
Constructing biomimetic liver models through
biomaterials and vasculature engineering
Weikang Lv1,2,†, Hongzhao Zhou1,2,†, Abdellah Aazmi1,2, Mengfei Yu3, Xiaobin Xu4, Huayong Yang1,2, Yan Yan Shery Huang 5, and
Liang Ma 1,2,*

1State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
2School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
3The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
4School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
5Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

*Correspondence address. Tel: (0086) 18657175422, E-mail: liangma@zju.edu.cn
†These authors contributed equally to this study.

Abstract

The occurrence of various liver diseases can lead to organ failure
of the liver, which is one of the leading causes of mortality world-
wide. Liver tissue engineering see the potential for replacing liver
transplantation and drug toxicity studies facing donor shortages.
The basic elements in liver tissue engineering are cells and bioma-
terials. Both mature hepatocytes and differentiated stem cells can
be used as the main source of cells to construct spheroids and orga-
noids, achieving improved cell function. To mimic the extracellular
matrix (ECM) environment, biomaterials need to be biocompatible
and bioactive, which also help support cell proliferation and differ-
entiation and allow ECM deposition and vascularized structures
formation. In addition, advanced manufacturing approaches are re-
quired to construct the extracellular microenvironment, and it has
been proved that the structured three-dimensional culture system
can help to improve the activity of hepatocytes and the characterization of specific proteins. In summary, we review biomaterials for liver
tissue engineering, including natural hydrogels and synthetic polymers, and advanced processing techniques for building vascularized
microenvironments, including bioassembly, bioprinting and microfluidic methods. We then summarize the application fields including
transplant and regeneration, disease models and drug cytotoxicity analysis. In the end, we put the challenges and prospects of vascularized
liver tissue engineering.
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Introduction
The liver is the largest gland in the human body and is responsible
for a variety of critical biological functions in the body, including
the metabolism of carbohydrates, proteins and lipids, bile produc-
tion and detoxification [1]. It is well established that the liver has a
strong regenerative capacity. However, liver fibrosis, viral infection
and drug damage will reduce this regeneration ability and cause ir-
reversible damage [2]. Hence, the manufacture of complex liver tis-
sues with adequate functionality has become particularly
important due to the high demand for organ transplantation and
the inability to replace in vitro models required for new drug devel-
opment and organ pathology research [3, 4]. Liver tissue engineering
is considered the most promising alternative to mimic microstruc-
ture and maintain major function for liver implantation and drug
screening [5–8]. Three-dimensional (3D) hepatic cell culture can

generate complex cell structures, shapes and arrangements, which

significantly increases the accuracy and reliability of experiments.

It has significant advantages in constructing the heterogeneity and

complexity of liver tissues. In order to culture hepatocytes in vitro

for a long time and fully reproduce the liver functionalities, it is of

great importance to reconstruct the unique liver vasculature

system [9, 10].
Under physiological conditions, the human vasculature has

essential biological functions, such as nutrient and gas exchange,

metabolic waste removal and homeostasis maintenance. The dif-

fusion limit of oxygen and nutrients is about 200 lm, which

means that cells farther from the capillaries experience hypoxia

and apoptosis [11–13]. The liver is one of the most vascularized

organs in the body. Therefore, the constructed vascularized liver

tissue will more favorably mimic the physiologically
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heterogeneous structure and cellular microenvironment, which
can make it more convenient for biomedical applications in re-
generative medicine and drug development [14].

Hepatic extracellular matrix (ECM) is a complex macromolec-
ular network that not only provides cells with a natural microen-
vironment but also participates in the regulation of cellular
functions [15, 16]. For example, the regulation of cell motility and
differentiation is controlled by the surrounding physical environ-
ment and biochemical signals [17]. Biomaterials should then be
able to recreate the key features of the extracellular microenvi-
ronment, including microarchitecture, mechanical strength,
tissue-specific protein composition and pro-angiogenic properties
to maintain cell morphology and growth [17–20]. Different types
of biomaterials, which can be broadly classified into natural
hydrogels and synthetic polymers, have been used in liver tissue
engineering to reconstruct the liver ECM [21, 22].

Another important factor in liver tissue engineering is the cell
sources. According to the differentiation degrees of cells, the fab-
rication methods for adapted liver tissues are also different.
Undifferentiated cells have good biological activity and differenti-
ation potential, and the co-culture of cells allows communication
through paracrine factors and contributes to the formation of
complex cellular structures with more functionalities [23–26]. By
combining with highly biocompatible biomaterials, the microen-
vironment is used to control cells for the differentiation and re-
generation of blood vessels. These printed liver tissues can
deposit 3D microstructures more accurately by using extrusion
or photocuring to build complex vascular networks with fixed
patterns [27–29]. Combining biomaterials with stronger mechani-
cal properties can ensure the stability of the spatial structure and
increase the tightness of the connection between cells. In addi-
tion, the microfluidic-based organ-on-a-chip technology has the
characteristics of dynamic perfusion culture [30, 31]. Nutrients
and metabolites flow through the internal microchannels and
diffuse between endothelial cells and hepatocyte layers, simulat-
ing the physiological microcirculation.

In this review, we discuss recent advances in tissue engineer-
ing of vascularized liver tissues, with a special focus on the bio-
materials and cells matched to different liver extracellular
matrices. In summary, we first describe the structure and func-
tion of the hepatic vasculature and then classify applicable bio-
materials. Based on the degree of cell differentiation, it is roughly
divided into differentiated cells and mature cells, thereby devel-
oping different strategies for constructing specific vascular sys-
tems in vitro. Then, the applications of the prepared vascularized
liver tissues are discussed, such as drug discovery, disease model
and liver regeneration. Finally, the current challenges and future
perspectives of vascularized liver tissue engineering will be pro-
vided. The schematic of vascularized liver tissue engineering is
summarized in Fig. 1.

Structure of the liver
The liver is the largest gland in the human body with complex
and diverse biochemical functions [32]. At the same time, the
liver is rich in blood supply, the liver vascular system includes
the inflow and outflow blood vessels, the former refers to the
proper hepatic artery and the portal vein, and the latter refers to
the hepatic vein [32]. After entering the liver, both the hepatic ar-
tery and portal vein branch repeatedly and become thinner and
thinner, finally form interlobular arteries and interlobular veins,
which pass through the hepatic plate and connect with the he-
patic sinusoids to form a rich vascular network. Subsequently,

the central vein of the hepatic lobule merges into the inferior lob-

ular vein, which finally merges into the hepatic vein [33].
The unique feature of the liver vasculature is the dual blood

supply. Its blood supply includes the portal vein and the hepatic

artery. The portal vein mainly collects the blood flow of the gas-

trointestinal tract and the splenic vein, and transports nutrients

and some toxic substances to the liver for metabolism, and the

hepatic artery mainly provides oxygen [34].
Although the normal liver is mainly composed of parenchy-

mal cells, the surrounding fibrous tissue is very limited in num-

ber, the extracellular microenvironment has significant effects

on the physiological organization and organ function [17, 35].

Therefore, the ECM plays a crucial role in liver physiology and pa-

thology, and any modification of the ECM will directly impact

liver function [36]. The structure and elements of the liver can be

seen in Fig. 2.

Basic units of the liver
Due to the different perspectives of studying the relationship be-

tween the structure and function of the liver, the essential com-

ponents can be divided into two types: hepatic lobule and hepatic

acinus [37].

Hepatic lobule
The hepatic lobules are polygonal. It has a central vein that runs

along its long axis and is surrounded by radially arranged hepatic

cords and sinusoids [38, 39]. Hepatocyte monolayers are arranged

in an uneven plate-like structure called the liver plate. Adjacent

liver plates are anastomosed and connected to form the hepatic

cords [39]. The hepatic sinusoids are located between the hepatic

plates and communicate with each other through pores in the

hepatic plates, forming the smallest capillaries of the liver [40].

The plasma membrane on the adjacent side of the hepatocytes is

partially recessed, forming tiny bile ducts. In this way, the he-

patic plate, hepatic sinusoids and bile ducts form an independent

and closely related complex network within the hepatic lobules

[33]. The area between adjacent hepatic lobules is called the por-

tal area. There are three to six portal areas around each hepatic

lobule, in which three accompanying ducts can be seen, namely

interlobular veins, interlobular arteries and interlobular bile

ducts [37].

Hepatic sinusoids

The hepatic sinusoids are located between the hepatic plates, the

cavity is large and irregular, and the sinus wall is surrounded by

endothelial cells [41]. The blood from the interlobular arteries

and the interlobular veins flows into the hepatic sinusoids [42,

43]. Due to the slow blood flow in the sinusoids, the plasma can

have sufficient material exchange with the liver cells and then

flow into the central vein [44, 45].

