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With the increasing incidence and mortality of renal cancer, it is pressing to find new biomarkers and drug targets for diagnosis
and treatment. However, as one negative upstream regulator of p53, the prognostic and immunological role of NFE2L3 in renal
cancer is still barely known. We investigated the expression, prognostic value, and relevant pathways of NFE2L3 using the datasets
from public databases, including The Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell
Line Encyclopedia (CCLE), and UALCAN. Furthermore, we analyzed the relationship between NFE2L3 expression and the
immune microenvironment using distinct methods. We found that NFE2L3 was higher expressed in kidney renal clear cell
carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) tissues than adjacent normal tissues. Additionally, we
identified NFE2L3 as one survival-related factor for KIRC and KIRP. The enrichment analyses revealed that NFE2L3 was
associated with a variety of immune-relevant pathways in KIRC and related to the infiltration ratios of 17 types of immune
cells in KIRC patients. Ultimately, we demonstrated nine significantly enriched mutations, such as TP53 and MET, in
NFE2L3-expression-changing groups. The elevated expression of NFE2L3 in renal cancerous tissues versus normal tissues is
associated with poor outcomes in patients. Besides, NFE2L3 has a role in the regulation of the immune microenvironment in
renal cancer patients. The findings of our study provide a potential prognostic biomarker and a new drug target for renal cancer.

1. Introduction

Renal cell carcinoma (RCC) is a malignant tumor derived
from proximal renal tubular epithelial cells, which account
for 90% of all kidney cancer cases [1]. The incidence of
RCC comes after prostate cancer and bladder cancer in all
urinary cancers [2]. Among the common subtypes of RCC,
kidney renal clear cell carcinoma (KIRC) accounts for 75-
80% of the total cases [3], followed by kidney renal papillary

cell carcinoma (KIRP) [4] and kidney chromophobe (KICH)
[5]. In 2018, there were 63,000 new RCC cases in the United
States [6]. Most RCC cases are diagnosed in an advanced
stage with distal metastases, and a quarter of the cases are
fatal [7–9].

Currently, immune checkpoint drugs are the most com-
mon treatment for metastatic RCC, but they work for only a
small percentage of RCC patients [10]. Latest researches
have demonstrated that RCC patients may achieve more

Hindawi
BioMed Research International
Volume 2022, Article ID 9085186, 17 pages
https://doi.org/10.1155/2022/9085186

https://orcid.org/0000-0003-3524-2109
https://orcid.org/0000-0002-5005-5304
https://orcid.org/0000-0002-4375-0368
https://orcid.org/0000-0002-6840-9158
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9085186


benefits from the combination of several immune check-
point inhibitors than a single inhibitor [11]. Consequently,
it is especially important to search for new immune thera-
peutic targets developed by drugs, used alone or in
combination.

Nuclear factor erythroid-derived 2-like 3 (NFE2L3), one
member of the cap‘n’collar basic region leucine zipper tran-
scription factor family, is involved in several important cel-
lular processes, such as stress response and signal
transduction [12]. Several researches have revealed that
NFE2L3 is involved in the carcinogenesis of pancreatic can-
cer and liver cancer, and the increased expression is associ-
ated with poorer prognosis of patients [13–15]. As one

upstream negative regulator of p53, NFE2L3 induces cell
growth via stimulating the degradation of p53 in colon cancer
cells [16, 17]. Because TP53 is one core suppressor gene in cells
[18], NFE2L3 may play an important role in tumorigenesis as
well. However, there are only a few reports of NFE2L3 in RCC
[19], and its relationship with prognosis and underlying
mechanisms in RCC tumorigenesis are still not clear.

In our study, we investigated NFE2L3 expression in RCC
tissues versus normal adjacent tissues and analyzed its prog-
nostic value based on datasets from the public database.
Besides, we analyzed the relevant pathways of NFE2L3 in
RCC. Furthermore, we explored the role of NFE2L3 in the
immune microenvironment. Ultimately, we analyzed the
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Figure 1: The roadmap of our study.
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Figure 2: Continued.
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mutations correlated with NFE2L3 expression in RCC
patients.

2. Methods

2.1. TIMER. TIMER (http://timer.cistrome.org/) is a com-
prehensive resource database that systematically analyzes
the immune infiltration levels of different cancers [20]. Dif-
ferential expressions of NFE2L3 between tumorous tissues
and adjacent normal tissues were noted in 27 types of
tumors based on datasets from The Cancer Genome Atlas
Program (TCGA) and Genotype-Tissue Expression (GTEx)
using the DiffExp module. The statistical significance of dif-
ferential expression was evaluated by the Wilcoxon test, and
a statistically significant P value was set as 0.05.

