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In the wake of the rapid surge in the COVID-19-infected cases seen in Southern and West-Central USA in the period of June-July
2020, there is an urgent need to develop robust, data-driven models to quantify the effect which early reopening had on the
infected case count increase. In particular, it is imperative to address the question: How many infected cases could have been
prevented, had the worst affected states not reopened early? To address this question, we have developed a novel COVID-19
model by augmenting the classical SIR epidemiological model with a neural network module. The model decomposes the
contribution of quarantine strength to the infection time series, allowing us to quantify the role of quarantine control and the
associated reopening policies in the US states which showed a major surge in infections. We show that the upsurge in the
infected cases seen in these states is strongly corelated with a drop in the quarantine/lockdown strength diagnosed by our
model. Further, our results demonstrate that in the event of a stricter lockdown without early reopening, the number of active
infected cases recorded on 14 July could have been reduced by more than 40% in all states considered, with the actual number
of infections reduced being more than 100,000 for the states of Florida and Texas. As we continue our fight against COVID-
19, our proposed model can be used as a valuable asset to simulate the effect of several reopening strategies on the infected

count evolution, for any region under consideration.

1. Background

The Coronavirus respiratory disease 2019 originating from
the virus “SARS-CoV-2” [1, 2] has led to a global pandemic,
leading to more than 50 million confirmed global cases in
more than 200 countries as of November 13, 2020 [3]. In
the United States, the first infections were detected in Wash-
ington State as early as January 20, 2020 [4], and now, it is
being reported that the virus had been circulating unde-
tected in New York City as early as mid-February [5]. As
of September 21, 2020, the United States has =6.9 million
infected cases since the virus began to spread.

Since the second week of June, a second surge of
COVID-19 was seen in the United States [6], with rapidly
increasing daily infected cases, hospitalization rates, and
death rates [7, 8]. Initially driven by disastrous situations
in the states of Arizona, South Carolina, Texas, Florida,

and Georgia [6], the surge in cases was also later seen in sev-
eral other Southern and West-Central states [9]. This surge
can be seen in Figure 1 which shows the active infected cases
over time as of July 14, 2020, with a 7-day moving average
for 9 states. States which reopened early show a generally
strong corelation with the rise in the infected cases over
the 3-month period from late April to mid-July 2020 [9].
For example, states which opened before May 15 showed
daily infected case increments as follows: Florida (1393%),
Arizona (858%), South Carolina (999%), Alabama (547%),
Oklahoma (477%), Tennessee (279%), Georgia (245%), Mis-
sissippi (215%), Nevada (697%), Texas (680%), and Utah
(287%), while states which reopened after May 29 showed
values as follows: Michigan (16%), Pennsylvania (-26%),
New York (—52%), New Jersey (—32%), and Illinois (—54%).
Thus, although early reopening seems to be corelated to the
second surge of cases seen in the USA, there is a need
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FIGURE 1: Active infected cases over time as of July 14, 2020, shown
with a 7-day moving average, for the Southern and West-Central
states considered in the present study.

for robust, data-driven quantification of the effect of early
reopening on the growth of infected count data. More
importantly, it is of utmost importance to answer the
question: How many infected cases could have been pre-
vented, had the worst affected states not reopened early?

In an effort to address this question, we have devel-
oped a machine learning-aided epidemiological model.
The novelty of our model arises from the fact that it
allows us to decompose the contribution of quarantine/-
lockdown strength evolution to the infected data time
series for the region under consideration. This enables us
to simulate the effect of varying quarantine strength evolu-
tions and hence varying reopening strategies on the
infected count data. We define reopening as beginning
when a state allows its stay-at-home order to expire or,
in the case of states that never issued a stay-at-home
order, when a state first starts allowing nonessential busi-
nesses, such as dine-in restaurants and hair salons, to
reopen [10, 11]. The reopening details for the states con-
sidered in the study are shown in Table 1. Considering
nine US states which showed a significant surge in cases
since the last month, we demonstrate that our model
shows a drop in the quarantine strength evolution when
these states were reopened. Furthermore, we show that
maintaining a strict lockdown without early reopening
would have led to about 500,000 fewer infected cases in
all these states combined.

