provoke strong con
troversy [112]. Indeed, some advocate that this process is 
harnessed by cancer cells to fuel their metabolism, prevent 
oxidative stress, and thus promote tumor growth and resis
tance to anti-tumor therapies. Others propose that autophagy 
can counteract malignant transformation by degrading signal
ing proteins, and by limiting chromosomal instability, DNA 
mutation, and inflammation while promoting immune 

surveillance, autophagic cell death, and senescence [112]. 
Reconciling these opposing functions, it was proposed that 
autophagy may play a critical role in suppressing tumors in 
the early stages of oncogenesis while sustaining the progres
sion and the resistance of established tumors [112].

Variant discovery. Thirty-six genes throughout the entire 
autophagy pathway are associated with the risk, theragnostic, 
and clinical outcome of 30 different cancer types, regardless of 
the anatomical location or histological type (carcinoma, mel
anoma, sarcoma, and hematological malignancies) 
(Figure 4A). Without listing all 93 polymorphisms, we note 
that the PIK3C3 SNPs tend to be enriched in different gastro
intestinal cancers (esophageal [113,114], gastric [115,116], 
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colorectal [117], and pancreatic [118]). Likewise, variations of 
all members of the ATG12 conjugation system (ATG5, ATG7, 
ATG10, ATG12, and ATG16L1) are associated with many 
solid cancer types (head and neck [119–121], breast [122– 
127], liver [78,128–130], bladder 131, and kidney cancers 
[132,133], and melanoma [134]), highlighting the pronounced 
impact of LC3 conversion in tumorigenesis (Figure 4B).

Beyond cancer risk, ATG SNPs emerge as universal pre
dictors for a wide range of anti-tumor treatments as diverse as 
chemotherapy (anthracycline and/or taxane: ATG5 [124]; 
cyclophosphamide: ATG13 [139]; ASPG [asparaginase]: 
ULK2 [140]; and platinum: ULK1, ATG3, ATG14, ATG10, 
DRAM1 [141]), anti-angiogenic therapy (anti-VEGF: 
RB1CC1 [142]), immunotherapy (BCG: ATG2B, ATG5 
[131]), targeted therapy (pazopanib: ATG4A, ATG4C, ATG5 
[132]; gefitinib: ATG5, ATG7, ATG10, ATG16L2 [143]), and 
radiotherapy (ATG10 [121]; ATG12, ATG16L2 [144]; and 
NBR1 [145]).

From genetics to biology. For patient management, the auto
phagy SNPs are confusingly protective or risk-enhancing. 
Located in non-coding genomic regions, these associations 
remain devoid of any molecular hypothesis. A few studies have 
so far documented a slight increase or decrease in ATG expres
sion, but whether this is enough to have an impact on the 
autophagy flux remains elusive. Identifying the causal variants 
and understanding the underlying molecular mechanisms repre
sent important challenges to clarify their contributions to tumor
igenesis. We hope that the characterization of the cancer- 
associated ATG SNPs will help to estimate the cancer risk and 
guide the use of anti-cancer molecules.

D. Presumed guilty by association

Overall, by piecing together information from 243 studies, we 
observed that 67 ATG variants over the 263 are associated 
with several pairs of diseases; many are recognized 
comorbidities.

● Several are shared across multiple inflammatory or auto
immune manifestations that target the gastrointestinal tract, 
lung, heart, or multiple miscellaneous tissues: such as CD and 
asthma (ULK1, and ATG12), CD and rheumatoid arthritis 
(IRGM, ATG5, ATG16L1, and ATG16L2), CD and ankylosing 
spondylitis (IRGM), CD and cardiovascular diseases (ATG4C, 
ATG4D, and ATG16L1), CD and systemic lupus erythemato
sus (SLE; IRGM, ATG5, and ATG16L2), CD, SLE and Grave 
disease (IRGM) and asthma and SLE (ATG5), among others. 
This agrees with the co-occurrence of inflammatory and auto
immune diseases and the long-recognized roles of autophagy 
in immunity and inflammation [52, 132].

