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E P I D E M I O L O G Y

The infectious disease trap of animal agriculture
Matthew N. Hayek

Infectious diseases originating from animals (zoonotic diseases) have emerged following deforestation from agricul-
ture. Agriculture can reduce its land use through intensification, i.e., improving resource use efficiency. However, 
intensive management often confines animals and their wastes, which also fosters disease emergence. Therefore, 
rising demand for animal-sourced foods creates a “trap” of zoonotic disease risks: extensive land use on one hand 
or intensive animal management on the other. Not all intensification poses disease risks; some methods avoid 
confinement and improve animal health. However, these “win-win” improvements alone cannot satisfy rising 
meat demand, particularly for chicken and pork. Intensive poultry and pig production entails greater antibiotic 
use, confinement, and animal populations than beef production. Shifting from beef to chicken consumption mit-
igates climate emissions, but this common strategy neglects zoonotic disease risks. Preventing zoonotic diseases 
requires international coordination to reduce the high demand for animal-sourced foods, improve forest conser-
vation governance, and selectively intensify the lowest-producing ruminant animal systems without confinement.

INTRODUCTION: FOOD PRODUCTION DRIVES  
ZOONOSIS EMERGENCE
Despite global advances in prosperity, nutrition, and medical care, 
infectious diseases are rising in prevalence (1, 2). In the past four 
decades, emerging infectious diseases have increased at more than 
four times the rate of prior decades (3), most of which have nonhu-
man animal (zoonotic) origins.

Since 1940, an estimated 50% of zoonotic disease emergence has 
been associated with agriculture (1–3). This estimate, however, is 
necessarily conservative because only direct agricultural drivers are 
considered in the epidemiological literature, i.e., within the farm gate. 
Food systems have environmental impacts before and after the farm 
gate (4), such as land clearing, food processing, and waste disposal. 
Food systems therefore affect zoonotic disease emergence indirectly. 
The true contributions of food systems to recently emerged zoonotic 
diseases remain poorly characterized.

The increase in zoonosis emergence has been partially attributed 
to ongoing deforestation, particularly in the tropics (2, 5, 6). The 
largest driver of deforestation is pasture expansion for ruminants 
(e.g., cattle) with another substantial fraction of forest and savanna 
clearing for producing feed crops like soy, predominantly fed to 
monogastrics (e.g., pigs and chickens) for domestic and export 
markets (7), with ongoing debate as to the precise proportions (8). 
Land clearing is expected to continue through 2050 due to further 
increased meat and dairy demand (9–12). Deforestation and con-
version to human-dominated systems drive the loss, turnover, and 
homogenization of biodiversity and expose adjacent human com-
munities to wildlife harboring microbes that can become zoonotic 
pathogens with pandemic potential (5).

To meet the rising global demand for animal-sourced foods, the 
most commonly recommended development strategy in the envi-
ronmental literature is “sustainable intensification,” which refers to 
increasing production while managing inputs more judiciously 
(13, 14). Experts recommend this strategy for virtually all low- and 
middle-income countries (LMICs). By improving resource use effi-
ciency, sustainable intensification strategies for animal agriculture 

can reduce greenhouse gas (GHG) emissions and deforestation 
(15–17), thereby also reducing zoonotic disease risks.

However, the intensification of animal agricultural production, 
in its most common forms, entails the concentration and confine-
ment of animal bodies and their wastes, trading off deforestation for 
other multiple well-documented and potentially cascading risks for 
zoonotic disease emergence. This creates a paradox for intensifica-
tion that remains unaddressed in the scientific literature: Intensi-
fied animal production, while decreasing marginal land use change 
and GHG emissions, can often increase other zoonotic disease risks. 
The risks of zoonotic disease emergence from intensive animal ag-
riculture could therefore undermine the “sustainable” nature of sus-
tainable intensification.

This review examines the zoonotic disease paradox inherent to the 
sustainable intensification of animal agriculture, exploring whether 
food systems can circumvent a “trap” of zoonotic disease risks as 
they further develop. The review first aims to characterize interac-
tions between intensification and deforestation while examining 
ways that they both contribute to zoonotic disease risk. On the basis 
of these interactions, this review provides recommendations to re-
duce the likelihood of zoonotic disease emergence, including (i) se-
lectively intensifying the least productive regions, namely, LMICs, 
without resorting to confinement and other common high-risk in-
tensive management techniques; (ii) strengthening and improving 
conservation regulations with effective community governance; and 
(iii) curbing the high and rising demand for animal-sourced food 
products. These three strategies are most likely to succeed if imple-
mented in tandem and via regional and international coordination 
to avoid leakage and rebound effects.