2. Methods

2.1. QSIR Model. In general, neural networks with arbitrary
activation functions are universal approximators [12-14].
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Unbounded activation functions in particular, such as the
rectified linear unit (ReLU), have been known to be effective
in approximating nonlinear functions with a finite set of
parameters [15-17]. Thus, a neural network solution is
attractive to approximate quarantine effects in combina-
tion with analytical epidemiological models. The downside
is that the internal workings of a neural network are diffi-
cult to interpret. The recently emerging field of scientific
machine learning [18] exploits conservation principles
within a universal differential equation [19], SIR in our
case, to mitigate overfitting and other related machine
learning risks.

In the present work, the neural network is trained from
publicly available infection and population data for
COVID-19 for each state under study.

2.2. Standard SIR Model. The SIR (Susceptible-Infected-
Recovered) is governed by the following set of ODEs:
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where 8 and y are the contact and recovery rates, respec-
tively. We use this framework as our baseline model to be
augmented with a neural network module. We do not con-
sider the possibility of recovered individuals being reinfected
[20]. We also do not consider the waning of immunity asso-
ciated with COVID-19 as discovered in recent studies [21].
Here, B is the infection rate and y is the recovery rate, and
they are assumed to be constant in time. The total popula-
tion N = S(¢#) + I(¢) + R(t) is seen to remain constant as well;
that is, births and deaths are neglected. The recovered pop-
ulation is to be interpreted as those who can no longer infect
others, so it also includes individuals who are deceased due
to the infection. The possibility of recovered individuals to
become reinfected is accounted for by SEIS models [20],
but we do not use this model here, as the reinfection rate
for COVID-19 survivors is considered to be negligible as
of now.

An important assumption of the SIR models is homoge-
neous mixing among the subpopulations. Therefore, this
model cannot account for social distancing or social net-
work effects. Additionally, the model assumes uniform sus-
ceptibility and disease progression for every individual, and
that no spreading occurs through animals or other nonhu-
man means. Alternatively, the SIR model may be inter-
preted as quantifying the statistical expectations on the
respective mean populations, while deviations from the
model’s assumptions contribute to statistical fluctuations
around the mean.

2.3. QSIR Model: ODE Formulation. The QSIR ODE model
formulation is similar to the one studied previously [22]
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TaBLE 1: Reopening details for different states considered in the present study.

Reopening details

State Reopening date
(1) Arizona May 15

(2) Florida May 4

(3) Louisiana May 15

(4) Nevada May 9

(5) Oklahoma April 24
(6) South Carolina May 4

(7) Tennessee April 30
(8) Texas May 1

(9) Utah May 1

June 17: mask regulations strengthened
June 29: partial reversal of reopening
June 3: Phase 2 of reopening
June 5: Phase 2 of reopening
May 26: Phase 2 of reopening
May 15: Phase 2 of reopening,
June 1: Phase 3 of reopening
May 4: Stay at home order lifted
Further facilities reopened till May 18
May 22: Phase 2 of reopening
May 18: Phase 2 of reopening
June 3: Phase 3 of reopening

May 1: gradual reopening

and is briefly explained in this section. The equations gov-
erning the QSIR model are as follows:
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The SIR model is augmented by introducing a
time-varying quarantine strength rate term Q(t) repre-
sented by a neural network [19] and a quarantined
population T(t), which is prevented from having any
further contact with the susceptible population. Thus,
the term I(#) denotes the active infected population
(Actively infected = Cumulative infected — Recovered)  still
having contact with the susceptibles, as done in the standard
SIR model, while the term T(t) denotes the infected popula-
tion who are effectively quarantined and isolated.