2.2. UALCAN. UALCAN (http://ualcan.path.uab.edu/
index.html) is an online mining and analyzing database for
in-depth analysis of transcriptomic data from TCGA [21].
UALCAN was used to analyze the expression of NFE2L3
and the relationship between NFE2L3 and several clinico-
pathological parameters of RCC patients, including gender,
tumor stage, lymph node metastasis status, age, and race.

2.3. Kaplan-Meier Plotter. The Kaplan-Meier Plotter data-
base (http://kmplot.com/analysis/index.php?p=background)
is constructed based on the gene chip and RNA-seq data
from other public databases [22], such as Gene Expression
Omnibus (GEO) and TCGA. All patient samples are divided
into two groups based on the median expression of genes
(high expression and low expression). In the two groups,
the disease-free interval rate (DFI), disease-specific survival
rate (DSS), progression-free survival rate (PFS), and overall
survival rate (OS) of RCC patients were analyzed. The con-
fidence interval (CI) was set as 95%. The “Pan-cancer
RNA-seq” function was used to analyze the correlation
between NFE2L3 expression and the survival rates of RCC

patients with high immune cell infiltration or low immune
cell infiltration.

2.4. Enrichment Analysis. Gene Ontology (GO), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA) analyses were used to explore
the biological functions of NFE2L3 in RCC. GO analysis is
a powerful bioinformatic approach to determining the bio-
logical process (BP), cellular component (CC), and molecu-
lar function (MF) that NFE2L3 involves in. GSEA was used
to investigate the potential active or inactive pathways that
NFE2L3 participates in.

2.5. Linkedomics. The Linkedomics database (http://www
.linkedomics.org/login.php) was utilized to obtain the top
50 genes with positive or negative expression correlations
with NFE2L3 in RCC tissues [23].

2.6. Bioinformatics. R package “survival v.2.4.2” was used for
the survival analysis and progression-free survival analysis
(PFS). The nomogram survival maps were constructed using
R packages “survival” and “rms.” The R package “forest plot”
was used to visualize the results of multivariate Cox regres-
sion of NFE2L3. The P values are two-sided, and a P value
< 0.05 is considered statistically significant.

2.7. Software. Based on a valid leukocyte gene signature
matrix containing 547 genes and 22 human immune cell
subgroups, CIBERSORT (https://cibersort.stanford.edu/)
was used to establish a computing resource to characterize
the immune cell composition of RCC [24]. The correlation
between NFE2L3 expression and infiltrated immune cell
ratios was calculated by Pearson analysis. A P value < 0.05
was considered statistically significant.

2.8. Statistical Analyses. The hazard ratio (HR) of NFE2L3 in
RCC was calculated using univariate Cox regression [25].
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Figure 2: Expression of NFE2L3 in renal cell carcinoma: (a) NFE2L3 expression in diverse types of tumors as analyzed using TIMER
database; (b) NFE2L3 expression in different tumor cell lines; (c) NFE2L3 expression in three subtypes of RCC and adjacent normal
tissues; (d) expression of NFE2L3 in paired KICH, KIRC, and KIRP tissues and adjacent normal tissues, respectively. ∗P < 0:05, ∗∗P <
0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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The independent prognostic factor was determined using
multivariable Cox regression [26].

3. Results

3.1. Increased Expression of NFE2L3 in RCC Patients. First,
we showed the roadmap of our study (Figure 1). To explore

the role of NFE2L3 in RCC, we first analyzed the expression
of NFE2L3 in various cancers using the datasets from TCGA
database. Figure 2(a) reveals an increased expression of
NFE2L3 in 25 types of cancers, including bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA), cer-
vical squamous cell carcinoma and endocervical adenocarci-
noma (CESC), cholangiocarcinoma (CHOL), colon
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Figure 3: Box plots showing NFE2L3 expression among different groups of KIRC patients based on clinical parameters as analyzed using
the UALCAN database. Analysis was shown for (a) patient’s gender, (b) subtype, (c) nodal metastasis, (d) cancer stage, (e) tumor grade, (f)
patients’ age, and (g) patients’ race. N0: no regional lymph node metastasis; N1: metastases in 1 to 3 axillary lymph nodes. ∗P < 0:05, ∗∗