INTENSIFICATION—RISKS, OPPORTUNITIES, AND LIMITS 
FOR STEMMING ZOONOTIC DISEASE
A number of intensive animal production methods have been im-
plicated in zoonotic disease emergence in the literature (Table 1). The 
intensification of animal agriculture through confinement and 
industrialization has directly led to the emergence of viruses including 
Nipah and H5N1 influenza (“swine flu”) (18) and antibiotic- resistant 
infectious bacteria including methicillin-resistant Staphylococcus 
aureus and Escherichia coli (19, 20).
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Intensified animal agriculture is often, but not always, character-
ized by a shift toward “landless” or “industrialized” systems (as de-
fined by the United Nations Food and Agriculture Organization). 
These systems typically restrict animal movement and are oriented 
toward rapid weight gain and productivity (21). Monogastric ani-
mals like pigs and chickens are raised indoors in sheds, each animal 
with less than twice the space that their bodies occupy, with little or 
no room to express natural behaviors (22, 23). Many beef cattle 
spend the latter part of their lives being “finished” or rapidly fat-
tened to reach their final market weights on enriched feeds in feed-
lots, with stocking densities for cattle on outdoor feedlots of less 
than 4 m2 per steer/heifer (24). These environments entail physio-
logical and mental stress, close proximity to each other and wastes, 
and the routine administration of subtherapeutic (infection- 
preventing) and growth-promoting antibiotics (Table 1). Zoonotic 
diseases from aquatic animals are relatively less common and are 
predominantly caused by bacteria rather than viruses (25). However, 
aquatic animal bacteria are expected to become more prominent 
and potentially infectious among humans as finfish aquaculture 
continues to grow to produce a larger share of aquatic foods globally, 
and with it are confinement, stress, and antibiotic use, potentially 

leading to spillover into humans (26). These intensive systems are 
predominant in developed, industrialized countries but are rapidly 
proliferating in developing regions (27), with encouragement and 
financing from international development organizations including 
the World Bank (28).

Relatively more extensive systems include pastoralism, extensive 
grazing, and mixed crop-livestock grazing. Extensive systems are 
used almost exclusively in developing regions, namely, through the 
tropics and semitropics, and among predominantly ruminant live-
stock (e.g., cows, buffalo, sheep, and goats).

Intensification methods sit on a spectrum, with poles of landless, 
industrialized production on the high end and highly extensive pas-
toralist grazing on the lowest. The most extensive and inefficient 
systems have the potential to be improved using “win-win” forms of 
intensification that do not entail a fully industrialized or landless 
kind of confined intensification (Table 1), but rather a kind of 
“meeting in the middle” for the lowest, least productive systems to 
improve their performance (15). Thus, intensifying low-production 
ruminant systems in a selective manner could confer a neutral or 
decreased risk of zoonosis emergence while improving meat and 
dairy productivity in the most marginal contexts.

However, there are limitations to this form of intensification. 
First, the number of animals raised in extensive systems is already 
decreasing while being supplanted by highly industrialized/landless 
systems throughout developing regions (11, 21). Therefore, there 
are regional and global limitations to how much additional food 
“semi-intensive” systems can provide. Second, shifts downward 
from more highly intensive forms would compromise food produc-
tion or lead to net agricultural expansion. For instance, eliminating 
feedlot beef cattle systems in the United States by shifting to inten-
sive grazing would require 64 to 270% greater land use (29), while 
eliminating confined indoor broiler chicken systems by shifting to 
minimal pasture would require 43.8 to 60.1% greater land use (30). 
Industrialized systems are often more productive and resource effi-
cient than semi-intensive methods. Shifting away from industrial-
ized systems therefore entails a GHG and land use penalty or 
“sustainability gap” (30). Last, production systems for monogastric 
animals, which produce two-thirds of meat globally, lack common 
semi-intensive commercial methods (21). Global production and 
consumption of beef, pork, and chicken are expected to rise by 39, 
55, and 58%, respectively, by 2050, with the majority of additional 
production expected to be achieved through intensification systems 
(industrial, in the case of monogastrics) (11). Therefore, additional 
food system strategies beyond intensification are needed to safely 
feed a rising and more affluent global population.

INTERACTIONS BETWEEN INTENSIFICATION 
AND DEFORESTATION
Intensification tends to reduce deforestation directly
Intensification, which aims to make agricultural production more 
efficient, is commonly understood to decrease the pressure for de-
forestation within the environmental literature (13, 31, 32). How-
ever, in many developing tropical regions, both intensification and 
deforestation are occurring simultaneously because they share under-
lying drivers (i.e., confounding causes): rising populations, incomes, 
and demand for animal-sourced foods (Fig. 1). Because the two are 
visibly correlated, the epidemiological literature on zoonotic disease 
often erroneously links intensification directly to deforestation. A 

Table 1. Intensive animal management strategies, by qualitative risk 
categories and farmed animal types.  