To study the effect of quarantine control, we start with
the SIR epidemiological model. Figure 2(a) shows the sche-
matic of the modified SIR model, the QSIR model, which
we consider. We augment the SIR model by introducing a
time-varying quarantine strength rate term Q(¢) and a quar-
antined population T(t), which is prevented from having
any further contact with the susceptible population. Thus,
the term I(#) denotes the active infected population
(Actively infected = Cumulative infected — Recovered)  still
having contact with the susceptibles, as done in the standard
SIR model, while the term T(t) denotes the infected popula-

tion who are effectively quarantined and isolated. Thus, we
can write an expression for the quarantined infected popula-
tion T(t) as

ar(t)
— = QOI(1) = 8T (1). (8)

Since Q(t) does not follow from first principles and is
highly dependent on local quarantine policies, we devised a
neural network-based approach to approximate it.

Recently, it has been shown that neural networks can be
used as function approximators to recover unknown consti-
tutive relationships in a system of coupled ordinary differen-
tial equations [19, 23]. Following this principle, we represent
Q(t) as an n layer-deep neural network with weights W,
W, --- W, activation function r, and the input vector U =

(S(2), 1(t), R(t)) as
Q(t) =r(W,r(W,y - r(W,U))) =NN(W, U).  (9)

For the implementation, we choose a n = 2-layer densely
connected neural network with 10 units in the hidden layer
and the leaky ReLU activation function. This choice was
because we found sigmoidal activation functions to stagnate.
The final model was described by 54 tunable parameters.
The neural network architecture schematic is shown in
Figure 3(b). The governing coupled ordinary differential
equations for the QSIR model are

ds _ BS(nI(t) (10)
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FIGURE 2: For the states of Arizona, Nevada, South Carolina, and Tennessee, the figure shows (a, d, g, and j) model recovery of infected and
recovered case count as of 14 July 2020. (b, e, h, and k) Quarantine strength function as discovered by our trained model (with reopening).
This is shown along with the quarantine strength function which we use to simulate strict quarantine without reopening after stay-at-home
order was imposed. (¢, f, i, and 1) Estimated infected count if strict quarantine and lockdown measures were followed without reopening
(5% and 95% quantiles are shown) as compared to the values corresponding to the actual early reopening scenario.
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FIGURE 3: (a) Schematic of the augmented QSIR model considered
in the present study. (b) Schematic of the neural network
architecture used to learn the quarantine strength function Q(¢).

”;_7; = Q1) (1) - 8T (t) = NN(W, U) I(t) - 8T (t).
(13)

2.4. Augmented QSIR Model: Initial Conditions. The starting
point t =0 for each simulation was the day at which 500
-infected cases was crossed, i.e., I = 500. The number of sus-
ceptible individuals was assumed to be equal to the popula-
tion of the considered region. Also, in all simulations, the
number of recovered individuals was initialized from data
at t =0 as defined above. The quarantined population T'(t)
is initialized to a small number T(t =0) = 10.

2.5. Augmented QSIR Model: Parameter Estimation. The
data for the infected, recovered case counts was obtained
from the publicly maintained repository by the Center for
Systems Science and Engineering at Johns Hopkins Univer-
sity. The loss function is defined as

Lax(W; By, 8) = |[log (I(t) + T(t)) ~ log (Iyya (1)) II”
+[log (R(t)) —log (Raya(£))[|*-
(14)

Parameter optimization for W, f,y,and§ was per-
formed by minimizing the loss function defined in Equation
(14) using the approach employed in prior studies [22-24]
using an ADAM optimizer [25] with a learning rate of
0.01. For most of the states under consideration, W, 3,7y,

and § were optimized by minimizing the loss function given
in (14). For states with a low recovered count: Arizona,
Florida, Nevada, and Texas, we employed a two-stage opti-
mization procedure to find the optimal W, f,y,andd. In
the first stage, (14) was minimized. For the second stage,
we fix the optimal y and § found in the first stage to opti-
mize for the remaining parameters: W, 3 based on the loss
function defined just on the infected count as L(W, f5) =
log (I(t) + T(t)) —log (I4,.,(t))||*. Such an approach was
found to be optimal for analyzing low recovered count
data in previous studies [22].

In all states considered in the present study, we
trained the model using data starting from the dates
when the 500" infection was recorded in each region
and up to July 14, 2020. For each state considered, Q(t
) denotes the rate at which infected persons are effec-
tively quarantined and isolated from the remaining popu-
lation and thus gives composite information about (a) the
effective testing rate of the infected population as the dis-
ease progresses and (b) the intensity of the enforced
quarantine as a function of time.