P < 0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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adenocarcinoma (COAD), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), acute myeloid leukemia (LAML),
brain low-grade glioma (LGG), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma
(PAAD), pheochromocytoma and paraganglioma (PRAD),
rectum adenocarcinoma (READ), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ
cell tumors (TGCT), thyroid carcinoma (THCA), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosar-
coma (UCS), KIRC, and KIRP tissues versus the normal
adjacent tissues. Additionally, using the datasets from the
Cancer Cell Line Encyclopedia (CCLE) database, we com-
pared the NFE2L3 expression among multiple cancer cell
lines and found that NFE2L3 was higher expressed in sar-
coma (SARC), LGG, and KIRC cell lines, while lower
expressed in LUSC, PRAD, and HNSC cell lines
(Figures 2(b)). In particular, we displayed the expression of
NFE2L3 in cancerous tissues versus normal tissues of KICH,
KIRC, and KIPR patients using the datasets from TCGA. As
shown in Figure 2(c), an elevated expression of NFE2L3 was
observed in KIRC and KIRP tissues compared to normal tis-
sues. Notably, an increased expression of NFE2L3 in KIRC
and KIRP was also observed in the paired tumorous tissues
versus adjacent normal tissues from TCGA (Figure 2(d)).
The above findings clarified that NFE2L3 expression was
upregulated in RCC patients and NFE2L3 might play a role
in RCC progression.

3.2. NFE2L3 Was Potentially Associated with Cancer
Progression of KIRC. Since KIRC accounts for the largest
proportion of RCC, we chose KIRC as a representative
model to demonstrate the correlation between the NFE2L3
expression and some clinical indicators. Using the datasets
from the UALCAN database, we found that the NFE2L3
expression was significantly increased in male KIRC patients
compared to females (P < 0:001) (Figure 3(a)). NFE2L3 was

higher expressed in the B subtype of KIRC than in the A
subtype of KIRC (P < 0:01) (Figure 3(b)). Moreover, the
NFE2L3 expression was gradually increased with N stage,
stage, and grade (Figures 3(c)–3(e)). For example, a signifi-
cant elevation was seen in grade 2 versus grade1
(P < 0:0001), grade 3 versus grade2 (P < 0:01), and grade 4
versus grade 3 (P < 0:05) (Figure 3(e)). Furthermore, the
NFE2L3 expression was significantly elevated in cancerous
tissues of KIRC patients with age, ranging from 21 to 40
years, 41 to 60 years, and 61 to 80 years (Figure 3(f)). As
shown in Figure 3(g), the highest expression of NFE2L3
was prominently observed in Caucasian and Asian KIRC
samples. Herein, these results manifested a potential rele-
vance between NFE2L3 expression and tumor progression.

3.3. The NFE2L3 Expression Was Correlated with the
Survival Rates of RCC Patients. Subsequently, we tested the
prognostic value of NFE2L3 in RCC patients. For KIRC,
the patients with higher NFE2L3 expression exhibited a
poorer DFI (P < 0:05), DSS (P < 0:0001), PFS (P < 0:0001),
and OS (P < 0:0001) (Figures 4(a)–4(d)), and in KIRP
patients, the higher NFE2L3 expression was also associated
with a poorer DFI (P < 0:01), DSS (P < 0:05), PFS (P < 0:05),
and OS (P < 0:01) (Figures 4(a)–4(d)). Furthermore, the uni-
variate Cox regression indicated that NFE2L3 was both a risk
factor for KIRC (P < 0:001) and KIRP (P < 0:05) patients
(Figure 5(a)), and the multivariate Cox regression elucidated
that NFE2L3 was one independent prognostic factor in KIRP
patients (P < 0:05) (Figure 4(b)). The diagram in
Figures 5(c) and 5(d) indicated that NFE2L3 might be used
in combination with other clinical indicators to predict the
outcomes of KIRC and KIPR patients.

