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Abstract

Objective.—Feasibility of three-dimensional (3D) tracking of volumetric modulated arc therapy
(VMAT) based on VMAT—-computed tomography (VMAT-CT) has been shown previously by

our group. However, 3D VMAT-CT is not suitable for treatments that involve significant target
movement due to patient breathing. The goal of this study was to reconstruct four-dimensional
(4D) VMAT-CT and evaluate the feasibility of tracking based on 4D VMAT-CT.

Approach.—Synchronized EPID images of phantoms and linac log were both sorted into four
phases, and VMAT-CT+ was generated in each phase by fusing reconstructed VMAT-CT and
planning CT using rigid or deformable registration. Dose was calculated in each phase and was
registered to the mean position planning CT for 4D dose reconstruction. Trackings based on 4D
VMAT-CT+ and 4D cone beam CT (CBCT) were compared. Potential uncertainties were also
evaluated.

Main results.—Tracking based on 4D VMAT-CT+ was accurate, could detect phantom
deformation and/or change of breathing pattern, and was superior to that based on 4D CBCT.
The impact of uncertainties on tracking was minimal.

Significance.—Our study shows it is feasible to accurately track position and dose based on
4D VMAT-CT for patients whose VMAT treatments are subject to respiratory motion. It will
significantly increase the confidence of VMAT and is a clinically viable solution to daily patient
positioning, in vivo dosimetry and treatment monitoring.
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1. Introduction

Respiratory motion is a major obstacle to radiotherapy for patients with lung or

upper abdomen cancer and causes both geometric and dosimetric uncertainties. Current
radiotherapy planning for those patients usually requires a generous margin around the
tumor to account for possible uncertainties, which will limit the total dose that can be safely
delivered. To consider respiratory motion, a four-dimensional (4D) computed tomography
(CT) is usually obtained before treatment for planning purpose (Low et al., 2003). Currently
most linear accelerators (linacs) do not have 4D kilovoltage (kV) cone beam CT (CBCT)
option during treatment (Takahashi et al., 2013). Instead, a three-dimensional (3D) or 4D
CBCT before each treatment fraction is acquired. In many clinics, CBCT is performed
before and after lung stereotactic body radiotherapy (SBRT) to help with patient setup and
determine the patient’s final position for dose estimation (Purdie et al., 2007; Yin et al.,
2008; Sonke et al., 2009; Lambrecht et al., 2016). These imaging techniques do not track
tumor location during beam delivery, while it is well known that the movement of thoracic
and abdominal organs and tumors can vary unpredictably minute by minute (Seppenwoolde
et al., 2002; Dhont et al., 2018). They also introduce extra imaging dose, e.g., CBCT can
introduce 1~29 cGy in each fraction to healthy tissues depending on patient size and scan
site (Murphy et al., 2007; Ding and Coffey, 2009), and 4D CT or CBCT will introduce
even higher dose to the patients (Murphy et al., 2007; Cooper et al., 2019). In addition,
each CT scan will introduce several hundred to several thousand dollars charge (Zhou et al.,
2018), which is a significant burden to the patients, especially when imaging is performed
frequently.

Among radiotherapy modalities, VMAT has been increasingly used and shows specific
advantages for various cancer sites because of its short treatment time and improved dose
conformity (MVerbakel et al., 2009; Ong et al., 2010; Popescu et al., 2010; Qiu et al.,

2010; Quan et al., 2012; Teoh et al., 2013; Nichols et al., 2014; Jin et al., 2019). 3D
megavoltage (MV) CT reconstruction using portal images acquired during VMAT, so called
“VMAT-CT”, was first proposed in 2010 (Poludniowski et al., 2010). Our group previously
demonstrated the feasibility of 3D tracking and adaptation of VMAT based on VMAT-CT
(Zhao and Zhang, 2020). However, 3D VMAT-CT is not sufficient for treatments that
involve significant target movement due to patient breathing. Kida et al. (2011) developed
a 4D version of VMAT-CT and compared two tracking methods that were based on 4D
VMAT-CT and in-treatment kv CBCT for two patients. They applied a constraint on multi-
leaf collimator (MLC) mation to ensure target was always exposed during treatment, which
is not clinically realistic. There are some other shortcomings of 4D VMAT-CT like limited
field of view (FOV), low image quality and no electron density information.