Perisinusoidal space

The perisinusoidal space is the narrow space between the hepatic

sinusoidal endothelium and the hepatic plate, also known as the

Disse space, where substances exchange between liver cells and

blood [44]. Due to the high permeability of the hepatic sinusoid

endothelium, the perisinusoidal space is filled with plasma, and

a large number of microvilli on the blood perisinusoidal surface

of the liver cells are soaked in the plasma, which can conduct

sufficient and efficient material exchange [46].
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Hepatic acinus
The hepatic acinus is smaller in size and resembles the shape of
an olive [47]. It is a substantial block with the terminal branch of
the portal canal as the central axis and the central vein as the
boundary at both ends [48]. The blood flows from the portal area
of the central axis into the interlobular vessels and passes

through the hepatic plate to connect with the hepatic sinusoids.
After sufficient material exchange, blood flows radially to the
central veins at both ends, forming a complex anastomotic vas-
cular network. Blood flow along the radial axis of the leaflet cre-
ates a gradient of oxygen, nutrients and hormones, creating a
highly variable microenvironment [48–50]. According to the

Figure 1. Schematic of vascularized liver tissue engineering (created with BioRender.com).
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direction of blood flow and the order of nutrient acquisition, the
hepatic acinus can be divided into three regions [51–54]. The peri-
portal hepatocytes around the afferent vessels and the

hepatocytes around the central vein around the efferent vessels
show different metabolic capacities and subcellular structures,
resulting in the metabolic division of hepatic acinus [52]. Hepatic

Figure 2. Structure and elements of the liver (created with BioRender.com).
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microcirculation is closely related to the pathogenesis of pathol-
ogy, and the metabolic zoning of hepatic acini can reasonably ex-
plain the pathogenesis of some liver lesions [6, 51, 55, 56].

Extracellular matrix of the liver
The ECM constitutes a complex protein network that enables
tissue to form an integral structure and plays an essential role
in regulating tissue homeostasis, remodeling and regeneration
[21, 57, 58]. Its mechanical elastic properties can support cells
to maintain their shape and structure, and the excellent biologi-
cal properties provide a microenvironment that promotes cell
survival, proliferation, differentiation and migration [16, 58]. In
normal liver, the ECM occupies �3% of the relative area and
0.5% of the weight. Collagen types I, III, IV and V are the most
abundant proteins in the intrahepatic matrix [59, 60]. Other
components of the hepatic ECM are present in small amounts,
mainly including glycoproteins such as laminin, fibronectin,
tenascin, nestin and SPARC [59]. Proteoglycans include heparan,
dermatan, chondroitin sulfate, perlecan, hyaluronic acid (HA),
biglycan and decorin [60].

ECM of hepatocytes
Type I collagen and fibronectin are mainly found around hepato-
cytes. A small amount of ECM is better for cell adhesion and
improves the mechanical coherence and resistance of the liver
[60]. Meanwhile, the liver ECM also plays a role in several major
biological functions such as cell proliferation, migration, differen-
tiation and gene expression [36].

ECM of the vasculature
For the ECM of the vasculature in the hepatic lobules, laminin
and collagen IV surround the bile duct, and collagen types I, III
and V are mainly confined to the walls of the portal and central
veins [15, 46]. Collagen type IV binds to laminin and entactin/
nidogen to form a basement membrane-like substance along the
sinus walls [36]. The low density of the ECM, accompanied by the
abundant perisinusoidal endothelial cell windows, is ideal for fa-
cilitating the rapid bidirectional exchange of macromolecules
that occurs between blood and hepatocytes, which is also critical
for maintaining the differentiation of adjacent hepatocytes [17].

ECM in lesions
ECM also plays a significant role in pathological liver models,
such as liver fibrosis. The composition of ECM is similar to that in
normal liver, but the relative amount of the components is redis-
tributed, and the amount increases to three to five times [35].
The most obvious change is the dilation of the ECM from the por-
tal or central veins [61]. Specifically, type I collagen can better re-
flect the degree of liver fibrosis, and type III collagen is positively
correlated with the degree of liver cirrhosis and is more closely
related to liver inflammation. Type IV collagen is an essential
component of the basement membrane. In the early stage of liver
fibrosis, type IV collagen hyperplasia can form a basement mem-
brane in the Disse space [21, 62, 63]. Although fibrosis is a major
biological event, it is inextricably linked to other important mech-
anisms in the liver, such as hepatocyte regeneration and vascular
redistribution.

Cells and biomaterials for vascularized liver
tissue
Mixtures of cells and biomaterials are mainly used to construct
liver tissue in vitro. Among them, cells mainly play the role of

biological functions, while biomaterials can promote cell growth

and maintain the shape of the overall structure.

Cell types and sources
The liver is mainly composed of hepatic parenchymal cells and

hepatic non-parenchymal cells. Liver parenchymal cells are

mainly hepatocytes, which perform the major metabolic and pro-

tein secretion functions of the liver. Non-parenchymal cells in-

clude Kupffer cells, endothelial cells and hepatic stellate cells

(HSCs), which are mainly used to support hepatocytes and im-

prove the functional structure of the liver [64]. In this section, we

will introduce cells for 3D bioprinting according to these catego-

ries. Table 1 summarizes the main cell types and sources used in

3D bioprinting.

Hepatocytes
Liver parenchyma cells are the most numerous and densest cell

population in the liver, accounting for 80% of the total number of

total liver cells [2, 86]. There are well-developed villi on the sur-

face of the blood sinus and bile canaliculi of hepatocytes, which

increase the surface area of the cells and promote the exchange

of substances [87].
Such cells perform major hepatic metabolic and secretory

functions. Primary cells have high metabolic activity and are the

ideal cell source [86, 88, 89]. However, due to the lack of human

primary hepatocytes, these cells can easily lose their phenotype,

so the in vitro tissue construction based on primary hepatocytes

is still difficult. To meet the research needs, researchers have de-

veloped a variety of cell lines with good proliferation and charac-

terization. It is worth mentioning that although HepG2 are tumor

cells, their expression functions are roughly consistent with

those of normal liver cells [29]. At the same time, it has the ability

of hypoxic respiration and high proliferation that normal liver

cells do not have. Therefore, in previous research, these cells

have been widely used in 3D bioprinting to construct disease

models and test drug cytotoxicity [14, 28, 67, 68]. However,

researchers are still working to improve liver tissue function

in vitro. Since some progenitor cells or pluripotent stem cells can

differentiate into fully functional hepatocytes in vitro, they have

unparalleled advantages in constructing perfect structure and

protein expression [90]. For example, HepaRG cells, which retain

bipotent hepatic progenitor-like characteristics, are the most

promising type for bioprinting to construct in vitro liver tissue [73,

74, 82]. Therefore, cells of this type are increasingly used in the

latest research.

Endothelial cells
Endothelial cells have numerous fenestrations of varying sizes

[91, 92]. Endothelial cells are loosely connected with wide inter-

cellular spaces [93, 94]. There is no basement membrane outside

the endothelium, and only a small amount of reticular fibrin is

attached [91, 95]. Therefore, the hepatic sinusoidal endothelium

has a high permeability, and various plasma components can en-

ter the perisinusoidal space [93, 96–99]. In most research, hepatic

sinusoidal endothelial cells can be replaced with human umbili-

cal vein endothelial cells (HUVECs) [100–102]. This type of cell

grows faster, can spread efficiently, and spontaneously induce di-

rectional induction based on endothelial growth factors to form

pathways [103, 104]. Therefore, it is very suitable for building vas-

cularized structures.
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Kupffer cells
Liver sinusoids contain resident macrophages that attach to en-
dothelial cells and can penetrate endothelial fenestrations and
intercellular spaces deep into the peri-sinusoidal space [92, 105].
Due to the active phagocytic ability of cells, they play an impor-
tant role in clearing the liver of antigenic foreign bodies, senes-
cent blood cells, and monitoring tumors [97, 106, 107]. In the
uninjured liver, Kupffer cells constitute the major population of
inflammatory cells and are important for many homeostatic
functions [108, 109].

Hepatic stellate cells
There are irregular fat-storing cells in the perisinusoidal space,
also known as HSCs, which are mainly involved in the metabo-
lism of vitamin A and the storage of fat in the liver [110, 111]. In
addition, another function of HSCs is to produce ECM, from
which the reticular fibers in the perisinusoidal space are pro-
duced [112–114]. Under pathological conditions, adipocytes are
activated and abnormally proliferate, producing ECM and in-
creasing intrahepatic fibrosis, which can finally lead to cirrhosis
[110, 115, 116].

Interaction between hepatocytes and endothelial
cells
The reciprocal relationship between the development of the liver
and the vasculature has long been investigated and elucidated
[117]. Early research studies questioned the fast regeneration of
the liver, which pushed them to use partial hepatectomy models
removed generally from rats [117]. These hepatectomy models
allowed the discovery of reciprocal communication between liver
sinusoidal endothelial cells (LSECs) and hepatocytes using vascu-
lar endothelial growth factor (VEGF) and hepatocyte growth fac-
tor (HGF) factors [118].