3.4. NFE2L3 Was One Potential Regulatory Factor of the
Immune Microenvironment of RCC Patients. As KIRC
accounts for the largest proportion of RCC, we chose KIRC
as a representative model to clarify the mechanisms involved
in the function of NFE2L3 in KIRC. Firstly, we analyzed the
coexpressed mRNAs of NFE2L3 using the datasets from
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Figure 4: NFE2L3 expression was correlated with the survival of RCC patients. Survival curves were shown for (a) DFI, (b) DSS, (c) PFS, (d)
and OS of three subtypes of RCC as analyzed using the Kaplan-Meier plotter database.
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Figure 5: The prognostic value of NFE2L3: (a) a forest plot showing the HR of NFE2L3 expression in KIRC and KIRP patients as
investigated using univariate Cox regression; (b) a forest plot showing NFE2L3 as a potential independent prognostic factor for KIRC
and KIRP as investigated using multivariable Cox regression; (c, d) colliographs showed the use of NFE2L3 in the prognostic risk scoring
of KIRC and KIRP.
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Figure 6: Continued.
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Linkedomics. As a result, we obtained 2310 NFE2L3 coex-
pressed genes (Supplementary Table S1). The top 50 genes
positively or negatively correlated with NFE2L3 are
displayed in Figure 6(a). To explore the NFE2L3-related
pathways, we used GSEA to note the top 20 significant
terms of KEGG, MF, CC, and BP. In terms of KEGG
terms, the relevant pathways of NFE2L3 are mainly
enriched in immune-related processes, such as adaptive
immune response, leukocyte cell-cell adhesion, T cell
activation, and positive regulation of cell activation
(Figure 6(b)). In MF terms, NFE2L3 is chiefly enriched in
condensed chromosomes, immunological synapses, MHC
protein complexes, and protein complexes involved in cell
adhesion (Figure 6(c)). As terms of CC, the cellular
components of NFE2L3 were primarily enriched in
cytokine receptor activity, MHC protein binding,
immunoglobulin binding, and cytokine binding
(Figure 6(d)). In BP terms, Figure 6(e) exhibited that the
biological function of NFE2L3 was mainly enriched in the
nuclear factor-kappa B (NF-κB) signaling pathway,
autoimmune thyroid disease, cytokine-cytokine receptor
interaction, and NOD-like receptor signaling pathway.
These results indicated that the functions of NFE2L3 in
KIRC were possibly closely relevant to the immune
microenvironment.

Next, we estimated the NFE2L3-correlated immune sig-
natures in different subtypes of RCC. We found that the high
expression of NFE2L3 was correlated with the immune sig-
natures including immune checkpoint, effector CD8 T cells,
and antigen processing machinery in KICH and KIRP
(Figures 7(a)–7(c)). Meanwhile, NFE2L3 was positively cor-
related with some other signatures, namely, DNA replica-
tion, mismatch repair, DNA damage, type 1 epithelial-

mesenchymal transition (EMT1), and type 2 epithelial-
mesenchymal transition (EMT2) in KICH, KIRC, and KIRP
patients (Figures 7(a)–7(c)). These results further suggested
that the functions of NFE2L3 in RCC might be related to
immune regulation.

Consequently, to deepen and understand the role of
NFE2L3 in the immune microenvironment in RCC patients,
we investigated the association between four types of
immune scores and NFE2L3 expression in three subtypes
of RCC. As shown in Figures 8(a)–8(d), the expression of
NFE2L3 in KICH, KIRC, and KIRP was significantly corre-
lated with immune score, ESTIMATE score, stromal score,
and tumor purity. Additionally, since KIRC is the most com-
mon subtype of RCC, we select KIRC as a representative
model to illustrate the relationship between NFE2L3 and
immune infiltration in RCC. We investigated the correlation
between NFE2L3 expression and infiltration ratios of various
immune cells. We found that the NFE2L3 expression was
positively associated with the infiltration ratios of 17 types
of immune cells, such as naive CD4+ cells, CD4 T+ cells,
naive CD8+ cells, CD8+ T cells, dendritic cells, neutrophils,
type 1 helper T (Th1) cells, type 17 helper T (Th17) cells,
and type 1 regulatory T (Tr1) cells as analyzed by ImmuCel-
lAi (Figure 9(a)). Using the analysis tool CIBERSORT, we
discovered an association between the NFE2L3 expression
and the infiltration ratios of 10 types of immune cells,
including gamma delta T cells, follicular helper T cells,
CD8+ T cells, activated memory CD4+ T cells, resting natu-
ral killer cells, activated myeloid dendritic cells, monocytes,
activated mass cells, M1 macrophages, and naive B cells
(Figure 9(b)). Besides, we also observed that NEF2L3 expres-
sion was strongly correlated with the infiltration ratios of 22
types of immune cells as analyzed using Xcell, including
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Figure 6: NFE2L3-relevant biological activities and pathways in KIRC: (a) a heat map showing the top 50 genes positively or negatively
correlated with NFE2L3 in KIRC. Based on the analysis of NFE2L3-coexpressed genes, the top 20 enrichment terms of (b) KEGG, (c)
MF, (d) CC, and (e) BP.