The goal of this study is to extend our previous study and develop a technique to track

lung VMAT based on 4D VMAT-CT. Comparison with tracking based on 4D CBCT and
uncertainties associated with 4D VMAT-CT were also evaluated. As the previous studies
(Kida et al., 2011; Zhao and Zhang, 2020; de Bruin et al., 2021), tracking in this study refers
to the tracing of intrafraction patient position, respiratory pattern and dose, rather than the
adaptation of MLC aperture to the tumor position in real time during treatment.
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2. Materials and methods

2.1. Phantoms, treatment planning, and data collection

A QUASAR™ programmable respiratory motion phantom (Modus Medical Devices Inc.,
London, Ontario, Canada) was used in this study (figure 1(a)). The phantom has an acrylic
body and a motor driving a cedar wood cylinder mimicking movement of the lung. The
cedar wood cylinder splits in the middle and has a 3-cm diameter ball mimicking a tumor.
We set up the QUASAR phantom to have 2 breathing patterns: one regular sine wave with
a period of 4 second and amplitude of 10 mm; four irregular breathing patterns extracted
from a real patient’s breathing signal, with the period ranging between 3 and 5 second, and
the amplitude ranging between 1 and 2 cm. An in-house deformable lung phantom (Zhao
and Zhang, 2020) was also used in this study (figure 1(b)). The deformable tumor which is
a small balloon filled with gel was tied with strings on both ends: one end of it was fixed
and the other end was attached to the QUASAR phantom to drive the tumor with desired
breathing pattern and to deform the tumor.

4D cine planning CT of the QUASAR phantom and the deformable phantom were acquired
with a 16-slice GE LightSpeed CT scanner (GE Medical Systems, Milwaukee, W1, USA)
and reconstructed with Advantage 4D (GE Healthcare, Waukesha, W1, USA). While
acquiring 4D planning CT, a respiratory signal was acquired by the Real-Time Position
Management (RPM) Respiratory Gating system (Varian Medical Systems, Palo Alto, CA,
USA) concurrently, and a probability density function (PDF) of tumor position versus time
was obtained. The gross tumor volume (GTV) was delineated on all 4 phases (max exhale,
mid-exhale-inhale, max inhale, and mid-inhale-exhale) of 4D planning CT by setting a

HU (Hounsfield unit) threshold. Mean position of the PDF was calculated, and from the
four-phase planning CT data sets, one phase’s data set was chosen as the mean position
planning CT (MPPCT) if that phase’s GTV was closest to the mean position (Harsolia et al.,
2008).

4D union plan was created for both QUASAR phantom and the deformable phantom in
Pinnacle v9.10 treatment planning system (TPS) (Philips Medical Systems, Fitchburg, WI,
USA). 4D union plans required the contour of the maximum intensity projection (MIP)

of the target as internal target volume (ITV), which encompassed all possible locations

of the tumor. Because phantoms do not have microscopic disease, we did not add an
additional margin to account for that and expanded the ITV by 0.5 cm for setup error to
construct the planning target volume (PTV). The 4D union plan accounts for respiratory
motion measured during planning but does not account for changes in respiratory pattern
throughout treatment, and is the standard practice for lung cancer radiotherapy in our clinic
and many other clinics. VMAT Plans had two full 6 MV arcs, 45° (clockwise arc) or

135° (counterclockwise arc) collimator angle, 50 Gy heterogeneous prescription, 3x3x3
mm?3 dose grid, 1800~2000 total Monitor Units per fraction for 5 fractions. All plans were
delivered by Elekta Versa linac (Elekta Oncology Systems, Crawley, UK).
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2.2. Respiratory signal extraction and 4D VMAT-CT reconstruction

Normalized cross correlation (NCC) method (Kida et al., 2011) was used in this study to
extract respiratory signals from EPID images acquired during VMAT. Without any external
surrogates for tumor motion, shift of tumor between two consecutive EPID images was
quantified by computing the NCC matrices of the same fixed area in the two EPID images.
Repeating the process for all acquired images and matching the timestamp of EPID images
stored in the iView system, a temporal tumor shift signal was acquired. However, this signal
may contain pseudo components brought by gantry rotation that needed to be removed by
applying a band pass filter, and 0.2 Hz and 1 Hz were used as thresholds in this study
because patient breathing period is usually between 1 and 5 seconds (Kida et al., 2011).
Unlike the plans in Kida et a/. (Kida et al., 2011), target exposure was not guaranteed during
the entire treatment because we did not set any constraint on MLC maotion, which is the case
for the clinical plans. To split the images into 4 phases, a time-based sorting method was
used to get approximately same number of images in each phase in order to ensure image
quality was comparable in each phase. VMAT-CT reconstruction was then carried out in
each phase using the method reported by our group previously (Zhao and Zhang, 2020).