This QSIR ODE framework applied on the infected and
recovered data is used to estimate the quarantine strength
function Q(¢) in a particular state as shown in the first and
second columns of Figure 2.

2.6. QSIR Model: SDE Formulation. The ODE modelling
framework described above is a deterministic approach
to model transfer of species (here: people) from one com-
partment to another through different reaction channels.
Such a deterministic approach ignores any random fluctu-
ations during species transfer from one compartment to
the other. To include such stochastic effects and thus get
a measure of the model uncertainty, we note that the aug-
mented SIR framework derives from the chemical master
equation which describes the time evolution of the proba-
bility of such a system of interacting species to be in a
given state at a given time (details in Supplementary Infor-
mation (available here)). Although the chemical master
equation cannot be solved analytically, under certain con-
ditions, it can be distilled down to a stochastic differential
equation (SDE) which captures the fluctuations in species
transfer as random walks. Such an SDE, also known as
the chemical Langevin Equation, is thus based on the
underlying ODE framework (macroscopic picture) and
also includes stochastic effects reminiscent of microscopic
modelling. In fact, in the Supplementary Information, we
show that the microscopic simulation, macroscopic ODE
formulation, and chemical Langevin equation (which acts
as a bridge between the two) are all equivalent to each
other.

The equivalent stochastic formulation or the chemical
Langevin equation for the augmented SIR model is

ds=- [%} dt - {%} dw,(t), (15)
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TaBLE 2: Drop in quarantine strength function, Q(¢), after reopening as discovered by our trained model. Q(¢#) trained by our model shows a
significant drop for all Southern and West-Central states which showed a surge in cases from reopening, whereas the North-Eastern states

which showed no surge do not see a drop in Q(f).

% increase in daily cases

Maximum % decrease in Q(t)

State Reopening date . . .

since reopening after reopening
(1) Arizona May 15 +858 +22
(2) Florida May 4 +1393 +10
(3) Louisiana May 15 +193 +30
(4) Nevada May 9 +697 +25
(5) Oklahoma April 24 +477 +29
(6) South Carolina May 4 +999 +71
(7) Tennessee April 30 +279 +44
(8) Texas May 1 +680 +29
(9) Utah May 1 +287 +39
(10) New York May 29 -52 -45
(11) New Jersey June 9 -32 -60
(12) Tllinois May 29 -54 -8

3. Results

dI = [IBS(;})I(t) —yI(t) - Q(t)I(t)} dt

B oy )

— V/QOIHdW,(t)

dR=[yI(t) + 8T(t)]dt + \/yI(t)dW,(1)
+/0T(t)dW (1)

dT = [Q(¢) I(t) — 8T(£)]dt + /Q()I(£)dW, (1)
— /ST (6)dW (1)
(18)

In (15), W,(¢t) ~N(0,¢) is a normally distributed ran-
dom variable with mean zero and variance t or dW,(¢t) ~N
(0, dt). It should also be noted that each W,(¢) represents
an independent Brownian motion. The simulations were
performed using the Catalyst.jl software in Julia using the
LambaEM algorithm based on [26]. 1000 trajectories were
simulated for each state.

This QSIR SDE framework along with the simulated
quarantine functions for no reopening is used to predict
the new infected case count and hence estimate the reduc-
tion in the number of infected cases under the simulated
no-reopening quarantine function. The results are shown
as 5% and 95% quantiles in the third column of Figure 2.

2.7. Mean Absolute Percentage Error. The Mean Absolute
Percentage Error (MAPE) is defined as

100 [I(t) + T(t) + R(t)] -

MAPE= — [Idata(t) + Rdata(t)]
N

[Idata ( t) + Rdata (t)]

>

(19)

where N is the number of observations.