10 BioMed Research International



ns ns

–4

–2

0
Si

gn
at

ur
e_

sc
or

e

KICH 
⁎⁎⁎

⁎⁎⁎⁎
⁎⁎⁎⁎

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎
⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎

CD
_8

_T
_e

fe
ct

or
 

Im
m

un
e_

ch
ec

kp
oi

nt

A
nt

ig
en

_p
ro

ce
ss

in
g_

m
ac

hi
ne

ry
 

M
ism

at
ch

_r
ep

ai
r 

N
uc

le
ot

id
e_

ex
ci

sio
n_

re
pa

ir 

D
N

A
_d

am
ag

e_
re

sp
on

se
 

D
N

A
_r

ep
lic

at
io

n 

Ba
se

_e
xc

isi
on

_r
ep

ai
r 

Pa
n_

F_
TB

Rs
 

EM
T1

 

EM
T2

 

Group
High expression 
Low expression

(a)

ns

–2.5

0.0

2.5

Si
gn

at
ur

e_
sc

or
e

KIRC 
⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎

CD
_8

_T
_e

fe
ct

or
 

Im
m

un
e_

ch
ec

kp
oi

nt

A
nt

ig
en

_p
ro

ce
ss

in
g_

m
ac

hi
ne

ry
 

M
ism

at
ch

_r
ep

ai
r 

N
uc

le
ot

id
e_

ex
ci

sio
n_

re
pa

ir 

D
N

A
_d

am
ag

e_
re

sp
on

se
 

D
N

A
_r

ep
lic

at
io

n 

Ba
se

_e
xc

isi
on

_r
ep

ai
r 

Pa
n_

F_
TB

Rs
 

EM
T1

 

EM
T2

 

Group
High expression 
Low expression

(b)

Figure 7: Continued.
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effector memory CD8+ T cells, central memory CD8+ T
cells, CD8+ T cells, naive CD4+ T cells, memory CD4+ T
cells, effector memory CD4+ T cells, central memory CD4
+ T cells, type 2 helper T cells, plasmacytoid dendritic cells,
natural killer (NK) cells, activated myeloid dendritic cells,
myeloid dendritic cells, monocytes, M1 macrophages, mac-
rophages, hematopoietic stem cells, granulocyte-monocyte
progenitors, endothelial cells, common myeloid progenitors,
class-switched memory B cells, naive B cells, and B cells
(Figure 9(c)). These results revealed that NFE2L3 was one
potential regulatory factor of the immune microenviron-
ment of RCC patients.

3.5. NFE2L3 May Be Associated with Some Gene Mutations
in the Development of Kidney Cancer. Finally, we explored
the potential relationship between several common muta-
tion genes and the occurrence of kidney cancer. There was
no mutated gene relevant to the development of KICH no
matter in the NFE2L3 high expression group or the low
expression group (Figure 10(a)). It may be related to the
lower degree of malignancy of KICH. As showed in
Figure 10(b), in KIRC, NFE2L3 high expression was associ-
ated with the mutation of PBRM1, SETD2, and CSMD3. In
KIRP, NFE2L3 high expression was correlated with MET
mutation (Figure 10(c)). This information indicated that in
the development of kidney cancer, the NFE2L3 expression
was related to distinct gene mutations.

4. Discussion

In our study, we discovered the elevated expression of
NFE2L3 in KIRC and KIRP tissues versus normal adjacent
tissues, identified NFE2L3 as one survival-relevant gene for
KIRC and KIRP, and uncovered a potential regulatory role
of NFE2L3 in the immune microenvironment in RCC

patients. These results disclosed a new vision of NFE2L3 as
one promising prognosis biomarker and functional gene in
RCC patients.

The earlier report by Wang et al. [19] has reported 3
genes (LAT, HOXD3, and NFE2L3) as a potential prognos-
tic biomarker for kidney renal clear cell carcinoma (KIRC).
They depicted the effect of the three DNA methylation-
driven gene (LAT, HOXD3, and NFE2L3) expression on
survival rate and as independent prognostic factors of KIRC
patients. Correspondingly, the main point of our paper is to
focus on the regulatory role of NFE2L3 in the immune
microenvironment of kidney cancer. Excepting for the
immunological findings, we revealed for the first time a pos-
itive association between the NFE2L3 expression and the fre-
quency of MET, PBRM1, and SETD mutations. Meanwhile,
other results of our study also expanded and complemented
the earlier report [19].