● Equally anticipated from the role of inflammation in 
carcinogenesis, a growing number of studies have highlighted 
the association of 13 ATG variants with one or more inflam
matory diseases to one or more cancers: such as CD and 
NSCLC (ULK1), CD and cervical cancers (ATG4A), CD, 
asthma and cancers (ATG5), CD and gastric cancer glioma 
(IRGM), CD, arthritis and gastric cancer (IRGM), CD, chronic 
obstructive pulmonary disease (COPD), rheumatoid arthritis 
and cancers (ATG16L1), CD, rheumatoid arthritis, SLE and 
NSCLC (ATG16L2), rheumatoid arthritis and multiple 

myeloma (ATG5), SLE and cancers (ATG5), and gastritis 
and gastric cancer (CHMP2B).

● Similarly, thirteen ATGs are associated with two to eight 
cancers (ATG2B, ATG4A, ATG5, ATG7, ATG10, ATG12, 
ATG14, ATG16L1, ATG16L2, IRGM, MCL1, NBR1, and 
VMP1), indicating extensive pleiotropy. It may seem also 
intuitive that ATG variations could predispose carriers to 
multiple independent primary cancers, a neglected hypothesis 
that deserves attention given the high morbidity of this malig
nancy. Along this line, mice with a mono-allelic deletion of 
Becn1 show multi-site cancers (lymphoma, hepatocellular car
cinoma and lung carcinoma) [135,136]. This was further 
supported by the deletion of Ambra1 (liver and Lung cancers) 
[137] or atg5 (osteosarcoma, hepatocellular carcinoma and 
lymphoma) [138] and the expression of the UvragFS mutant 
(colorectal carcinoma, and lymphomas) [99] (Figure 4C).

● Intriguingly, Pandora’s box is also opened with ATG 
variants affecting ‘apparently’ unrelated phenotypes, such as 
degenerative diseases and cancer. For instance, several ATG7 
alleles are common to ccRCC and Parkinson disease. ATG10 
SNPs are a risk for breast cancer and Alzheimer disease, 
whereas C9orf72 variants are related to prostate cancer and 
ALS-FTD, ALS, or schizophrenia. The same issue applies to 
cancers and cardiovascular diseases (ATG9B, ATG7, 
ATG16L1, and ATG16L2), (see for references Tables S2-S7).

● Even more remarkable is that 20 ATG SNPs across 6 
autophagy genes (IRGM, ATG4A, ATG5, ATG10, ATG16L1, 
and ATG16L2) are associated with a cluster of diseases from 
autoimmune, inflammatory and infectious to degenerative 
diseases, and cancers. The most notable example is here 
again the ATG16L1 T300A SNP that alone confers 
a pleiotropic systemic risk for 18 distinct illnesses. These 
include, beyond CD and the intestine boundaries, the follow
ing: cardiovascular [146], infectious [55,56,64,79], inflamma
tory diseases (COPD [147], rheumatoid arthritis [148], 
psoriasis [149], and Paget disease of bone [150]), and eight 
cancers (breast [126], head and neck [119], lung [151,152], 
thyroid [153], gastric [154,155], colorectal [156,157], and 
hepatocellular [129] cancers, and melanoma [134]).

From genetics to biology. Such a disease network agrees 
with the myriad of roles of autophagy in cancer, inflamma
tion, infection, and neurodegeneration, thus pointing to an 
autophagy defect as the shared liability for these common 
diseases. However, caution is warranted when interpreting 
the data, because most arise from independent studies, and 
only three studies have associated an ATG SNP with two 
comorbidities in the same cohort (ATG16L1: HCC and cir
rhosis [158], IRGM: Crohn disease and non-alcoholic fatty 
liver disease [159], and CD and arthritis [160]). 
Understanding such a high level of pleiotropy might be an 
important step towards developing new autophagy- 
modulating drugs that might benefit multiple conditions.