HGF was later found as the most potent simulator of hepato-
cytes which is produced by LSECs and HSCs. The binding of HGF
and the tyrosine kinase receptor c-Met consequently activates
several signaling pathways, including JAK/STAT3, phosphoinosi-
tide 3-kinase (PI3K)/Akt/NF-jB, Ras/Raf and mitogen-activated

protein kinase (MAPK) cascades [119]. Each of these pathways

has a specific role in liver regeneration, such as regulating cell

growth, migration, differentiation and apoptosis [119]. The HGF/

c-Met pathway has a vital role in maintaining a normal liver in-

deed. However, slight dysfunction of this pathway may cause di-

verse pathologies such as tumors [120, 121]. On the other hand,

VEGF is the main glycoprotein responsible for vascular growth,

including vasculogenesis and angiogenesis [98]. In the liver, the

VEGF is produced by hepatocytes and HSCs [98].
Hepatectomy models have served as great proof of the crucial

role that plays the endothelial cells in the liver. Therefore, the co-

culture of endothelial cells and hepatocytes should offer a more

accurate in vitro liver model, which has indeed been approved

consequently. In an interesting, Wang et al. [122] used a co-

culture system containing hepatocytes and ECs with different ra-

tios. As a result, this co-culture system showed to improve the se-

cretion of albumin and urea and the expressions of albumin,

BYP3A4 and HNF4a. These findings have also been enhanced by

Lee and Cho [123] using a more sophisticated dynamic liver

model. The research team have used a one-step microextrusion-

based bioprinting method to create a PCL-based liver-on-a-chip

model. A dynamic co-culture model of hepatocytes and endothe-

lial cells was shown to provide greater albumin secretion and

urea synthesis with higher cell viability.

Biomaterials
Given that hepatocytes are anchorage-dependent cells and the

ECM is required for their survival and functionality realization

[124]. Therefore, in past studies, different kinds of biomaterials

have been investigated for their successful cell cultures. By ex-

amining the cellular morphology and characterization of hepato-

cytes used in 3D bioprinted in vitro models, different biomaterials

can be developed to mimic as much as possible the in vivo micro-

environment as well as the physiological changes of cells in vitro,

thus closer to the actual situation. The commonly used biomate-

rials for the construction of vascularized liver tissue are summa-

rized in Fig. 3.

Table 1. Cell type and source

Cell type Cell source Functionality References

Hepatocytes Primary hepatocytes, from human Metabolic and secretory functions of the liver [65, 66]
HepG2 (hepatocellular carcinoma, cell line,

from human)
Metabolic and secretory functions of the liver [67–70]

Huh7 (hepatocellular carcinoma, cell line,
from human)

Metabolic and secretory functions of the liver [71, 72]

HepaRG (hepatic progenitor cells, from hu-
man)

Can differentiate into hepatocytes and bile
duct cells to achieve liver metabolism and
secretion

[73, 74]

MSCs (mesenchymal stem cells, from hu-
man)

Has the potential to differentiate into a variety
of cells, it can differentiate into hepatocytes
for metabolism and secretion

[75–77]

hiPSCs (human-induced pluripotent stem
cells, from human)

Has the potential to differentiate into a variety
of cells, it can differentiate into hepatocytes
for metabolism and secretion

[25, 26, 78–80]

Kupffer cells Primary Kuffer cells, from human Remove foreign bodies, monitor tumors [66]
Kup5, (c-myc-immortalized Kupffer cells,

cell line, from mouse)
Remove foreign bodies, monitor tumors [81]

Stellate cells LX-2 (hepatic stellate cells, cell line, from
human)

Involved in vitamin A metabolism and fat stor-
age, producing extracellular matrix

[82]

Liver perisinusoidal
endothelial cell

HUVEC (human umbilical vein endodermal
cell, cell line, from human)

Reduce blood flow rate, promote substance in-
teraction

[14, 81, 83]

Cholangiocytes SV40SM (cholangiocytes, cell line, from
mouse)

Formation of bile ducts [84]

Cholangiocarcinoma cells, from human Induced hepatocarcinogenesis [85]
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Natural hydrogels
Hydrogels are water-swellable, highly cross-linked polymer net-
works that are soft, quasi-solid, and can support and protect
cells. Since protein-based and polysaccharide-based ECM occu-
pies most of the liver, this type of hydrogel has a significant pro-
moting effect on the cell growth of liver tissue in vitro and is more
conducive to restoring the cellular microenvironment in vivo and
improving the metabolism effect of the liver cells, is commonly
used to prepare scaffolds for liver regeneration. Table 2 summa-
rizes some of the commonly used natural hydrogels.

Alginate

Alginate has been widely used in liver tissue engineering due to its
good biocompatibility, abundant sources, easiness to cross-link and
low price [126, 127]. Gori et al. [140] developed an in vitro 3D liver
model using a composite hydrogel of the biologically inert materials
Pluronic and alginate with high applicability in supporting the viabil-
ity and metabolic activity of the HepG2 cell line (Fig. 3a). Taymour

applied alginate and methylcellulose (algMC)-based bioinks for core-

shell bioprinting and established a functional co-culture model with

independently tunable compartments for different cell types which

provides a liver-like microenvironment for more complex in vitro

models [141]. However, pure alginate does not provide a cell adhesion

site for the encapsulated cells. Researchers usually modified the algi-

nate hydrogel with some cellular recognition motifs such as
Arginylglycylaspartic (RGD), which is widely used in the engineered

hydrogels to bind the cell adhesion protein integrins, hence signifi-

cantly enhancing the cell adhesion and proliferation [142].

Hyaluronic acid

HA is the main component of the peri-sinusoidal space and has

excellent biocompatibility and biodegradability, which plays an

important role in cell proliferation and angiogenesis [131]. As in

the process of liver fibrosis, HSCs are activated, resulting in the

massive production of a hard matrix. In order to study the cellu-

lar mechanotransduction of HSCs in related diseases, Caliari et al.

Figure 3. Biomaterials used in the vascularized liver tissue engineering. (a) Pluronic and alginate with high applicability. Adapted with permission from
Ref. [140]. (b) Collagen type I with hyaluronic acid. Adapted with permission from Ref. [149]. (c) Gelatin. (ci) Gelatin scaffolds. Adapted with permission
from Ref. [71]. (cii) Photocrosslinking of GelMA, producing vascularized tissues with complex shapes. Adapted with permission from Ref. [147]. (d) dECM
bioink with enhanced printability and mechanical properties. Adapted with permission from Ref. [151]. (e) Synthetic polymers. (ei) PCL mixed with
biodegradable hollow fibers (HF). Adapted with permission from Ref. [156]. (eii) PLGA scaffolds. Adapted with permission from Ref. [157]. (f) Cellulose
nanocrystals (CNC). Adapted with permission from Ref. [164].

Regenerative Biomaterials, 2022, Vol. 9, rbac079 | 7



Table 2. Normal natural hydrogels for liver tissue engineering

Type Origin Constituents Crosslinking Fabrication Features References

Alginate From cell walls of al-
gae/seaweed

Guluronic acid and
mannuronic acid

Ionic (Ca2þ, Ba2þ, Mg2þ) Extrusion-based bioprinting;
Inkjet-based bioprinting

With shear thinning proper-
ties, abundant sources,
easy to crosslink

[125–127]

Agarose Marine seaweed 3,6-anhydro-L-galacto-
pyranose and
D-galactose

Temperature Extrusion-based bioprinting High propensity to gelation [128]

Chitosan Insects and crustacean
exoskeleton

N-deacetylation of
chitin and
glycosaminoglycans

Ionic and covalent cross-link Extrusion-based bioprinting High viscosity fluids, resistant
to bacteria and fungi and
analgesia

[129, 130]

Hyaluronic Acid
(HA)

ECM, all over the body b1, 4D glucosamine
and N-acetyl-D-
glucosamine

Physical, light-controlled
chem

Extrusion-based bioprinting Hydrophilicity and
biocompatibility, faster
healing

[131]

Gelatin Cow skin, pig skin, fish
skin

Glycosaminoglycans Covalent, enzymatic,
temperature, physical

Extrusion-based bioprinting It is sensitive to thermal
environment, effective cell
bonding

[132]

Gelatin MA Semi-natural polymer Gelatin and acrylates Light (UV) Digital light processing
(DLP)-based 3D bioprinting;
Extrusion-based bioprint-
ing; Inkjet-based bioprint-
ing

Facilitate attachment of cells
with scaffold promoting
adhesion and cell activity,
have great mechanical
properties

[133, 134]

Collagen Nature-derived ECM,
the tendon of rat tail,
fish skin

Chains of polypeptide pH, ionic cross-link,
temperature, protein
riboflavin

Extrusion-based bioprinting;
Inkjet-based bioprinting

Enzyme catalyzed
degradation, poor
printability

[135, 136]

Fibrin Distributed in plasma Fibrous and non-globu-
lar glycoproteins

Enzymatic Crosslinking
(Factors IIa, XIIIa and IV)

Extrusion-based bioprinting Biodegradable with cell
adhesion sites

[137, 138]

Decellularized
extracellular
matrix (dECM)

Extracellular matrix Collagen, fibrin, gelatin Light (UV), enzymatic Digital light processing (DLP)-
based 3D bioprinting;
Extrusion-based bioprint-
ing;

With complex natural
ingredients and biomimetic
structure

[139]
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[143] used HA to prepare a hardened hydrogel model to simulate
liver cirrhosis and proved the stiffening HA hydrogels could be a
more faithful model for studying myofibroblast activation than
traditional static substrates.