The first stage of our analysis is using our model [22], called
the QSIR model to diagnose the underlying quarantine
strength evolution Q(¢) in the regions under consideration.
By applying the QSIR model to more than 70 countries glob-
ally, we have established the validity of Q(¢) in accurately diag-
nosing the on-the-ground quarantine situation in majorly
affected European, South American, and Asian countries
[22]. A slow growth of Q(¢) without a significant increase indi-
cates relaxed quarantine policies, a sharp transition point in
Q(#) is indicative of a sudden ramp-up of quarantine mea-
sures, and an inflection point corresponds to the time when
the quarantine response was the most rapid in the region
under consideration. The results of our model applied globally
to all continents are hosted publicly at http://covid19ml.org.

In this study, to perform the quarantine diagnosis to ana-
lyze the implications of delayed reopening, we applied the
QSIR model to 9 US states which showed a significant surge
in the infected case count in the last month: Arizona, Florida,
Louisiana, Nevada, Oklahoma, South Carolina, Tennessee,
Texas, and Utah. Figure 2 shows representative results for Ari-
zona, Nevada, South Carolina, and Tennessee. The plots for
the remaining states are provided in the Supplementary Infor-
mation. Figures 2(a), 2(d), 2(g), and 2(j) show the comparison
of the infected and recovered count estimated by our model
with the actual data. A reasonable agreement is seen for
all states, with the model being able to capture the rise in
infections seen in the tail end of the time series. The QSIR
model details are provided in Methods; Mean Absolute Per-
centage Error (MAPE) values for the model along with the
epochs required for convergence for each state are provided
in Supplementary Information.

Figures 2(b), 2(e), 2(h), and 2(k) show the quarantine
strength evolution Q(¢) as learnt by the neural network
module, which shows a decline whose starting point corre-
sponds well to the time when these states began reopening,
as seen from Table 2 and the green dotted line in
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TaBLE 3: Infected count reduction by 14 July 2020, if states had not reopened early, as estimated by our model.

State % decrease Mean Case reduction Mean case
(5%-95% quantiles) % decrease Case reduction

(1) Arizona 35-62 49 44000-79000 63000

(2) Florida 20-75 49 57000-218000 144000

(3) Louisiana 37-50 44 31000-41000 36000

(4) Nevada 32-68 51 10000-20000 15000

(5) Oklahoma 46-69 58 10000-15000 13000

(6) South Carolina 83-86 84 50000-52000 51000

(7) Tennessee 41-53 47 27000-36000 31000

(8) Texas 41-51 46 115000-143000 129000

(9) Utah 35-47 41 11000-14000 12000

Figures 2(b), 2(e), 2(h), and 2(k). In some states, the decline
in Q(t) starts later than the reopening date, possibly corre-
sponding to the Phase 2 or Phase 3 of reopening (Table 2)
or because of the time delay for population-level changes
to be seen in the infected count evolution, after reopening.
Q(t) trained by our model shows a significant drop after
early reopening in all Southern and West-Central states that
showed a surge in cases last month, whereas the North-
Eastern states of New York, New Jersey, and Illinois, which
reopened late and showed no surge in infections, did not
show a drop in Q(¢) (Table 3 and figures in Supplementary
Information). Thus, the upsurge in the infected cases seen
in these states is strongly corelated with a drop in the quar-
antine/lockdown strength Q(t) diagnosed by our model.
This is indicative of two things: (a) the Southern and
West-Central states reopened early, which led to a relaxed
imposition of quarantine/lockdown measures in these states
and consequently a surge in infections was seen, and (b) the
North-Eastern states of New York, New Jersey, and Illinois
reopened late, and even after reopening, a relatively low con-
tact rate was maintained among the population, leading to a
relatively high magnitude of the imposed quarantine strength,
which prevented a surge of infections in these states. The per-
centage decrease in quarantine strength observed after reopen-
ing for all states considered is shown in Table 3. It should be
noted that for North-Eastern states which did not show a
surge of infections last month, such as New York and New Jer-
sey, such a drop in Q(¢) is not seen (figures in Supplementary
Information). This indicates that the surge in infections, pre-
dominantly seen in the Southern and West-Central states,
was caused by an early reopening which led to a relaxed impo-
sition of quarantine/lockdown measures in these states.