Translating ATG SNP pleiotropy into the clinic

A. Proof of principle and limitations of transgenic mice

In the quest for this demonstration, mouse models have been 
instrumental in establishing the liability of an autophagy 
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defect in cancer, neurodegenerative, inflammatory, autoim
mune, and cardiovascular diseases [8]. A significant corner
stone is the demonstration in 2005 that the loss of autophagy 
in the central nervous system is sufficient to recapitulate the 
accumulation of aggregates and neurodegeneration in mice 
[10,11]. Thereafter, it was elegantly demonstrated that phar
macological activation of autophagy reduces, whereas inhibi
tion of autophagy increases, the formation and the 
neurotoxicity of aggregate-prone aggregates (mutant HTT 
[huntingtin], mutant SNCA/α-synuclein, and mutant 
MAPT/tau [161–163]). Along these lines, the mono-allelic 
loss of several autophagy genes (Atg16l1, Irgm1, Atg4c, Atg5, 
Becn1, Uvrag, Ambra1, etc.) was demonstrated in mice to 
predispose to neurodegeneration, inflammatory disease, age- 
related cardiac injury, and cancer (see for references 
Figures 2C-5C, S1C-S3C).

Although these elegant preclinical models have undoubt
edly linked defects in autophagy to pathologies, murine 
models do not sufficiently reflect the natural history of 
human diseases. The limitations include: i) essential differ
ences between human and mouse physiologies, and hence, 
the functions of autophagy may be more or less different, 
and ii) deletions/loss-of-function ATG mutations performed 
in transgenic mice are not typical of common variations 
identified in complex human diseases (see Tables S2-S7). 
Far from the polygenic nature of human diseases, these 
mouse models explore the homozygous deletion of one 
gene with critical lethal phenotypes. Lastly, while pollutants 
and microbes are major environmental variables for human 
pathogenesis, laboratory mice are housed in highly con
trolled, sanitized, and ventilated cages. Only a few studies 
have emphasized the impact of tobacco and pathogens on 
the development of inflammatory diseases such as CD and 
COPD in Atg16l1 [89,91], egr1 [164], and map1lc3b [165] 
murine models. This difference severely limits the transla
tion of findings from mouse models to the bedside of 
patients.

B. From the noise to risk threshold and polygenetic score

Fourteen years after the first GWAS on CD in 2007, 76 
GWAS and 242 genetic studies later, we are still surprised to 
find a colossal gap between ATG SNP and disease risk corre
lations. The considerable investment and the subsequent 
information have not yet improved patient outcome, either 
for risk-stratification or response to therapy. The mutational 
landscape of autophagy can be viewed as an iceberg. The 
small visible portion of the iceberg, herein presented, repre
sents the hotspots of missense, or frequently reported auto
phagy variations. In contrast, the larger and submerged 
portion of the iceberg is silent/non-coding mutations that 
have been overlooked, never reported, or insufficiently 
characterized.

Approximately 90% of the ATG SNPs are located in non- 
coding regions (Figure 5A). Given that these regions contain 
regulatory sequences (promoters, enhancers, introns, and 
3ʹUTR), we assume that these non-coding variations may 
control mRNA abundance by influencing the transcription, 
splicing, and stability through binding of a transcription 

factor, splicing machinery, or microRNA. Therefore, any var
iation in these non-coding sequences might alter gene expres
sion, affecting the autophagy flux, and disease susceptibility 
and severity.

One such example is the IRGM rs10065172 (c.313C>T), 
one of the most significant risk SNPs for CD. However, its 
discovery, a decade ago, has met some skepticism [166]. This 
was because this synonymous SNP does not change the 
sequence of the IRGM protein and was thus considered silent. 
Likewise, its high prevalence in 10% of unaffected populations 
argues against a pathogenic effect. Of interest, we showed that 
this type of synonymous SNP is of clinical relevance [167]. 
Indeed, this SNP changes the seed region of MIR196, 
a microRNA overexpressed in the inflamed intestinal epithelia 
of CD patients. Disrupting IRGM mRNA/miRNA regulation 
was sufficient to have an impact on IRGM expression and 
impair downstream clearance of bacteria by autophagy [167].