As an important regulator of cellular stress response,
NFE2L3 is abundantly expressed in various organs, such as
the kidney, pancreas, heart, lung, liver, and brain [27, 28].
In our study, we found that NFE2L3 had a potential rela-
tionship with the NF-κB pathway (Figure 6). In colorectal
cancer, NFE2L3 regulates the growth of CRC via the NF-
κB pathway [29]. Therefore, our results are consistent with
the previous researches [19]. As is well known, NF-κB has
a critical role in many cancer-relevant processes, such as
inflammation [30, 31]. Hence, integrating our results with
the previous findings, we speculate that NFE2L3 may be
functional in the immune microenvironment in RCC
patients depending at least in part on the NF-κB pathway.

Nowadays, the treatments for metastatic RCC patients
have gone from interferon α and IL2 to immune checkpoint
drugs [32, 33]. Due to the obvious side effects and fewer
complete remission ratios of patients treated with interferon
α and IL2, monoclonal antibodies against the immune
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Figure 7: The NFE2L3-correlated signatures in three subtypes of RCC. The correlation between NFE2L3 expression and multiple signatures
in (a) KICH, (b) KIRC, and (c) KIRP. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,and∗∗∗∗P < 0:0001.
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checkpoints have been used in the treatment of metastatic
renal cancer in recent years [34]. However, the drug resis-
tance of immune checkpoint inhibitors leads tumor patients
to only benefit from the treatment for a limited time [35].
Therefore, it is necessary to continue developing new targets

for immune therapy. In our study, NFE2L3 is revealed as
one probable regulatory gene for the immune microenviron-
ment. Meanwhile, considering that NFE2L3 may be an
upstream regulator of NF-κB in RCC [19], it is of great
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Figure 8: The correlation between NFE2L3 expression and diverse types of immune scores. The correlation between NFE2L3 expression
and (a) estimate score, (b) immune score, (c) stromal score, and (d) tumor purity.
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Figure 9: The correlation between NFE2L3 expression and infiltration levels of various immune cells: (a) the relationship between NFE2L3
expression and the infiltration ratios of various immune cells in KIRC as analyzed using ImmuCellAi; (b) the relationship between NFE2L3
expression and the infiltration ratios of various immune cells as analyzed using CIBERSORT algorithm; (c) the relationship between
NFE2L3 expression and the infiltration ratios of various immune cells as analyzed using Xcell algorithm. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P <
0:001,and∗∗∗∗P < 0:0001.
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significance to further study the mechanism of NFE2L3 to
explore its possibility as a drug target.

Tumor microenvironment (TME) is regarded as the cel-
lular environment around tumors, in which exist blood ves-
sels, lymphocytes, immune cells, fibroblasts, extracellular
matrix, and other components [36]. The immune cells from
TME influence the initiation and progression of cancers
[37]. For example, infiltrated CD8+ T cells in colon cancer
frequently have an antitumor effect [38]. More regulatory

T cells (Tregs) in tumor tissues always indicate a poor prog-
nosis for tumor patients [39]. KIRC is a kind of malignant
tumor accompanied by high infiltration of immune cells
and is one of the earliest malignant tumors treated by
immune drugs as well [40]. In this study, we also revealed
that the infiltration ratios of CD8+ T cells, Tregs, and mac-
rophages were associated with the NFE2L3 expression in
KIRC patients. This finding further supports that NFE2L3
may be a promising immune target in RCC patients.
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Figure 10: The correlation between NFE2L3 expression and frequency of gene mutations in three subtypes of RCC. The correlation between
NFE2L3 expression and frequencies of gene mutations in (a) KICH, (b) KIRC, and (c) KIRP.
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Finally, we demonstrated that the mutated METS were
strongly enriched in the NFE2L3-high-expression KIRP
patients in our study. This result indicates that the influence
of NFE2L3 on the occurrence and development of KIRP
may be related to the MET mutations. Encoded by MET,
c-Met is a type of transmembrane receptor tyrosine kinase.
In fact, c-Met is frequently activated in type I KIRP, thereby
stimulating c-Met/HGF signaling and promoting many bio-
logical processes, such as cell proliferation, angiogenesis, and
malignant transformation [41].
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