For the QUASAR phantom, rigid registration was performed between 4D VMAT-CT and
MPPCT because we need to register reconstructed VMAT-CT in each phase to images with
a clearly delineated contour of GTV and to generate a composite dose. After one phase’s
VMAT-CT was rigidly registered to MPPCT, the rigid registration matrix was applied to
the moving cylinder insert in MPPCT and pixel-to-pixel electron density propagation was
performed between registered region of MPPCT and VMAT-CT to create VMAT-CT+ in
each phase. VMAT-CT+ includes patient position information during the treatment and has
the same FOV and Hounsfield Unit (HU) scale as planning CT.

For the deformable phantom, deformable registration workflow in MIM (MIM Software
Inc., Cleveland, OH) was used. First, a rigid alignment between each phase of VMAT-

CT (primary dataset) and the MPPCT (secondary dataset) was performed, and the rigid
transformation matrix was applied to the MPPCT. A local deformation was then performed,
and local deformable matrix was applied to the local PTV area on the MPPCT to generate
VMAT-CT+ in each phase.

2.3. Tracking based on 4D VMAT-CT

Figure 2 shows the workflow of 4D dose reconstruction in this study. Linac log and

EPID images were individually timestamped and were synchronized by matching the MLC
positions. The phase-dividing timestamps in EPID images were applied to the linac log

to sort the MLC control points into four phases. Interpolation between control points was
performed if any EPID timestamp fell between two control points’ timestamps in linac

log (Poulsen et al., 2012). Four new beam delivery files that were generated based on

four phases’ control points together with four sets of VMAT-CT+ DICOM images were
imported into TPS. Dose was calculated in each phase on its corresponding VMAT-CT+,

and each phases’ dose matrix was registered using the transformation matrix derived from its
VMAT-CT+’s registration to MPPCT.
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For lung patients, certain clinics take 4D CBCT before each fraction for dose calculation
(Sonke and Belderbos, 2010), and we therefore evaluated the dose differences based on

4D CBCT and 4D VMAT-CT+. For the QUASAR phantom, 4D planning CT captured the
original breathing pattern (breathing 0), 4D CBCT was taken with a different breathing
pattern (breathing 1) to mimic a possible change after planning CT, and 4D CBCTgyound
was taken after we changed the breathing pattern again to mimic a further change after
CBCT and this pattern was used during VMAT (breathing 2). For the deformable phantom,
4D planning CT captured the original phantom geometry and breathing pattern (status 0),
4D CBCT was taken with a different breathing pattern and a different deformation of

the phantom (status 1), and 4D CBCTgroung Was taken after we changed the breathing
pattern and phantom deformation again and this status was used during VMAT (status 2).
We extracted the respiratory signal from 4D CBCT projection images and reconstruct the
composite dose the same way as we processed VMAT-CT images. 4D CBCTyqyng Was used
as the ground truth for both phantoms.

2.4. Uncertainty analysis

The main uncertainties that may affect the final dose in our study are from rigid or
deformable registration. To evaluate the uncertainties brought by rigid registrations in 4D
cases, we compared the reconstruction matrix between each phase of 4D VMAT-CT+

and MPPCT with that between each phase of 4D CBCTgroung* (MPPCT registered to
CBCTground) @and MPPCT under the same breathing pattern for the QUASAR phantom. The
impact of uncertainty from rigid registrations on dose was tested by shifting MPPCT the
average uncertainty in each of X, Y, and Z-direction in a copy of the original plan to find
out the dose difference. 3D gamma (Wendling et al., 2007) was also calculated with an
acceptance criteria of 3% and 3mm.