A few studies have reported the consequences of other 
non-coding ATG SNPs on the binding of upstream regulators, 
the activity of the promoters or 3ʹUTR by luciferase assays, 
and the downstream mRNA expression. Of interest, one of 
the biggest surprises to emerge from our analysis was that the 
variants linked to a disease tended to be active in the specific 
tissues that are relevant to this trait. To give the reader an 
overview of autophagic defects, we have thus completed the 
tables with the SNP annotations, the impact on transcription 
factor or miRNA binding, methylation, and expression quan
titative trait loci (mQTL and eQTL) as much as possible from 
the literature or our analyses. We would like to encourage, 
through this review, collaborative effort to gain insight into 
the variant-regulator-phenotype ‘trio’ for an improved under
standing of the regulation of the autophagy network that is 
linked to pathogenesis.

One hypothesis that emerges from these observations is 
that the rate of the autophagy flux is exquisitely sensitive to 
any change in the protein level of any autophagy member. 
Most ATG variants are non-coding and regulatory, with typi
cally a slight effect on the level of ATG proteins. This infers 
that each variant alone is not pathogenic. As they do not 
interfere with the reproduction of their carriers, these SNPs 
escape negative selection. Some alleles such as ATG16L1T300A 

are even positively selected as they offer a selective advantage 
against some pathogens (Mycobacterium ulcerans [56], 
S. typhimurium [101], Uropathogenic Escherichia coli [64]) 
or tumor development (non-small cell lung cancers [151], 
thyroid cancer [153], colorectal cancer [156], and gastric 
cancer [168]). Likewise, given their high frequency, the co- 
occurrence of multi-allelic combinations is common in a large 
number of individuals.

Thus, we propose that: i) the synergy of all ATG alleles may 
become strong enough to reach a particular ‘threshold’ of 
susceptibility to the disease. ii) Exceeding such a risk thresh
old is dependent on multiple alleles, age, and exposure to an 
environmental factor. As a result, each variant alone has 
a limited predictive power, and when combined into 
a polygenetic risk score, the association may be more robust. 
With the increasing use of molecular profiling, we regret that 
there is no autophagy gene panel-based testing when identify
ing patients at risk for complex diseases. Although relevant for 
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a pathway, no study has brought together the effects of all 
ATG variants (i.e., for the 69 autophagy members) into 
a polygenic risk score despite the importance it could have 
in estimating the risk, the genetic overlap between traits, and 
phenotype severity. Further studies are thus urgently needed 
to develop pan-autophagy polygenetic scores and validate 
their clinical utility in routine clinical practice.

C. The missing environmental link

The significant variability of disease expression by affected or 
unaffected ‘healthy’ carriers advocates for the intervention of 
environmental factors. Neither exposure to environmental 
challenges nor the presence of multiple genetic autophagy 
variants are individually the direct cause of a disease. Both 
combined genetic and environmental liabilities interact to 
push the individual over the threshold leading to disease. 
This notion presents considerable challenges and opportu
nities for the management of human diseases. We hope that 
understanding how autophagy gene-environment interactions 
affect disease outcome will guide more efficient and persona
lized treatment strategies. Limiting exposure to environmental 
factors or manipulating the host autophagy repair machinery 
should delay the onset of these diseases.

So far, the effects of ATG SNP-environment interactions 
have been primarily detected through the susceptibility to 
infection (Figure 5B). Likewise, approximately 15% of cancers 
are associated with hepatitis B virus (HBV), human papillo
mavirus, and Helicobacter pylori. While these infections are 
widespread, most infected people will not develop cancer. Of 
interest, people carrying variations in several autophagy genes 
have a greater risk of developing gastric (H. pylori: ATG16L1 
T300A [154,155], IRGM [155] and CHMP2B [169]), head and 
neck (HPV16 x smoking: MCL1 [77]), hepatocellular (HBV: 
ATG16L1 T300A [129], and ATG5 [78,130]), and cervical 
(HPV: ATG4A [170]) cancers in response to infection.