Gelatin

Gelatin and its derivatives are another widely used hydrogels for
the construction of livers in vitro [132]. The triple helical structure of
collagen can be lost by hydrolysis, so gelatin is more soluble in a hy-
drophilic medium and more convenient to prepare [144]. Lewis et al.
[71] demonstrated the ability to precisely control the pore geometry
of 3D printed gelatin scaffolds (Fig. 3ci). They showed high viability
and proliferative capacity when seeded on 3D printed scaffolds of
different geometries with an undifferentiated hepatocyte cell line
(HUH7). However, due to the long cross-linking time and poor
printability of gelatin, researchers gradually eliminated it in the
fabrication of precise microstructures.

Gelatin Methacrylamide (GelMA) is a modified gelatin that cross-
links in seconds under UV light [133, 145]. Compared with other
photocurable hydrogels, GelMA is widely favored by researchers
due to its excellent biocompatibility and strong mechanical proper-
ties at the same time [146]. Sun et al. [147] precisely controlled the
degree of photocrosslinking of GelMA, producing vascularized tis-
sues with complex shapes, high precision, and controllable me-
chanical properties (Fig. 3cii). Roopesh et al. [148] made sandwiched
liver parenchyma microtissues with GelMA. Monitoring of liver-
specific function revealed that the 3D structure of liver tissue in the
hydrogel sandwich was maintained while compared with it in sus-
pension, albumin secretion, urea synthesis and CYP450 activity
were enhanced. These researches all demonstrate the potential of
GelMA for in vitro tissue construction.

Collagen

Collagen is the most abundant component in the liver ECM, espe-
cially type I collagen, but due to its low viscosity, collagen is less
suitable for bioprinting [135]. Therefore, various methods are cur-
rently developed to improve the mechanical properties and print-
ability of collagen. Mazzocchi et al. [149] printed 3D liver tissue
structures containing primary human hepatocytes (PHHs) and
HSCs using a mixture of collagen type I and HA and found that
hepatocytes were able to express albumin and survive for more
than 2 weeks while responding appropriately to acetaminophen,
a common liver poison (Fig. 3b). Deng et al. [74] seeded cells in mi-
croporous platforms to form spheroids, which were then directly
encapsulated in mixed hydrogels containing various collagen and
protein, including collagen type I (COL1), collagen IV (COL4), fi-
bronectin protein (FN) and laminin (LM). The results showed that
different ECM components promoted the expression and secre-
tion of hepatic markers of cell spheroids [74].

Decellularized extracellular matrix

The natural ECM has better biological properties and degradabil-
ity, which can provide a scaffold for a 3D liver microenvironment
with complex natural components and biomimetic structures,
which is necessary for the development of better tissue models
[124, 150]. However, its poor printability and weak mechanical
properties remain a challenge. Kim et al. [151], developed a new
gelatin-mixed decellularized ECM (dECM) bioink with enhanced
printability and mechanical properties (Fig. 3d). In order to fur-
ther solidify the acellular ECM to strengthen its mechanical prop-
erties, Mao et al. [152] developed a liver-specific bioink and
encapsulated human-induced hepatocytes (hiHep cells) to form
cell-laden bioinks and found that hepatocytes spread farther in

this microtissue and had better hepatocyte-specific functions. In
the research of biocompatibility, Sharma et al. [72] developed a
hybrid liver-specific three-dimensional scaffold using gelatin
with native decellularized liver matrix (DCL) and silk fibroin, pro-
viding a favorable microenvironment for enhanced hepatocyte
differentiation and function. Minami et al. [26] successfully devel-
oped a novel artificial liver model using human-induced pluripo-
tent stem cells and rat decellularized liver scaffolds and
demonstrated its potential to promote functions characteristic of
human livers. It can be seen that the high biocompatibility of
acellular ECM has great advantages in inducing undifferentiated
cells to maintain cell-specific functions and form in vitro tissues.

Synthetic materials
Although natural biomaterials have absolute advantages in bio-
compatibility, some problems, such as low viscosity, poor me-
chanical properties and insufficient sources, hamper their
biomedical applications. Synthetic polymeric with better me-
chanical properties have become increasingly used in liver tissue
engineering, especially for vessel structures requiring precise and
better shape retention. It has high mechanical strength, which
can be applied to certain research purposes. Meanwhile, to over-
come the low binding affinity for cells, these synthetic polymers
are often modified with biomolecules (e.g. proteins, polysacchar-
ides, polypeptides) to improve their biocompatibility by adding
cellular recognition motifs. Among the many 3D printable syn-
thetic polymers, polyethylene glycol (PEG), poly(e-caprolactone)
(PCL) and poly(lactic-co-glycolic acid) (PLGA) are primarily used
for bioprinting of liver structures [153, 154]. They have tunable
mechanical properties that can provide a microenvironment to
guide liver regeneration and remodeling. PCL has good biocom-
patibility and processability, softness and flexibility at body tem-
perature [144]. Lee et al. [155] injected a bioink containing
primary hepatocytes, HUVECs, and human lung fibroblasts into
PCL scaffolds to induce capillary-like network formation and he-
patocyte growth. A co-culture 3D microenvironment of these
three types of cells was successfully established and maintained
[155]. Salerno et al. [156] reported a bioink based on PCL mixed
with biodegradable hollow fibers. After printing the liver tissue
model, it was found that endothelial cells were massively inte-
grated with the inner surface of individual PCL fibers to form a
blood vessel-like structure, and hepatocytes completely covered
the outer surface and the space between the fibers (Fig. 3ei) [156].
Furthermore, the tunable degradability and support properties of
PLGA can be adapted to the regeneration process. Liu et al. [157]
co-cultured mesenchymal stem cells (MSCs) and hepatocytes
and demonstrated the stable differentiation ability of MSCs upon
hepatocytes in PLGA scaffolds (Fig. 3eii).

Composite/multicomponent/hybrid materials
Although a single hydrogel is easy to prepare, it still has limita-
tions in its multifunctional biocompatibility with multiple cell
types. Therefore, in order to further reduce the components of
the ECM, composite/multicomponent/hybrid materials are grad-
ually used for liver construction.

Hybrid

Hybrid materials are generally a mixture of multiple collagens or
extracellular matrices. The diversity of this material composition
has a positive effect on the growth of hepatocytes. Clark et al.
[158] described a novel bioink composed entirely of materials in
the ECM of human tissue. This was achieved by incorporating
gelatin nanoparticles into a base bioink made of collagen
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methacrylated and HA, with excellent mechanical properties and
printability. Matrigel is a biomaterial that regulates the cellular
microenvironment and contains various components such as
cohesin, collagen IV, fibronectin and heparan sulfate [159, 160].
Tao et al. [161] supplemented macromolecules including Matrigel
and polysaccharides at different concentrations into HepG2 sphe-
roids to modulate the cellular microenvironment and observed
the effect on cell viability.

Nanocelluloses

In the context of biomedical hydrogels for tissue engineering, one
particular kind of synthetic nanomaterials called nanocelluloses
share structural similarities to the ECM due to their porosity and
interconnected framework within the structural hydrogel [162].
Meanwhile, the fiber morphology of cellulose fibrils is somewhat
similar to that of collagen and fibronectin, which has attracted
great attention. This provides better shape fidelity and print reso-
lution for the stent. Wu et al. [163] mixed alginate and cellulose
nanocrystals to prepare a hybrid bioink with shear-thinning rheo-
logical properties. Fibroblasts and hepatoma cells were then cul-
tured together on the printed scaffolds and found that the
viability of the cells was not affected. Subsequently, they
designed a new bioink using alginate, cellulose nanocrystals and
GelMA, which can directly print cell-laden structures by micro-
extrusion. The ink exhibits excellent shear thinning behavior and
solid-like properties, enabling high printability without obvious
cell damage (Fig. 3f) [164]. The composite bioink of cellulose
nanofiber hydrogels combined with alginate is an effective
method for achieving cross-linking of printed scaffolds in the
presence of Ca2þ. The porous structures formed can help cells ad-
hesion on the surface and inside of the scaffolds to improve cell
viability. Zhang et al. [165] prepared a CNF-alginate-CLP (cellulose
nanofiber hydrogel-alginate-spherical colloidal lignin nanoparti-
cle) nanocomposite scaffold to which CLPs brought antioxidant
properties and increased the viscosity of the hydrogel at low
shear rates, HepG2 cells encapsulated remain high cell viability
proved that this kind of nanocomposite is suitable for liver tissue
engineering.