Elevated risks Evidence of zoonotic disease 
emergence

All farmed animal species

Indoor production and confinement (83–85)

Genetic homogenization (86, 87)

Subtherapeutic and growth- 
promoting antibiotic use (19, 20, 25, 74, 88–90)

Long-distance transportation (91, 92)

Physiological stress from crowding,   
confinement, and conflicts (e.g., 
gestation crates, veal crates, and 
battery cages)

(22, 23, 26, 93)

Temporary/seasonal and transient 
human labor (83, 94)

Concentrated animal wastes (88, 95)

Neutral or reduced risks Evidence of reduced land and 
resource needs

All farmed animal species

Improving veterinary care and 
reducing mortality (15)

Improving animal husbandry 
management (e.g., lower 
reproductive age)

(15, 96)

Integrating crop and livestock 
production (97–99)

Ruminant species only

Optimizing grazing densities (100, 101)

Improving forage quality (15, 102)

Amending and restoring  
degraded pastures (15, 102–104)
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number of recent high-profile synthesis reports on zoonoses discuss 
intensification and deforestation synonymously and interchange-
ably (6, 33, 34), sometimes directly implicating intensification as 
causing the ongoing deforestation, although the environmental lit-
erature predominantly concludes the opposite. Intensification can 
lead directly to reduced deforestation in agriculture-forest fron-
tiers (35, 36).

Intensification can indirectly trigger more deforestation
Intensification reduces the marginal resource requirements of animal- 
sourced food production; it thus can potentially reduce pressures 
for deforestation, a finding that is widely accepted and uncontro-
versial. However, after achieving higher efficiency, intensification can 
lower the costs of production and sale prices of final goods, induc-
ing higher demand and production (Fig. 1). This greater demand 
can then incentivize additional deforestation (37), negating some or 
all of the original efficiency improvements. This trade-off is known as 
Jevons’ paradox (36, 38, 39) or “rebound effects,” more commonly.

The occurrence and magnitude of rebound effects in animal- 
sourced food production are difficult and controversial to identify 
because of confounding factors (40–42), leading to ongoing debates 
(similarly reflected in the “land sparing versus land sharing” debate 
regarding agricultural efficiency). However, some trends and investi-
gations are illuminating. In Sweden and the United States, an in-
creased consumption of chicken over the past two decades, due to 
lower prices, resulted in greater aggregate GHG emissions despite 
marginal efficiency gains over the same period (43, 44). In South 
America, beef intensification has triggered further deforestation 
due to lower production costs (35, 37, 45). Sustainable intensifica-
tion can thus spur greater environmental impacts, undermining its 
sustainable aims (46, 47). Intensification is necessary but insuffi-
cient to reduce pressures for agriculture expansion and land clear-
ing. Escaping this “damned if we do, damned if we don’t” trap of 
intensification (Fig. 1) requires a more multipronged approach.

Effective forest conservation occurs in tandem with  
other strategies
Intensification alone is an insufficient strategy for reducing zoonotic 
disease risk (see the “Intensification—Risks, opportunities, and limits 

for stemming zoonotic disease” section) and for mitigating and 
reversing deforestation (see the previous section). Direct forest 
conservation policies and incentives are widely recommended in 
environmental and epidemiological literature, e.g., (6, 18, 33). How-
ever, known trade-offs and pratfalls exist. First, forest and wildlife 
habitat conservation policies that are not appropriately designed 
and enforced with the involvement of local cultures have backfired 
(36, 48–50). Second, conservation may lead to “leakage” effects: Global-
ization allows production to relocate, along with its deforestation, 
to countries where conservation policies are insufficiently adopted 
or enforced (51, 52). Last, effective forest conservation policies in 
the short term can boost intensification but lead to further defor-
estation in the long term and across wider regions (Fig. 1) (39). These 
effects can vary over space and time, changing with local livelihoods 
and culture, price elasticities for agricultural goods, and how con-
nected production regions are to global markets (37).

Conservation policies should be culturally sensitive, rigorously 
enforced, and have long-term community buy-in. However, a well- 
crafted conservation policy is still insufficient to spare land from 
agricultural pressures; additional land for rising populations and diets 
richer in animal-sourced foods must come at the expense of clear-
ing native habitats somewhere (11, 53).