To evaluate the uncertainty brought by deformable registrations in 4D cases, after registering
MPPCT with each phase of 4D VMAT-CT+ and 4D CBCTgrqung+ Of the deformable
phantom, we transferred PTV in MPPCT to each phase of 4D VMAT-CT+ and 4D
CBCTgroung* through deformable registration, and compared deformed PTV in VMAT-CT+
with that in CBCTgyqyng+. Hausdorff distance (HD), Mean distance to agreement (MDA,
Dice similarity coefficient (DSC) and Jacobian determinant (Brock et al., 2017; Woerner et
al., 2017) were evaluated. The impact of uncertainty from deformable registration on dose
was tested by expanding or shrinking the PTV contour in each phase of 4D VMAT-CT+ by
mean HD, calculating the dose in each phase, and registering back to MPPCT to get a new
composite dose. 3D Gamma was also calculated.

3. Results

We verified both regular and irregular respiratory signals extracted from EPID images by
comparing them with the input signals fed to the QUASAR phantom (figure 3). For regular
breathing pattern, the setup period was 4 seconds and measured period was 3.99 seconds;
for irregular breathing pattern, the mean setup period was 2.66 seconds and measured mean
period was 2.68 seconds. Note the synchronization is for period, not amplitude, and the
reason is we sorted EPID images into 4 phases based one time. Once the images were sorted
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correctly, the reconstruction was only dependent on the selected images in that phase and did
not reply on the amplitude of the respiratory signal.

Figure 4 shows the reconstructed 4 phases VMAT-CT images of both the QUASAR phantom
and the deformable phantom. Locations of center of mass in phases 1 and 3 in VMAT-

CT images of the QUASAR phantom were compared with 4D planning CT. For regular
breathing pattern, planning CT showed 20 mm displacement while VMAT-CT showed 21
mm; for irregular breathing pattern, both planning CT and VMAT-CT showed 16 mm
displacement.

Figure 5 shows dose calculation and tracking for the QUASAR phantom and 4D deformable
phantom. Compared with the ground truth, VMAT-CT can accurately track the change

of respiratory pattern and deformation (Gamma passing rate is always 100%), while pre-
treatment CBCT cannot detect the changes during VMAT (Gamma passing rate is 85.5%
and 81.3% for the QUASAR phantom and deformable phantom, respectively).

Tables 1 and 2 show rigid and deformable registration uncertainties, and each try is the
averaged result from 4 phases. For the rigid registration, shifting the MPPCT the mean
uncertainty in each direction induces the largest point dose uncertainty as 2.76, 0.59 and
2.81Gy in X, Y and Z-direction, respectively, and the 3D gamma passing rate is always
100%. For the deformable registration, the expansion or shrinkage of the mean HD reduces
or increases the mean PTV dose by 0.97 Gy and 0.80 Gy, respectively, and the 3D gamma
passing rate is 99.7%.

4. Discussion

We demonstrated the feasibility of 4D VMAT-CT reconstruction, geometry and dose
tracking of lung VMAT based on 4D VMAT-CT. Kida et al. (2011) showed it is possible

to extract respiratory signal from EPID images and reconstruct 4D VMAT-CT with target
constantly exposed to radiation, while real clinic VMAT plans will not guarantee target is
always exposed during treatment. In this study, we solved the main challenge that comes
from the image quality of realistic MV projections with the target partially blocked by MLC,
and we proved it’s still possible to extract the respiratory trace and reconstruct VMAT-CT.
The other novelty of this work is that there is no previous study about VMAT-CT-based 4D
dose reconstruction or tracking, while we registered 4D VMAT-CT with MPPCT to create
4D VMAT-CT+ so that we can have the full FOV and the electron density information for
dose calculation, and demonstrated the feasibility of dose accumulation workflow with 4D
VMAT-CT.

The feasibility study presented here mainly focused on lung cancer. As long as there is
enough density difference around the target region, the 4D VMAT-CT workflow could be
applied to other sites with respiratory motion as well. At a minimum, we expect it is
applicable to various types of thoracic cancers including lung cancers, thymic cancer, pleural
cancer and tracheal cancer, esophageal cancer, upper abdomen cancer close to air cavities or
bones, and cancer patients with fiducials.