Biomanufacturing approaches for
vascularized liver tissues
Various new strategies for vascularized liver tissue creation are be-
ing proposed as biomanufacturing technology advances. From the
level of cell origin, it can be simply divided into two categories. One
is progenitor cells or stem cells with differentiation potential. The
majority of methods employing such cells for liver tissue develop-
ment use scaffold-free approaches to generate spheroids or organo-
ids without fixed structures and rely on cells’ differentiation ability
to stimulate the creation of blood vessels. The other is mature cells,
which do not have the ability to differentiate. Most of them use 3D
bioprinting methods to construct hepatic lobular tissue with
vascular structure or microfluidic-based methods to prepare
liver-on-chips [166]. In the following paragraphs, we will briefly dis-
cuss different manufacturing strategies for using these two types of
cells to construct vascularized liver tissue in vitro.

Bioassembled vascularized liver models
Organoids constructed from undifferentiated cells have the abil-
ity to self-renew, are closer to real tissues, and have highly simi-
lar histological functions. In general, strategies for vascularizing
spheroids and organoids are carried out in two steps: First, orga-
noids are constructed in vitro, and cells are induced to

differentiate to form primary blood vessels. Then, transplanta-
tion into highly vascularized regions of the liver in vivo to further
induce vascularized structures.

Spheroids
Various types of 3D cell aggregates, such as spheroids, organo-
ids and tissue sprouts, have received increasing attention in re-
generative medicine. Among them, spheroids break the
limitation of traditional monolayer cell culture and make the
connection between cells more closely, are widely used in
high-throughput evaluation in vitro and tissue repair in vivo
[167]. MSCs transplantation is a promising treatment for ische-
mia–reperfusion injury. Sun et al. [76] used 3D spheroid culture,
enhanced the nutritional and anti-inflammatory properties of
MSCs, while increasing the secretion of VEGF, which was help-
ful for transplantation. Cuvellier et al. [168] printed PHHs with
GelMA and found that the spontaneous polarization of the cells
produced hollow spheroids. These highly differentiated PHHs
were then implanted in mice and showed the ability to be
printed to the structures for vascularization. Park [77] investi-
gated the use of photobiomodulation treatment to differentiate
human adipose stem cells in spheroids and stimulate angio-
genesis to improve the recovery of liver function. Such hepatic
spheroids act as individual vascularized units, facilitating the
development and functioning of new microvascular networks
within the implanted tissue structure [77]. In terms of disease
models, Suurmond et al. [81] proposed an in vitro model of non-
alcoholic fatty liver disease formed by co-culture of hepatic
progenitor cells (HepaRG), umbilical vein endothelial cells
(HUVECs) and Kupffer cells into spheroids. Compared with
those made from HepG2 cells, these spheroids made from
HepaRG showed a closer trend to the functions in humans.

Organoids
Organoids are relatively simple to generate and have the ability
to play a good role in damage repairment [169]. In addition to
their application in clinical transplantation, liver organoids
can be used as a salvage bridge in the transition from liver fail-
ure treatment to liver regeneration or as a supplement to ex-
tensive liver resection and temporary maintenance of the liver
while awaiting transplantation. Based on this purpose, Yang et
al. [73] used HepaRG to prepare liver tissue patches, and after
7 days of differentiation in vitro with DMSO, these patches were
transplanted into liver-damaged mice and found that the sur-
vival time of the mice was significantly increased. New blood
vessels began to form on Day 14 post-transplantation, and
some common human-specific biomarkers were detected. In
another research by Wu et al. [75], mesenchymal stromal cells
(MSCs) aggregates were deposited and attached to decellular-
ized liver scaffolds and transplanted into the omentum of
liver-injured rats. This liver tissue had a stable structure, with
completed functional expression and angiogenic capacity [75].
Bioinks containing a variety of hepatocyte ECM components
will be used to fabricate complex liver organoids, which can
promote the transformation of undifferentiated cells into hep-
atocytes and the expression of specific proteins. Janani et al.
[170] utilized human adipose-derived MSCs, HUVECs and hu-
man HSCs and applied two bioinks to support parenchymal
and non-parenchymal cells, hepatic lobular organoids were
constructed with functional sinusoidal lumen-like networks in
both horizontal and vertical orientations. The results showed
that this co-cultured liver model exhibited enhanced albumin
production, urea synthesis and cytochrome P450 (CPR) activity.
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Bioprinted vascularized liver models
In contrast, the strategies used by mature cells to build vascu-

larized liver tissue are more diverse. Since cells do not have the

ability to differentiate, 3D bioprinting is more conducive to the

construction of liver tissue with precise vascular networks that

can grow according to a preset pattern that preserves structure

well and promotes cell-to-cell interactions. 3D bioprinting

involves mixing cells and hydrogels together to form bioinks,

and then applying additive manufacturing techniques such as

extrusion, photocuring and inkjet to precisely deposit the bio-

inks in vitro to construct in vitro tissues and organs [171, 172].

While microvascular induction uses prefabricated cells that

can self-assemble to build corresponding structures [100, 173].

Both strategies are followed by a phase of organizational

remodeling and maturation [174]. In Table 3, we summarize

some biofabrication methods for liver model construction.

Inkjet-based bioprinting
Inkjet-based bioprinting uses voltage to change the shape of pie-

zoelectric materials and generate pressure and then eject drop-

lets from nozzles to achieve the printing of small-scale

structures, which can be widely used in materials such as living

cells, biomolecules and biocompatible hydrogels [184]. Some

attempts have been made to utilize inkjet-based bioprinting in

vascularized liver tissue engineering. Zhang et al. [177] used inkjet

as a cell-patterning method in microchips to form an integrated

system that mimics vascularized structures by printing different

kinds of cells at designed locations combined with corresponding

microchannels (Fig. 4a). At the same time, the human hepatoma

cell line HepG2 and the human glioma cell line U251 were co-

cultured and subjected to drug metabolism and diffusion experi-

ments. The experimental results showed that the drug was me-

tabolized by HepG2, showing a significant anticancer effect on

U251. Arai et al. [176] used inkjet printing to construct monolayer

3D hydrogel sheets for hepatocyte attachment. They used two gel

sheets to create a sandwich structure to form parallel layers of

liver cells. In this way, a hepatic cord structure can be achieved

and has some potential for the formation of the vascular system.

However, due to the slow printing efficiency and very few selec-

tion of low viscosity bioink of inkjet printing, also the applied

voltage has the problem of affecting the specific function expres-

sion of cells, so the usage of inkjet bioprinting in liver tissue con-

struction has limited.

Extrusion-based bioprinting
The extrusion-based 3D bioprinting technologies extrude the
material through a nozzle into continuous filaments and uses
the movement of the nozzle or the receiving plate to build dif-
ferent 3D structures [18]. It has attracted much attention in the
preparation of liver tissue due to its ease of use and potential
to adapt to various bioink viscosities, offering high cell loading
densities and minimal damage to cells [185]. Meanwhile, extru-
sion printing enables the construction of continuous gradient
tissue. Liu et al. [179] printed a pattern of endothelialized tissue
in which four sections loaded with human dermal fibroblasts
(HDFs), HepG2 human hepatocytes, human MSCs (hMSCs) and
cell-free bioinks were deposited on the bottom, respectively.
Then a vasculature similar to encapsulating HUVECs was inte-
grated on the top [179].

Pre-set

However, extrusion bioprinting has the disadvantages of low
printing resolution and slow printing speed, so it is still a chal-
lenge for building vascular structures. In order to overcome
these problems, Jin et al. [70] proposed the pre-set extrusion
technology in 2018, with the principle that the fluid with a low
Reynolds number is not easy to mix. They printed a complex
multimaterial high-resolution structure containing HepG2
cells and endothelial cells [70]. Two years later, the team used
the technique to print vascularized structures resembling liver
lobules, including the central lumen and sinusoids [101]. After
culture, endothelial cells were observed to spread well on the
surface and inside the lumen. Recently, combined with micro-
fluidic emulsification technology, hepatic lobular vascularized
multicellular spheroids were successfully constructed on the
scale of hundreds of micrometers. In these spheroids, endothe-
lial cells were distributed on the outside, which ensures the in-
tegrity of the overall structure, and forms a radial vascular
architecture similar to the liver lobule (Fig. 4ci) [102].

Coaxial extrusion printing

Coaxial extrusion printing has the characteristics of simple and
high practicability and is widely used in the construction of the
vascular network. Pi et al. [186] achieved a perfusable circumfer-
ential multilayer tissue structure using a digitally tunable multi-
layer coaxial nozzle. Besides, Yu et al. [67] used dual-channel
filaments for extrusion bioprinting, successfully constructed vas-
cular access and simulated the dynamic function between hepa-
tocytes through sequential perfusion (Fig. 4cii).