As a point of entry, the lungs are constantly exposed to 
microbes, irritants, allergens, or pollutants (Figure S1). At 
play, autophagy is immediately upregulated to protect the 
host from these environmental insults. This might explain 
why the respiratory system is particularly vulnerable to 
a spectrum of alterations of autophagy in asthma (ULK1 
[171], MAP1LC3B [171], ATG5 [171–174], ATG7 [173] and 
NUFIP1 [175]), pulmonary fibrosis (ATG5, ATG10, and 
ATG12 [176], TOLLIP [177–179]), chronic obstructive pul
monary disease (COPD: ATG16L1 [147], and EGR1 
[147,164]), tuberculosis (ULK1 [65,66], IRGM [68–73], 
ATG4C [180], and TOLLIP [74–76]), and lung cancers 
(NSCLC: ULK1, ATG3, ATG14, DRAM1 [141], ATG4A 
[181], ATG5 182, ATG10 [141,151,183], ATG12 [144,151], 
ATG16L1 [151], ATG16L2 [144]; NSCLC EGFR*: ATG5, 
ATG7, ATG10, ATG12, ATG16L1, ATG16L2 [143]). Of global 
growing concern, COPD and lung cancers are the third most 
common cause of death and the leading cause of cancer- 
related death, respectively. Both result from chronic exposure 
to cigarette smoke and air pollution, a “silent killer” claiming 
five million lives worldwide every year (WHO, 2021 [2]). 
However, despite the magnitude of the health effects, only 
a few ATG variants have been associated with exposure to air 

pollutants, such as pulmonary fibrosis (coal: ATG5, ATG10, 
and ATG12 [176]), asthma (diisocyanate: NUFIP1 [175]), 
acute respiratory infections (AIR quality x rhinovirus: 
TOLLIP [81,82]), or lung cancer (non-smokers: MCL1 [184]).

From genetics to biology. We acknowledge that the promis
ing start to studies associating specific ATG SNPs with disease 
suffers from several limitations. So far, the ATG SNP- 
environment interactions remain elusive. From 243 studies 
(3.5 million participants), 52 studies (totaling 36,428 patients 
and 22,800 controls) have documented ‘autophagy gene ×  
environmental’ interactions in conditions of infection (bac
teria: 28 studies, 19,043 patients; virus: 9 studies, 2966 
patients; and parasite: 2 studies, 950 patients), tobacco usage 
(7 studies, 11,772 patients), exposure to coal (1 study, 705 
patients), bisphenol A (1 study, 200 patients), diisocyanate (1 
study, 88 patients), and air pollution (3 studies, 854 patients). 
Of these studies, four were African, eight European, seven 
American, and twenty-six Asian. However, due to differences 
in allele frequencies, the predictive power of these findings in 
relation to European populations is limited. Thus, for future 
precision medicine we encourage new studies that broaden 
the ethnic diversity.