To further demonstrate the validity of our model in cap-
turing the actual quarantine policy evolution in a particular
region, the model has been applied to 70 countries globally.
The quarantine strength behaviour learnt from the model
accurately mimics the on-the-ground situation in majorly
affected European, South American, and Asian countries.
The results of our model applied globally to all continents
are hosted publicly at http://covid19ml.org.

After confirming that our model is able to accurately
depict the corelation between the surge in infections and

early reopening in these states through the diagnosed Q(t),
we proceed to the second stage of our analysis. In the second
stage, we use the diagnosed Q(t) to address the question:
How many infected cases would have been reduced, had
the worst affected states not reopened early? To answer this
question, we simulate the “no-reopening” strategy by assum-
ing that Q(¢) is maintained at the value it was before reopen-
ing, without decreasing. This simulated Q(¢) is shown in
Figures 2(b), 2(e), 2(h), and 2(k). The flexibility of our model
allows us to run our model with this simulated Q(¢) for all
states considered. To quantify the aleatory uncertainty
resulting from random fluctuations in the model, we utilized
the chemical Langevin equation extension to the QSIR
model whose definition and justification are described in
Methods and Supplemental Information. This allows us to
estimate bootstrapped confidence intervals resulting from
1000 simulations of such a stochastic model and thus quan-
tify the effect of such a “no-reopening policy” on the
epidemic spread. The infected count evolution for the simu-
lated Q(t) without reopening is shown in Figures 2(c), 2(f),
2(i), and 2(1) (5% and 95% quantiles are shown). We can
see that, for all these states, instead of seeing a spike in infec-
tions, we would have seen a plateau in the infected case
count evolution. The number and the percentage of infected
cases that would have been prevented by July 14 had these
states not reopened are shown in Table 3. It is evident that
the number of infections could have been reduced by more
than 40% in all states considered, with the actual number
of infections reduced being more than 100,000 for the states
of Florida and Texas. Even the less populated states of Lou-
isiana, South Carolina, and Tennessee show mean infected
case reduction values of 44%, 84%, and 47%, respectively,
which correspond to 36,000, 51,000, and 31,000 infected
cases reduced.

4. Conclusion

In this study, we have developed a novel methodology to
quantify the effect of early reopening on the infected case
count surge seen during the period of June-July 2020. We
have proposed a machine learning model, called the QSIR
model, rooted firmly in fundamental epidemiology
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principles which has the following attributes: (a) it is highly
interpretable with few free parameters rooted in an epidemi-
ological model, (b) it relies on only COVID-19 data and not
on previous epidemics, and (c) it can decompose the
infected time-series data to reveal the quarantine strength/-
policy variation, Q(¢), in the region under consideration.
To demonstrate the validity of our model in capturing the
actual quarantine policy evolution in a particular region,
the model has been applied to 70 countries globally. The
quarantine strength behaviour learnt from the model accu-
rately mimics the on-the-ground situation in majorly
affected European, South American, and Asian continents.
The results for this global analysis are hosted at http://
covid19ml.org [22].

After confirming our belief in the model through a global
analysis, we apply the model to the Southern and West-
Central US states which have shown a massive surge in
COVID-19-infected cases since June 2020. We demonstrate
that the Q(#) extracted by our model shows a significant drop
in value for the Southern and West-Central states which reo-
pened early and showed a surge in infections. The time at
which Q(t) starts to decline generally agrees well with the
reopening date for the states considered. Since the decline in
Q(#) is strongly corelated to the surge of infections and also
the reopening date for states which reopened early, we can
then simulate the effect of “no-reopening” by maintaining
the Q(¢) at a constant level after reopening, instead of declin-
ing. We show that maintaining a steady imposition of quaran-
tine/lockdown control would have played a massive role in
bringing down the infected count by more than 40% in all
states considered, with the infections reduced reaching more
than 100,000 for the states of Florida and Texas.