Biomed Phys Eng Express. Author manuscript; available in PMC 2023 October 18.
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Reconstruction of 4D VMAT-CT would eliminate extra imaging dose and treatment cost
since the images come directly from the treatment beams and no extra hardware or
diagnostic/therapeutic beam time is required, and can potentially reveal daily nonrigid
anatomic changes, random positional errors, motion pattern change etc. during VMAT.
None of the current imaging techniques can provide 3D or 4D patient’s anatomy and dose
information during RT. The emerging in-treatment kV CBCT (Kida et al., 2012), which

is not available in most clinics, cannot achieve those without introducing substantial extra
dose and/or treatment delay, suffers from the possible isocenter displacement between kV
and MV treatment beams, and increased treatment cost. The emerging magnetic resonance
imaging guided linear accelerator (MRI-linac) has very low availability and shortcomings
such as not being able to image patients with metal-implants, image distortion, electron
returning effect, long scan time and treatment duration, higher treatment cost and substantial
structural investment. In contrast, our tool is a convenient, low-cost, harmless, effective
imaging tool that can provide critical patient information

We determined NCC and time-based sorting are not sources of uncertainties. We verify

the respiratory signal extracted from EPID images using NCC method side by side with
the EPID images (the movement of target is visible on EPID images) to make sure the
detected shift direction is correct. If certain image (at most a few) is sorted into the wrong
phase using time-based sorting, which will be more likely in middle phases because target
moves faster in those phases and sorting is slightly more error-prone, it will not make a big
difference because the number of wrong images is a very small fraction of the total number
of images, and the images in middle phases are usually already a little blurrier since the
target moves faster. We verified the NCC method and time-based sorting using 8 patient
beams and the results are all accurate compared to the ground truth.

Previous studies reported amplitude-based sorting shows superior results than time-based
sorting (Lu et al., 2006; Wink et al., 2006; Kavanagh et al., 2009). However, there are
usually 200 EPID images for a full arc lung SBRT beam, and each phase only has 50 images
using time-based sorting. If amplitude-based sorting is used, there could be a big difference
in the number of images in each phase: there would be more images in end-inhale or end-
exhale phase when tumor slows down, and middle-phase VMAT-CT will then have poorer
image quality than VMAT-CT in the end-exhale/inhale phases. In addition, NCC method
may not always detect amplitude correctly because sometimes blurred images or blockage
from the MLC would generate a wrong amplitude of target movement, so amplitude-based
sorting could introduce more uncertainties. If the sampling rate of EPID image could be
increased in the future, we can have less blurred image and amplitude-based sorting can be a
possibility then.

As Kida et al. (2011), we adopted 4 phases in this 4D study, and VMAT-CT in each phase
shows the average tumor position in that phase. Since we synchronized the image and

the log file, the control points would also be correlated to the averaged position in that
phase. With more phases, more accurate mapping of control points to target position could
potentially be realized. The uncertainty brought by the limitation of four-phase binning still
needs further investigation. Because the number of images in each phase is less after the
total number is divided by four, improvement in image quality or sampling rate in 4D cases

Biomed Phys Eng Express. Author manuscript; available in PMC 2023 October 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhao and Zhang

Page 8

is therefore even more important than in 3D cases as we discussed in our previous study
(Zhao and Zhang, 2020). Better image quality will improve the accuracy of target tracking,
and more images would allow us to divide the images into more phases and have better 4D
dose evaluations.

VMAT-CT is currently reconstructed after treatment due to the limitation of computation
speed. It does not replace 4D CBCT or kV cine images for patient setup purpose prior to
beam delivery. Rather, it provides in-treatment tracking signal and dose accumulation after
beam delivery. It essentially removes the necessity of pre-treatment imaging for adaptive
therapy or dose tracking purpose, and can replace in-treatment and post-treatment CBCT
because the patient’s information during VMAT is already recorded. Current practice with
external device for intrafraction motion management struggles to establish the target position
relative to margin set before treatment or to establish the target position relative to organs at
risk, because the external surrogate has insufficient correlations with internal motions (Fayad
etal., 2011) and cannot provide anatomy information. The additional in-treatment imaging
may solve the problem, but will introduce extra dose and treatment cost. With VMAT-CT, if
there is positional inconsistency, 4D dose reconstruction can help to evaluate where the hot
and cold spots are and initiate the offline adaptive re-planning.