Attention should also be paid to gene regulation as most 
disease-associated SNPs are cis-eQTL, the expression of 
which is plastic and highly specific for a particular environ
mental cue. We now appreciate that pollutants are endocrine 
disrupters of signaling pathways and lead to abnormal gene 
expression. However, previous efforts have underestimated 
the impact of pollutants on the expression of ATG eQTL 
variants. Several arguments can be put forward to explain 
this huge gap: i) There is no assessment of the type of 
environmental exposure (external and internal levels, latency 
periods) in the investigated population-case cohorts. ii) 
Rather than a single-environment stress paradigm, it should 
be emphasized that we are exposed in the ‘real world’ to low 
but chronic exposure to a large variety of chemicals and 
stressors. Our modern lifestyle risk factors include pollutants, 
medication, pathogens, smoking, alcohol abuse, and diets rich 
in processed foods. iii) This intricate interaction is further 
complicated by the long latency period, with exposure to 
a causal agent typically occurring years to decades before 
disease diagnosis [185]. Thus, during our lifetime, our body 
accumulates long-lived and hydrophobic chemicals resulting 
from different routes and times of exposure. The totality of 
the pollutants and their metabolites in the blood and tissues is 
called the exposome [185,186]. iv) However, only a very lim
ited number of widespread pollutants are currently moni
tored by the agencies that measure the quality of air, water, 
and food. As a result, it is challenging, if ever possible, to 
identify from ‘short’ monitoring the causal pollutants and 
stressors that affect the expression of ATG eQTL and thereby 
the onset of disease.

To tackle the complex mixture of contaminants, we pro
pose to stimulate interdisciplinary research to develop, test, 
and validate internal and external biomarkers that could pro
vide more accurate estimates of environmental exposure rele
vant to chronic environmental diseases. The impact of the 
environment on human health should then be reconstructed 
through a combination of blood-based autophagy polygenetic 
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and exposomics risk scores (i.e., we propose to call this the 
‘genexposomic’ score). Identifying autophagy genexposomics 
biomarkers will provide both prevention programs to delay 
the onset of these devastating diseases in the at-risk popula
tion and the rationale of the manipulation of autophagy in 
new therapeutic opportunities.

Impact of autophagy SNP in the era of precision 
medicine: a place for autophagopathies

Taken together, the compilation of the ATG variations 
presented herein is a major step forward in understanding 
these common and untreatable diseases. However, as yet 
there are no clinical practice guidelines harnessing this 
genetic information, most likely because of the small effect 
of each variant. If these associations are confirmed, detect
ing the ATG risk alleles from blood samples will be critical 
for risk stratification, patient diagnosis, and treatment deci
sions. Such ATG SNP tests may identify CD patients with 
an increased risk of cancer, thus enabling diagnosis of 
cancer at an early stage when they have the best chance 
of being cured. This new information may also limit treat
ment choices, as immunosuppressive drugs for CD may 
further increase the risk of cancer. Although relatively 
rare, clinicians dealing with CD should also be aware of 
several IRGM SNPs linked to the increased risk of oppor
tunistic tuberculosis. Similarly, we should remember that 
some ATG SNPs are associated with cancer and neurologi
cal diseases. Therefore, a critical challenge will be to recog
nize these ATG SNP carriers to help disease screening 
programs, prophylaxis, and precision care to promptly 
relieve complications of comorbidity. We thus propose the 
term ‘autophagopathy’ to group together a class of genetic 
diseases the etiology of which concerns a defect in the 
autophagy machinery, whether directly related to an abnor
mal autophagic flux, LC3-associated phagocytosis, or any 
associated trafficking. This model assumes that neither 
genetic autophagy variants nor exposure to environmental 
challenges alone directly cause disease. However, SNPs that 
lead to low-autophagy impairment may alter the cell’s abil
ity to detoxify damaged organelles when challenged by an 
environmental factor. As a corollary, any ATG SNP would 
predispose individuals to develop this wide variety of dis
eases (such as cancer, infection, and neurodegenerative, 
cardiovascular, metabolic, and inflammatory diseases), 
only upon exposure to this particular environmental risk; 
the nature of which will determine the organ affected, and 
the diseases.

Thus, through this comprehensive atlas, we aim to bring 
autophagy into precision medicine. In the near future, physi
cians will offer patients the option to have their genome 
sequenced as a routine diagnostic procedure in their health 
care regimen. The autophagy-targeted SNP panel and the 
related polygenetic and exposomics risk scores will help pre
dict an individual’s risk of developing an autophagopathy. 
Because it will provide a diagnosis, and early treatment 
options, the implementation of this approach is a major global 
health issue.
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