Table 3. Biomanufacturing approaches for liver model construction

Biomanufacturing approaches Advantage Disadvantage References

Inkjet-based bioprinting Small tissues and organs with
high resolution requirements
can be constructed, ability to
print low-viscosity biomateri-
als

Inability to provide continuous
flow, low vertical structure
accuracy, low cell density

[175–178]

Extrusion-based bioprinting Broad bioink compatibility, print-
able with multiple viscosities,
good biocompatibility, print-
able with high-cell densities,
continuous gradient printing is
possible

Low resolution, slow print speed,
only suitable for viscous
liquids

[70, 175, 178, 179]

Photocuring-based bioprinting High printing resolution; can
construct more complex struc-
tures; high printing speed

Toxicity of UV light sources to
cells, possible damage to cells
with photo-initiators

[147, 178, 180–183]
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Sacrificial printing

Because the scale of blood vessels is relatively small, and the pre-
cision of extrusion printing is generally not enough to construct
the structure of microvessels, the sacrificial printing method to
forming a hollow channel structure by heating and dissolving
temperature-sensitive materials is proposed and widely used in
the fabrication of vascular networks. Pimentel et al. [69] utilized
sacrificial printing to construct a tissue with an intact 3D perfus-
able network and soft-tissue-scale stiffness. The obtained tissue
constructs were cultured by perfusion using a custom-built flu-
idic platform, resulting in significantly prolonged survival
(>14 days) (Fig. 4civ) [69]. Liu et al. [187] dissolved the fugitive inks
Pluronic F127 to form channels and incubated endothelial cells
(ECs) to form vascular beds (Fig. 4ciii). The printed constructs can
be perfused through branched endothelial vasculature to support
well-formed 3D capillary networks, which then mimic mature
and functional liver tissue in terms of liver-specific protein syn-
thesis.

Photocuring bioprinting
The photocurable bioprinting method uses light to cross-link the
bioink, and build up layer by layer with the preset pattern, the
most common used manner also known as digital light process-
ing. This printing strategy, with the advantages of higher accu-
racy, faster printing speed and higher resolution, helps build
more complex and complete microstructures within the hepatic
lobules [188]. However, this method has potential phototoxicity,
which may have a certain impact on the viability of cells. Ma et al.
[189] encapsulated hepatocytes and endothelial- and
mesenchymal-derived supporting cells in complementary pat-
terns and restored the hepatic lobular structure by constructing
vascular channels through a photopolymerization method of a
hydrogel matrix (Fig. 4b). Grigoryan et al. [190] created 3D
entangled multivascular networks using photopolymerizable
hydrogels. Then, a more advanced vehicle was constructed that
could deliver liver aggregates in native fibrin gels with vascular
compartments that could be seeded with endothelial cells. Bernal

Figure 4. Bioprinted vascularized liver models. (a) Inkjet-based bioprinting. Adapted with permission from Ref. [177]. (b) Photocuring-based bioprinting.
Adapted with permission from Ref. [189]. (c) Extrusion-based bioprinting. (ci) Pre-set micro-extrusion printing. Adapted with permission from Ref. [102].
(cii) Coaxial extrusion printing. Adapted with permission from Ref. [67]. (ciii, civ) Sacrificial printing. Adapted with permission from Ref. [69, 187]. (d)
Microvascular induction. (di) Microvascular induction to generate liver organoids. Adapted with permission from Ref. [103]. (dii) Microvascular
induction to generate hepatic spheroids. Adapted with permission from Ref. [196].
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et al. [180] build highly complex and unique structures by reduc-
ing scattering by refractive index matching of specific intracellu-
lar components, a development that enables high-resolution
volumetric bioprinting. This research opens up the possibility of
constructing sophisticated microvascular networks in the future.
These findings demonstrate the close relationship between a fine
structure produced by photocuring methods and the resulting bi-
ological function, further underscoring the potential of biofabri-
cation for advanced tissue engineering.

Photosymbiotic tissue engineering
Tissue engineering offers the possibility of in vitro biofabrication
of three-dimensional (3D) tissues, but due to the complexity of
vascularized structures, ideal 3D tissue scaffolds are difficult to
achieve [191]. To overcome this difficulty, the strategy of intro-
ducing oxygen in tissue engineering has been extensively ex-
plored [192]. Given that oxygen is produced by photosynthetic
microorganisms such as microalgae and cyanobacteria in nature,
and they have a symbiotic relationship with a variety of eukary-
otic hosts including animals, a nascent photosymbiotic tissue en-
gineering has gradually been widely studied [193]. It has to be
mentioned that Maharjan et al. [194] used sacrificial printing to
develop an in vitro vascularized tissue structure with sufficient
oxygen supply. Among them, they utilized algae to act as natural
photosynthetic oxygen generators in the liver tissue structure,
support the viability and function of HepG2 cells in the surround-
ing GelMA matrix, and evenly distribute HUVEC layers to form
endothelialization channels. This method can effectively avoid
cell death due to hypoxia, providing a new idea for in vitro combi-
natorial construction.

Microvascular induction
Bioprinting is a well-established approach to generate large ves-
sels embedded in liver tissues; however, the common bioprinting
methods are not suitable to create microvascular due to the limi-
tations of the printing resolution. Methods of microvascular in-
duction target the formation of vascular channels by exploiting
the tendency of cells to grow toward higher nutrient concentra-
tions. This method can break through the limitations of printing
resolution and enables the formation of microvascular systems
that are closer to the physiological range [104, 195]. Following
this strategy, Son et al. used angiogenic factor-secreting cells to
create angiogenic factor gradients along a bridge pattern, using a
method of biological self-assembly to form microvascular net-
works (Fig. 4di) [103]. However, although this method can build a
network of blood vessels, the hepatocytes is not included around
the network, which cannot simulate the direct interaction be-
tween blood flow and the cells. To compensate for this shortcom-
ing, Bonanini et al. [196] established a vascular bed by inducing
endothelial cells with endothelial growth factor. After transplan-
tation, the hepatic microspheres spontaneously anastomosed
with the microvascular bed to form a vascular network. And after
7 days of co-culture in the Disse-like structural space between
hepatocytes and endothelium, endothelial cells were found to
penetrate the liver microtissue and form stable, perfusable mi-
crovasculature (Fig. 4dii) [196]. Although this method of micro-
vascular induction can construct fine capillary networks, it still
has the disadvantages of small overall scale, long construction
time and unstable directional formation ability.

Microfluidics-based vascularized liver models
Organ-on-a-chip technology is a microfluidic-based technology,
which is used to cultivate a variety of living cells in a

microchamber under continuous perfusion conditions to form a
biomimetic system of in vivo organ microenvironment [197].
Although various liver-on-chips technologies have been devel-
oped, it remains a great challenge to use this technology to simu-
late hepatic lobule structures that contain perfusable sinusoidal
networks. Current liver-on-chips lack the ECM necessary for hep-
atocytes and the biliary system necessary for the excretion of
bile. Lee et al. [198] constructed a multicell cultured 3D liver chip
using liver dECM bioink. The chip has dual-flow hepatic vascular/
biliary channels, overcoming the limitations of existing models
and successfully observing the formation of the biliary system
and enhanced liver function in the chip. Xie et al. [30] utilized a
rigid polymer, and a soft porous membrane folded together to
form a stack of three adjacent flow chambers separated by the
membrane. Endothelial cells were seeded in the upper and lower
chambers to simulate sinusoids, and hepatocytes were seeded in
the middle chamber. Nutrients and metabolites flow through the
simulated sinusoids and diffuse between the vascular channels
and the hepatocyte layer, simulating physiological microcircula-
tion (Fig. 5a) [30]. Ya et al. [199] developed a realistic biomimetic
hepatic lobule-on-a-chip on which a perfusable sinusoidal net-
work was realized using a microfluidic-guided angiogenesis ap-
proach. Furthermore, after self-assembly, the oxygen
concentration was adjusted to mimic the physiological level of
dissolution provided by actual hepatic arterioles and venules
(Fig. 5b) [199]. These studies showed that, chips with vascularized
structures can better simulate the biomimetic liver microstruc-
ture, have the higher metabolic capacity and longer-lasting hepa-
tocyte functions.