MEAT DEMAND AT THE NEXUS OF ENVIRONMENTAL CHANGES
The largest increases in meat demand and production are occurring 
in developing, tropical regions (16). Meat consumption exceeds the 
dietary requirements in high-income countries and among increas-
ingly urban and middle-class populations of most middle-income 
countries (54–56). As demand rises along with affluence in the 
coming decades in LMICs and high-income countries continue to 
sustain high levels of consumption and exports, additional land 
clearing and GHG emissions will occur even with ambitious levels 
of intensification (9, 12).

Shifting to plant-rich diets mitigates environmental 
and zoonotic disease risks
Decreasing meat consumption has cobenefits for environmental pro-
tection and zoonotic disease risks. Global dietary changes are theoret-
ically sufficient to reverse ongoing deforestation trends, providing 5 
to 11 GtCO2 per year of natural carbon removal across 5 to 12 million 
km2, sequestering approximately a decade worth of anthropogenic 
emissions by 2050 in natural vegetation (9, 57–59), which would also 
conserve and restore a substantial fraction of lost biodiversity (53, 60). 
Shifts to plant-rich diets in high-income countries alone would remove 
approximately 3 million km2 from agricultural production, including 
1 million km2 of natively forested areas (9, 56).

To address the emerging zoonotic disease risks of animal agricul-
ture, a multipillared approach is required (Fig. 2). This approach in-
cludes reducing demand for animal-sourced foods, semi-intensification 
(see the “Intensification—Risks, opportunities, and limits for stem-
ming zoonotic disease” section and Table 1), and direct forest con-
servation (see the “Effective forest conservation occurs in tandem 
with other strategies” section). Under business-as-usual condi-
tions of rising demand for animal-sourced food, increased land 
clearing is inevitable (57, 61). Reducing demand can therefore avoid 
leakage and rebound effects from focusing exclusively on supply- 
side protections like semi-intensification and forest conservation 
(Figs. 1 and 2).

Deforestation

Forest 
conservation

−

−

+ +

+

The zoonosis trap

Meat 
demand

Intensification

Fig. 1. Higher incomes are associated with high meat demand that must be 
met through intensification or deforestation (or both). Intensification can trigger 
higher meat demand through lower prices, because meat demand is elastic with 
respect to its cost. Intensification and deforestation are highlighted in orange, as both 
have caused recent zoonotic disease emergence and are predicted to continue 
doing so. Intensification is colored by a gradient to indicate that intensification strat-
egies lie on a gradient of helpful/neutral to harmful with respect to zoonosis risks.
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The zoonotic disease risks of rising animal-sourced food pro-
duction and consumption have been underscored by a number of re-
cent major environmental epidemiology synthesis reports (6, 33, 62). 
These reports imply or outright state that high future demand 
for animal-sourced foods is an immutable consequence of rising in-
comes, treating this trend as fait accompli rather than a decision 
point for policy interventions. This fatalism contradicts behav-
ioral science research on reducing the consumption of meat and 
other products with harmful public health impacts (e.g., tobacco 
and sugar).

To meaningfully flatten the rising curve of animal-sourced foods, 
demand-side interventions should be implemented, tested, and 
scaled ambitiously (63). Even gentle changes to dining options and 
presentation can create large effects (64). Effective interventions 
range from these subtle “nudges” to more blatant rewards and in-
centives, as well as stringent regulations and restrictions (16, 55). 
This spectrum has been described using the Nuffield intervention 
ladder, with lower rungs of “soft” methods or “carrots” (e.g., guid-
ance, suggestions, education, and nudging) to higher rungs of in-
creasingly forceful “hard” interventions or “sticks” at the top (e.g., 
taxes and bans) (65).

Countries lack healthy and sustainable food consumption policies 
that are comprehensive and synergistic; most countries only have 
education policies (e.g., dietary recommendations), with higher rungs 
on the Nuffield ladder—including guiding choices through chang-
ing incentives and defaults or disincentivizing options—completely 
missing (66). Promising local policies and corporate initiatives, mean-
while, are aiming to guide consumers toward more sustainable op-
tions using methods of monitoring, goal setting, and verification in 
combination with multiple soft behavioral interventions to motivate 
change (67).

More targeted dietary change interventions are needed; recom-
mendations for dietary change policies across most scientific litera-
ture are general and vague (16, 55). Policies can leverage social, 

behavioral, and organizational sciences to change the underlying 
motivations and choice environments that drive consumer deci-
sions (64, 67). Small successes should also be better communicated to 
decision-makers and ambitiously scaled to large populations with 
help from community-based advocacy and organizing (68).