Deformable image registration has been discussed extensively in the literature. Lung
deformable registration uncertainty presented in this study is consistent with the previous
studies (Kashani et al., 2008; Ostergaard Noe et al., 2008; Brock, 2010; Niu et al., 2012).
Similar to Niu et al. (2012), we found the resulting dose uncertainty is largest in steep

dose gradient region. For further clinical applications, comprehensive commissioning and
quality assurance are required according to AAPM Task Group 132 (Brock et al., 2017). The
MIDRAS study (Brock, 2010) showed the deformable registration uncertainty increases due
to the lack of anatomical markers and contrast in certain anatomical region such as liver,
which is a similar challenge that VMAT-CT faces. Our group is actively developing novel
methods to preprocess EPID images, remove the blurred region, improve the image quality
of EPID images and subsequent VMAT-CT, which would reduce deformable registration
uncertainty and increase confidence in dose accumulation. There is a strong need for
commercially available deformable phantom which would also help with establishing a
robust clinical dose accumulation workflow.

One potential error that needs further investigation is the possible discrepancy between
delivered beams and recorded linac log. Several studies (Wijesooriya et al., 2012; Chuang et
al., 2020) have reported the discrepancy between the actual machine parameters at treatment
and information recorded in log files. Since we relied on the machine parameters in log

files and interpolated control points for dose reconstruction in this study, there could be

an additional source of error that needs more assessment. The EPID images reveal some
machine parameters such as MLC positions, and a careful calibration is needed to extract
this information from EPID to synchronize with and interpolate the control points in log
files.

In conclusion, we extended our previous 3D study to 4D scenarios, reconstructed 4D
VMAT-CT using realistic patient breathing patterns, calculated 4D doses and validated them.

Biomed Phys Eng Express. Author manuscript; available in PMC 2023 October 18.
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4D VMAT-CT can be a very useful tool for respiratory signal tracking and dose verification
for cancer patients whose treatments are subject to the motion issue.
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Figure 1.
(a) QUASAR phantom; (b) descriptive figure of an in-house deformable lung phantom.
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Figure2.
Workflow of 4D dose reconstruction based on VMAT-CT+.
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Figure 3.

Respiratory signals extracted from EPID images were synchronized with input signals to
Quasar phantom. Top: regular sine wave breathing pattern. Bottom: irregular breathing
pattern.
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Phase 1 Phase 2 Phase 3 Phase 4

Figure 4.
Coronal view of reconstructed 4D VMAT-CT images of the QUASAR phantom (top) and

the deformable phantom (bottom). Phases 1-4 refer to max exhale, mid-exhale-inhale, max
inhale, and mid-inhale-exhale.
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Figure5.

4D tracking demonstrated on (a) a QUASAR phantom and (b) an in-house 4D deformable
phantom. (From left to right) planned dose: dose distribution in the original plan; dose
ground truth: dose based on CBCTgroung*; VMAT-CT dose: dose based on VMAT-CT+; 3D
Gamma plot comparing VMAT-CT dose and dose ground truth; CBCT dose: dose based on
pre-treatment CBCT+; 3D Gamma plot comparing CBCT dose and dose ground truth. The
blue shaded area represents the original or new PTV.
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Rigid registration uncertainties in 4D VMAT-CT.

Tries X (mm) Y (mm) Z(mm) Total (mm)
1 0.183 0.133 0.444 0.498
2 0.138 0.171 0.330 0.396
3 1.953 0.395 0.614 2.085
4 2.054 0.286 0.916 2.267
Mean  1.082 0.246 0.576 1.312
SD 1.065 0.119 1.255 1.002

SD: standard deviation.

Biomed Phys Eng Express. Author manuscript; available in PMC 2023 October 18.

Table 1.

Page 17



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Zhao and Zhang

Table 2.

Deformable registration uncertainties in 4D VMAT-CT.

Tries HD(mm) MDA (mm) DSC Jaccard coefficient
1 1.840 0.455 0.928 0.866
2 1.481 0.340 0.950 0.905
3 1.774 0.438 0.938 0.883
4 1.215 0.227 0.967 0.935
Mean 1.578 0.365 0.946 0.897
SD 0.288 0.105 0.017 0.030

SD: standard deviation; HD: Hausdorff distance; MDA: Mean distance to agreement; DSC: Dice similarity coefficient.
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