Due to the high-throughput characteristics of liver-on-chips,
they are often used in disease models and drug metabolism stud-
ies [200]. Lasli et al. [83] presented an in vitro system to study non-
alcoholic fatty liver disease by first co-culturing HepG2 cells and
HUVECs into spheroids and then transferring the spheroids to a
chip system with an array of interconnected hexagonal micro-
wells. Proven to help monitor liver function by increasing the in-
teraction of albumin secretion with HepG2-HUVEC and
increasing the production of reactive oxygen species in adipose
spheroids. Drugs typically pass through the endothelium-
parenchymal tissue interface in the body, and the endothelium
can contribute to drug-toxic behavior. Herland et al. [201]
designed a fluid-coupled multiorgan chip to quantitatively dem-
onstrate the pharmacokinetic and pharmacodynamic models of
human physiological drugs through drug absorption, metabolism
and excretion (Fig. 5c). Using the chip can simulate the drug
transfer under physiological conditions between organs through
the endothelial-lined vasculature and maintain long-term viabil-
ity. Besides, Lee et al. [202] developed a new liver model aimed at
enabling the implantation and maintenance of liver buds in per-
fusable 3D hydrogels in which a microvascular network develops
within the 200 mm diffusion limit. This system replicates inflam-
mation, lipid accumulation, and fibrosis processes in the progres-
sion of nonalcoholic fatty liver disease and predicts outcomes in
mouse models (Fig. 5d) [202]. Recently, Chhabra et al. [203] devel-
oped a microfluidic chip platform called a structurally vascular-
ized liver ensemble. It enables the control of hemodynamic
changes to mimic those that occur during liver injury and regen-
eration and supports the management of biochemical inputs
such as cytokines and paracrine interactions with endothelial
cells. The model can provide information that cannot be gleaned
from mouse or other animal studies, allowing scientists to more
precisely track the processes involved in liver regeneration.

Regenerative Biomaterials, 2022, Vol. 9, rbac079 | 13



Vascularized liver tissue applications and
evaluation
The liver has a complex and unique microenvironment with mul-
tiple cell–cell interactions and an internal vascular network.
Tissues with abundant vascularization can highly restore the cel-
lular microenvironment and help improve the secretion and met-
abolic functions of hepatocytes. This kind of highly biologically
active in vitro tissue will be widely used in transplantation and re-
generation. In addition, the development of clinically relevant
vascularized liver models that can mimic the stimulation and in-
duction of molecular pathways can help to elucidate disease
mechanisms in biomedical research and applications in preclini-
cal drug screening. It also provides a powerful platform for per-
sonalized liver toxicity screening [204], helping pharmaceutical
companies to speed up drug development and drug toxicity
analysis [3, 205]. For functional assessment of transplant regen-
eration, secretion of albumin and urea is the focus of attention.
Cytochrome P450, transaminases and bilirubin are hallmark bio-
markers in the presence of liver injury and are therefore fre-
quently detected in disease modeling and drug screening [206].
As shown in Table 4, we exemplify the applications and evalua-
tion indicators of some vascularized liver tissues.

Transplant and regeneration
The shortage of organ donors is a key challenge in the treatment
of end-stage organ failure, prompting the development of alter-
native strategies to generate organs in vitro. Hong et al. [102] sub-
cutaneously injected structured microtissue spheroids
mimicking hepatic lobules into nude mice and found the forma-
tion of functional blood vessels with structural integrity and sta-
bility. Although HepG2 is a suitable choice for in vitro studies of
hepatic microtissues, the level of metabolic activity is low.
Therefore, liver tissue composed of undifferentiated cells has

better biological activity and weaker rejection response, which
can improve the structural integrity and stability of implantation.

Yang et al. [73] used HepaRG cells to construct liver organoids, ac-
quired several liver functions after 7 days of differentiation,
exhibited liver-specific protein synthesis after transplantation
into liver-injured mice, and formed a functional vascular system,
further supporting the substance transport function, significantly

improved the survival rate of treated mice. Wu et al. [75] used
MSCs to construct liver tissue and transplanted it into the omen-
tum of liver-injured rats (Fig. 6a). The grafts were found to have
hepatocyte-specific functions, exhibit strong proliferative activity

in the ectopic liver system, and were able to anastomose the host
vascular network efficiently and compatible with the host im-
mune system.

Disease models
The generation of various diseases is inseparable from the inter-
action between cell-cell and cell-ECM. Since the induction of dis-
eases requires precise control of communication between cells,
the interaction process between substances is essential.
Therefore, 3D vascularized co-cultures have opened up opportu-

nities for studying the development of hepatic disease models.
The construction of an in vitro hepatic fibrosis model provides

a better way to study potential inducers and inhibitors of colla-
gen expression and deposition. The findings of Norona et al. [207]
demonstrated that Kupffer cells influence the biochemical and

gene expression levels of different stages of the response and
that their regulation of the injury/fibrotic response is context-
dependent. Cuvellier et al. [82] precisely controlled cellular com-
munication to induce liver fibrosis in 3D multicellular bioprinted
constructs containing three types of cells: HepaRG, LX-2 and en-

dothelial cells, and found fibrillar collagen deposition (Fig. 6ci).
These results further demonstrate the utility of bioprinted

Figure 5. Microfluidics-based vascularized liver models. (a) Liver sinusoidal fold chip. Adapted with permission from Ref. [30]. (b) Bionic liver lobule
chip. Adapted with permission from Ref. [199]. (c) Fluid-coupled multiorgan chip. Adapted with permission from Ref. [201]. (d) Nonalcoholic fatty liver
organ chip. Adapted with permission from Ref. [202].
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Table 4. Application and evaluation indicators

Cell type Culture mediuma Structure Applications Biomarkers References

HepaRG High Glucose Dulbecco’s Modified
Eagle Medium (DMEM) with di-
methyl sulfoxide (DMSO) medium

Scaffold Transplantation Albumin, a-1 antitrypsin, factor VII,
factor IX, CYP1A2, CYP3A4,
alanine aminotransferase (ALT),
aspartate aminotransferase (AST),
direct bilirubin (DBIL),
gamma-glutamyl transpeptidase
(GGT), alkaline phosphatase (ALP),
albumin/globulin ration (A/G)

[73]

HepG2, HUVEC FBS and penicillin-streptomycin
solution mixed in fresh DMEM

Hepatic lobule spheroids Transplantation MRP2, albumin, b-catenin,
P-b-catenin, a-1 antitrypsin, urea,
CYP3A4, CYP1A2, CYP2B6, CD31

[102]

Mesenchymal stem cells
(MSCs)

Heparinized acellular extracellular
matrix and mesenchymal stem
cell culture medium

Spheroids Transplantation albumin (ALB), aspartate
aminotransferase (AST), alanine
aminotransferase (ALT), total
bilirubin (TIBL), FOXA2, NR1I2,
SLC27A5, INS2, CYP1A1, CYP3A9,
GPX3, AKR1D1

[75]

HepaRG, stellate cells (LX-2),
HUVEC

William’s E medium with fetal bo-
vine serum Hyclone III, penicillin,
streptomycin, human insulin, l-
glutamine, hydrocortisone hemi-
succinate and DMSO

Scaffold Liver fibrosis induction Albumin, ACTA2, COL1A1, MMP2,
TIMP1, Cytochrome P450 isoforms
(CYP3A4, CYP2B6, CYP2E1,
CYP2C9, CYP2C19)

[82]

Primary human hepatocytes,
HSCs, HUVEC, Kuffer cells

DMSO was spiked into the TGF-b1
dosing solution and standard cul-
ture medium

Scaffold Liver fibrosis induction miR-122, albumin, urea, lactate
dehydrogenase (LDH)

[207]

HepG2 DMEM with fetal bovine serum Hepatic lobule organoids Hepatocellular carcinoma Albumin, E-cadherin, matrix
metalloproteinases (MMP2 MMP9),
AFP, Twist-related protein 1
(TWIST1)

[208]

Primary hepatocellular carci-
noma

DMEM/F12, penicillin/streptomycin,
GlutaMAX, HEPES, B27, N2,
N-acetyl-l-cysteine, nicotinamide,
recombinant human (Leu15)-gas-
trin I, recombinant human EGF,
recombinant human FGF10, re-
combinant human HGF, forskolin,
A8301, Y27632, dexamethasone

Scaffold Hepatocellular carcinoma Ki-67, AFP, Raf-1, VEGFR1, VEGFR2 [209]

HepaRG William’s E medium with fetal bo-
vine serum, l-Glutamine, recombi-
nant human insulin,
hydrocortisone hemisuccinate,
penicillin/streptomycin, DMSO

Scaffold Viral transcription Albumin, CYP3A4, lactate
dehydrogenase (LDH), adenoviral
DNA

[210]

HepG2 Minimum essential medium (MEM) a
supplemented with FBS and anti-
biotic–antimycotic

Spheroid Drug-induced hepatotoxicity MPT, cytosolic calcium, caspase-3 [28]

Hepatocytes, endothelial
cells, Kupffer cells, and stel-
late cells

William’s E medium containing
GlutaMAX, ITSþ Premix [human
recombinant insulin, human
transferrin, selenous acid, BSA,
and linoleic acid], dexamethasone,
ascorbic acid, fetal bovine serum,
and penicillin/streptomycin

Organ-on-a-chip Drug toxicity, predict drug-in-
duced liver injury (DILI)

Cytochrome P450 isoforms (CYP1A,
CYP2B, and CYP3A),
MRP2, miR122, a-GST, keratin 18,
ALT, AST, GLDH

[66]
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Table 4. (continued)

Cell type Culture mediuma Structure Applications Biomarkers References

Human adipose-derived
mesenchymal stem cells
(ADMSCs), HUVEC, human
hepatic stellate cells
(HHSCs)