We have proposed a novel machine learning methodol-
ogy, rooted in fundamental epidemiological models, which
is able to recover the real-time quarantine strength evolution
for any region under consideration. As the pandemic evolves
and we continue our fight against COVID-19, and for future
outbreaks, our globally applicable methodology can be a
valuable asset for researchers and policymakers to simulate
several reopening strategies and counterfactual scenarios
and analyze their impact on the infected count evolution.
Our findings highlight that as we continue the fight against
COVID-19, it is imperative to reduce the contact between
susceptible and infected individuals in public places by for-
mulating robust safety guidelines. Such guidelines imple-
mented and maintained in the affected states would ensure
a high level of quarantine strength associated with that state
and can prevent a future surge or wave in the COVID-19-
infected count time series.

Validation of the model robustness and parameter iden-
tifiability have been mentioned in the Supplementary Infor-
mation. We have also compared an equivalent of the
effective reproduction number called the COVID spread
parameter in our study, with other studies to further validate
the results of our modelling approach. The COVID spread
parameter is defined by (a) the infected individuals and (b)
the recovered individuals from both the infected and the
quarantined states, since both of those effectively do not fur-
ther contribute to the infection spread [22].
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The results of our model should be taken in the context
of its assumptions. Ideally, one needs to consider the shifting
US testing policies for the time period under consideration.
Since the testing efforts did not show a significant increase
during and after the reopening in the US states in the time
period considered within the present study [27, 28] and we
did not want to burden our model with additional parame-
ters to fit, testing compartments have not been included in
the present study. Additionally, several studies in literature
[29-32] have attempted to incorporate underreporting of
infected/recovered cases in their modelling paradigm. Most
of these studies use previously known estimates of testing
data, serology data, or Infection-Fatality-Rate (IFR). In these
studies involving multiple parameters, a number of parame-
ters are assumed to be fixed at the start of the simulation
from prior studies. These parameters include and are not
limited to time between onset of infections and symptoms,
transmission duration, rate at which hospitalized patients
recover [32], mean duration from symptom onset to recov-
ery [29], or even the IFR ratio [29]. A second class of studies
uses antibody testing from collected serum samples to esti-
mate the actual number of infected cases [33].

As the pandemic unfolds and starts spreading, the first
information available is the number of infected, recovered,
and deaths (for example, the Johns Hopkins public reposi-
tory for COVID-19 tracking). Unless we have serum sample
data information or we can confidently rely on prior studies
for assessment of certain parameters, accurate information
of the underreporting factor is difficult to obtain in real time.
One of the goals of the present modelling methodology is to
assist researchers and policymakers with quarantine diagno-
sis information in real time, with no reliance on parameters
derived from prior studies.

Finally, the model is based on the SIR framework, which
assumes a constant, age-independent contact and recovery
rate between the infected and susceptible populations. Addi-
tionally, we do not consider the spatial heterogeneity in the
infected count within a particular state and assume the gov-
erning dynamics to be only time-dependent. Consideration
of these second-order aspects would further refine the model
and would be the subject of future studies.

Determining the optimal reopening policy for different
states is a composite challenge depending on a wide range
of social, economic, and political factors beyond the scope
of the present study. Our results show that irrespective of
these factors and their role in influencing the reopening pol-
icy, it is imperative to reduce the contact rate between
infected and susceptible individuals, thereby maintaining
or increasing the quarantine strength. When a state reopens
its public spaces like restaurants, bars, schools, and cinema
halls, the state reduces its quarantine strength, and even a
small drop in this number can be enough to lead to a mas-
sive surge in the infected count. When a state has to reopen
due to socioeconomic or political factors, it should do so
with the utmost care and with detailed guidelines for reduc-
ing the contact rate as much as possible in schools, child care
programs, offices, restaurants, bars, and vehicles of mass
transit. This aligns well with the COVID-related safety
guidelines issued by the CDC [34].
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Data Availability

Data for the infected and recovered case count in all regions
was obtained from the Center for Systems Science and Engi-
neering (CSSE) at Johns Hopkins University. All code files
and results are publicly available at https://github.com/
RajDandekar/Reopening_ImpactSimulator_US_States.
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Resource Availability. Lead contact is Raj Dandekar, MIT:
Email: rajd@mit.edu.
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