Differentiating risks across food animals
Shifting production and consumption from beef to poultry is a com-
mon recommendation in the literature. Such shifts would accomplish 
most of the GHG emission mitigation as reducing or eliminating all 
meat (69–71). These recommendations have shaped national cli-
mate policies: Ethiopia stated plans to shift 30% of their beef pro-
duction to poultry in their 2021 Nationally Determined Contribution 
to the United Nations Framework Convention on Climate Change 
(72). However, such shifts could maintain or even increase zoonotic 
disease risks.

Beef has higher land use and is associated with more tropical 
deforestation than any other commodity (73). However, monogas-
tric animals, including pigs and chickens, require higher antibiotic 
use and higher animal populations to produce the same quantity of 
meat as ruminants such as cattle (Fig. 3). Pigs and chickens are fed 
more than three times the antibiotics than cattle in intensive sys-
tems (74) due to close confinement of animals and their wastes. It 
takes three pigs or 170 chickens to produce the meat of one steer. 
Intensive methods of monogastric animal production entail more 
marked confinement, including hen laying and pig gestation sys-
tems wherein animals are confined without enough space to spread 
their wings or turn around. Now, there are more than 33 billion 
chickens on Earth, representing more than 70% of global avian bio-
mass (75). Shifts from beef to even greater chicken consumption 
would entail greater confinement and subtherapeutic antibiotic use 
for a larger number of animals, elevating multiple risks for zoonotic 
disease emergence.

The precise zoonotic disease risks of individual foods and whole 
dietary patterns have not previously been quantified. Statistical 
analyses are challenging because any predictive metrics would en-
tail creating robust models from only a few (but highly costly) zoo-
notic disease spillover events and outbreaks that have emerged from 
agricultural production, often from diverse pathogens and with 
sometimes ambiguous origins. The lack of quantitative disease anal-
yses remains a hurdle to assessing the full costs, benefits, and trade-
offs of food system transitions. Despite this, plant-rich diets entail 
cost-saving cobenefits (76, 77), including environmental outcomes, 
human nutrition, and animal welfare, which have been quantified 
robustly in previous work (78–80).

INTERNATIONAL COORDINATION FOR PRIMARY PREVENTION 
OF PANDEMICS
The coronavirus disease 2019 pandemic has increased the vigilance 
of the global community in identifying and monitoring the poten-
tial sources of the next zoonotic disease outbreak. Well-trodden 
prevention strategies include suppressing disease in vulnerable ani-
mals, monitoring transmission and spillover events of pathogens 
with pandemic potential, and stopping detected outbreaks in do-
mesticated animals through culling (81). These decade-long pursuits 
have only tackled pathogens of concern after some initial emer-
gence or spillover. They do not address root causes of transmission, 
mutation, spillover, and proliferation of emerging infectious zoonotic 

Shifts to
plant-rich 

diets

Semi-
intensification

Forest 
conservation

Leakage—
Production is 

displaced 
elsewhere

Remaining 
demand must be 

met with 
confined/industrial 

production

Rebound effects/
Jevons’ paradox— 

Lower costs beget more 
consumption & 

production

Fewer cobenefits for
emerging economies 
(low- & lower-middle
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Ecosystem 
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Inexpensive land 
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income producers and 

animals’ health

Fig. 2. A three-pillar approach for preventing zoonotic disease emergence and 
reducing environmental impacts from animal agriculture (center). Within indi-
vidual circles and the intersections between the two, limitations of adopting only 
one or two strategies are described.
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pathogens. The high and increasing demand for animal- sourced foods 
is one such root cause.

Strategies that prevent infectious diseases at their root sources 
are called primary prevention (6, 18, 33). This work outlines three 
pillars for primary prevention that, when combined, constitute 
stronger protection against zoonotic diseases from animal agricul-
ture than any one pillar in isolation (Fig 2). National governments 
should coordinate their support for a wide range of policies and 
activities that support these pillars, including expanding veterinary 
and extension services for improved animal care in LMICs (18), 
phasing out and banning subtherapeutic and growth-promoting anti-
biotic uses (82), forming multilateral commitments among countries 
importing and exporting tropical commodities linked to defor-
estation (73), ambitiously scaling community-based approaches to 
popularizing plant-rich diets (68), supporting open and public al-
ternative protein research (77), and facilitating sustainable and just 
transitions for producers. Commitments should also set quantifi-
able science-based goals and fund ongoing research to monitor and 
accelerate progress. Together, the three pillars of primary preven-
tion can guide and empower decision-makers to escape the zoonotic 
disease trap of business-as-usual animal agriculture.
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