HiPer high glucose Dulbecco’s
Modified Eagle Medium,
containing fetal bovine serum, l-
glutamine, basic fibroblast growth
factor, endothelial cell growth
supplement, stellate cell growth
supplement

Hepatic lobule organoids Drug toxicity, drug screening Cytochrome P450, albumin, cytoker-
atin 18, CYP2E1, fibronectin,
HNF4a markers, a-fetoprotein
(AFP)

[170]

Human pluripotent stem cell
(hPSC)

Advanced DMEM/F12 supplemented
with GlutaMAX, HEPES, B27, BSA,
N-acetyl-L-cysteine, [Leu15]-gas-
trin I human, A83–01, DAPT, 3 lM
dexamethasone, FGF19, BMP7 and
HGF. For suspension culture, me-
dia were supplemented with
Matrigel

Spheroid Drug-induced liver injury
(DILI)

Cytochrome P450, albumin, urea [5]

HepaRG William’s E medium supplemented
with L-Glutamine, fetal bovine se-
rum, hydrocortisone hemisucci-
nate, recombinant human insulin,
penicillin/streptomycin and DMSO

Scaffold Drug toxicity lactate dehydrogenase (LDH), albu-
min, urea

[211]

a The culture medium in Table 4 is all the components of the co-culture medium, among which DMSO is mostly used after 1–2 weeks to induce differentiation.
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human liver tissue for modeling and examining fibrotic events
in vitro and understanding fibrotic injury.

In the study of liver cancer, in vitro liver tissue models can also
play a huge role. Ma et al. [208] utilized a 3D biomimetic liver plat-
form to study the behavior of various hepatoma cells in specific
fibrotic settings. Xie et al. [209] established a patient-derived HCC
(Hepatocellular carcinoma) model that retained the characteris-
tics of parental HCC, including stable expression of biomarkers,
genetic alterations and stable maintenance of expression profiles
(Fig. 6cii). These models can visually and quantitatively demon-
strate predicting patient-specific drug outcomes for personalized
treatment. Another 3D model printed by Hiller et al. [210] sup-
ports efficient adenovirus replication, making them suitable for
studying virus biology and developing new antiviral compounds
(Fig. 6ciii).

Drug cytotoxicity analysis
Drug development is a long, expensive and risky process with a
very low success rate. Due to portal absorption of oral drugs and
their high bioactivation capacity, the liver is inadvertently ex-
posed to high concentrations of drugs and bioactive metabolites,
which are often the direct cause of drug-induced liver injury. For
in situ quantitative assessment and high-content monitoring of
drug toxicity, Hong et al. [28] developed a HepG2 liver spheroid
culture model, a promising method for screening and

characterizing drug-induced hepatotoxicity. To predict drug-
induced liver injury, an in vitro microenvironment rich in vascu-
larization was developed. Facilitating intercellular events and
crosstalk by co-culturing parenchymal and non-parenchymal
cells has great advantages in modeling the complexity and diver-
sity of drug metabolism and drug toxicity pathways. Jang et al.
[66] applied microengineered organ-on-a-chip technology to de-
sign rat, dog and human liver-on-chips containing species-
specific primary hepatocytes, kupffer cells and HSCs linked to he-
patic sinusoidal endothelial cells in physiological fluid culture
flow, confirming the mechanism of action of several known hep-
atotoxic drugs and one experimental compound. The chip
detected multiple phenotypes of hepatotoxicity, including hepa-
tocyte damage, steatosis, cholestasis and fibrosis, as well as
species-specific toxicity upon treatment with the tool com-
pounds. Janani et al. [170] constructed multicellular co-cultured
vascularized hepatic lobular organoids for subsequent assess-
ment of cell viability and metabolic capacity by estimating DNA
concentration and lactate dehydrogenase activity after exposure
to different concentrations of hepatotoxic drugs (Fig. 6bi).
Cytochrome P450 activity revealed dose-dependent clinically rel-
evant hepatotoxicity. Since a complex liver microenvironment
usually causes high metabolism of drugs and toxins, cells with
differentiation ability will show good results in the detection of
drug toxicity. Kim et al. [5] generated functionally characterized

Figure 6. Applications of vascularized liver tissue. (a) Transplanted liver tissue into the liver-injured rats. Adapted with permission from Ref. [75]. (b)
Drug cytotoxicity analysis. (bi) Vascularized hepatic lobular organoids for drug cytotoxicity analysis. Adapted with permission from Ref. [170]. (bii)
Mechanism of action of several known hepatotoxic drugs and one experimental compound. Adapted with permission from Ref. [66]. (c) Disease models.
(ci) Liver fibrosis model. Adapted with permission from Ref. [82] (cii) Cancer model [209]. (ciii) Virus transfection model. Adapted with permission from
Ref. [210].
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liver organoids as a high-fidelity model for drug safety assess-
ment, including high CYP450 activity and apical drug transport
capacity. Schmidt et al. [211] prepared HepaRG cultures using
alginate-gelatin-Matrigel-based hydrogels to test the toxicity of
aflatoxin B1 in vitro (Fig. 6bi). Such organoids that restore the ex-
tracellular microenvironment may provide a suitable alternative
in vitro for chronic hepatotoxicity studies.

Challenges and future perspectives
Despite tremendous progress in liver tissue engineering over the
past few decades, how to construct multiscale functional micro-
vasculature with high precision and high resolution remains a
challenge. Here, we summarize the current challenges and pre-
sent ideas for corresponding implementations.

Firstly, in terms of vascularization accuracy, most of them are
still at the millimeter level. The method of biological self-
assembly can greatly improve the accuracy of formed capillary
networks [104]. Micro-extrusion method can be applied to realize
the alternating structure of liver tissue and vascular access and
control the precision to the level of 100 microns. The in vitro vas-
cularized tissue will be then formed by biological self-assembly
to achieve a highly simplified liver sinusoid model. Such a capil-
lary network, on the one hand, can promote the exchange of sub-
stances and improve the metabolic capacity of hepatocytes. On
the other hand, it is also helpful for orthotopic transplantation
and improves the efficiency of vascular system regeneration.

Secondly, in terms of the microenvironment, the liver has a rich
variety of ECM, many types of cells, high density and relatively clear
partitions, but the fabrication of a multimaterial, multicell co-
culture model is a great challenge. Zhou et al. [212] proposed a mul-
timaterial multiprocess fusion fabrication method that facilitates
the construction of complex spatially heterogeneous structures.
Combining with the embedded printing, it is possible to construct
complex tissues with extra-low viscosity hydrogels such as colla-
gen, which cannot be fabricated with traditional 3D extrusion-
based bioprinting in the air [83]. A versatile embedded medium was
proposed and had the ability to realize the coexistence of multiple
cross-linking modes, which is helpful for the simultaneous con-
struction of multiple materials at the same time [213, 214]. In addi-
tion, the sacrificial writing to functional tissue (SWIFT) method also
helps to generate organ-specific tissue with high maturity [215].
Especially for liver tissue with high cell density and frequent mate-
rial interaction, this is also an efficient construction method to cre-
ate liver tissues with complex vasculatures.

Finally, in terms of functionalization, due to the lack of sour-
ces of primary hepatocytes and easy to lose functions during the
cell culture process, liver tissue in vitro cannot restore the com-
plete functional characterization in vivo. At the same time, the
metabolic partitioning generated by hepatic acinus can rationally
explain multiple disease models [40, 51, 54]. Therefore, microflui-
dic liver-on-a-chip technology can be integrated to carry out a
long-term perfusion culture through the sequence of fluid flow
so as to generate the gradient of metabolism, which can restore
the metabolic gradient model of liver acinus. At the same time,
adding more types of liver cells, such as HSCs, and Kuffer cells,
can provide a more physiological model for the subsequent study
of disease mechanisms and drug toxicity.

Conclusions
In recent years, the construction of vascularized liver tissue in vitro
has shown a new direction, and the development of this field

requires a wide range of cell sources and suitable biomaterials
aimed at damage repairment and drug toxicity studies. In this re-
view, we outline various cell sources and analyze the advantages of
scaffold materials for assembled cells. We first introduce the com-
ponents of scaffold materials, such as protein- and polysaccharide-
based natural materials, acellular extracellular matrices, synthetic
polymers and nanocellulose materials. We then outline common
and novel strategies for preparing vascularized liver tissues based
on different types of cells. With the in vitro fabricated vascularized
liver tissues, many biomedical applications can be applied on these
models, such as liver regeneration, disease model as well as drug
screening. In terms of transplantation regeneration, prevascularized
tissue can be anastomosed with the host’s vascular system, in-
creasing the success rate of transplantation. At the same time, ani-
mal experiments are ultimately limited in terms of inducing disease
models and studying drug toxicity, and vascularization models can
provide suitable alternatives to more realistically understand hu-
man responses to drug testing, toxicological analysis or pathological
models.
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