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Chronic hyperglycemia contributes to development of
diabetic kidney disease by promoting glomerular injury.
In this study, we evaluated the hypothesis that hyper-
glycemic conditions promote expression of the stress
response protein regulated in development and DNA
damage response 1 (REDD1) in the kidney in a manner
that contributes to the development of oxidative stress
and renal injury. After 16 weeks of streptozotocin-induced
diabetes, albuminuria and renal hypertrophy were ob-
served in wild-type (WT) mice coincident with increased
renal REDD1 expression. In contrast, diabetic REDD1
knockout (KO) mice did not exhibit impaired renal physi-
ology. Histopathologic examination revealed that glo-
merular damage including mesangial expansion, matrix
deposition, and podocytopenia in the kidneys of diabetic
WT mice was reduced or absent in diabetic REDD1 KO
mice. In cultured human podocytes, exposure to hypergly-
cemic conditions enhanced REDD1 expression, increased
reactive oxygen species (ROS) levels, and promoted cell
death. In both the kidney of diabetic mice and in podocyte
cultures exposed to hyperglycemic conditions, REDD1
deletion reduced ROS and prevented podocyte loss.
Benefits of REDD1 deletion were recapitulated by phar-
macological GSK3b suppression, supporting a role for
REDD1-dependent GSK3b activation in diabetes-induced
oxidative stress and renal defects. The results support a
role for REDD1 in diabetes-induced renal complications.

Diabetic nephropathy (DN) is a chronic complication of
diabetes that progresses to end-stage renal failure. DN
represents a growing socioeconomic and global health

burden, with the annual incidence of end-stage renal dis-
ease among patients with diabetes reaching 1,016 per
million in 2015 (1). The Diabetes Control and Complica-
tions Trial demonstrated a key role for hyperglycemia in
the development and progression of renal complications
(2). However, current therapeutic interventions used in
combination with glycemic control have not proven suffi-
cient to halt or reverse DN progression (3,4). This is at
least in part due to a deficit in understanding of the spe-
cific molecular events that contribute to renal pathology.

Diabetes-associated kidney damage includes functional
and structural changes in glomerular cells, including po-
docytes, mesangial cells, and endothelial cells (5). Podo-
cytes are terminally differentiated epithelial cells that
preserve glomerular structure and maintain barrier func-
tion by allowing the selective filtration of water and sol-
utes, while preventing large macromolecules like proteins
from leaking into the urine (6). Among the changes in re-
nal morphology that are caused by diabetes, a reduced
number of podocytes per glomerulus, known as podocyto-
penia, is the strongest predictor of DN progression (7–9).
Podocytopenia is observed in patients with early and late
DN (7,8), as well as in animal models of type 1 and type 2
diabetes (9,10). A variety of stressors associated with dia-
betes, including oxidative stress, inflammation, and endo-
plasmic reticular stress, contribute to podocytopenia (11).
Hyperglycemia-induced reactive oxygen species (ROS) have
specifically been shown to decrease podocyte viability by
triggering caspase-3–mediated apoptosis (12).

Expression of the stress response protein regulated in
development and DNA damage response 1 (REDD1) (also
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known as DDIT4/RTP801) has been linked to the de-
velopment of oxidative stress in multiple pathological
conditions, including diabetic retinopathy (13–15). Our
laboratory demonstrated a critical role for REDD1 in the
development of diabetes-induced retinal complications and
functional deficits in vision (15–18). Furthermore, clinical
intervention with an siRNA targeting REDD1 has shown
promise for the improvement of vision in patients suffer-
ing from diabetic macular edema (19). REDD1 acts at least
in part to promote association of PP2A with Akt, leading
to site-specific dephosphorylation of the kinase and re-
duced Akt-dependent suppression of glycogen synthase
kinase 3b (GSK3b) (20). Interplay between REDD1 and
GSK3b signaling contributes to the development of hy-
perglycemia-induced oxidative stress via suppression of
the Nrf2 antioxidant response (18). GSK3b hyperactivity
is associated with DN progression, and GSK3 inhibitors
are currently being pursued as potential therapeutic op-
tions (21,22). However, a role for REDD1 in DN has never
been investigated. Herein, we examined a role for REDD1
in development of renal complication caused by diabetes.

RESEARCH DESIGN AND METHODS

Animals
Male wild-type (WT) and REDD1 knockout (KO) mice on
a B6;129 background (23) were administered 50 mg/kg
streptozotocin (STZ) intraperitoneally for five consecutive
days to induce diabetes. Control mice received equivalent
volumes of sodium citrate vehicle. Diabetic phenotype was
confirmed by fasting blood glucose concentrations >250
mg/dL. For examination of a role for GSK3b, C57BL/6J
mice (The Jackson Laboratory, Bar Harbor, ME) were ad-
ministered STZ as described above and then received daily
intraperitoneal injections of either VP3.15 (10 mg/kg;
MedChemExpress, Monmouth Junction, NJ) or vehicle
(10% DMSO, 0.9% NaCl) during the last 3 weeks of diabe-
tes. At 16 weeks of diabetes, mice were euthanized, and
terminal urine collection was carried out from the bladder.
Both kidneys were removed, weighed, and processed for
examination. All procedures adhered to the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the Penn State College of
Medicine Institutional Animal Care and Use Committee.

Urinalysis
Urine protein was separated by SDS-PAGE, transferred to
polyvinylidene fluoride membrane, and visualized with re-
versible protein stain (Thermo Fisher Scientific). Urine
creatinine and albumin concentrations were determined
with Creatinine (urinary) Colorimetric Assay Kit (Cayman
Chemical) and Mouse Albumin ELISA Kit (Eagle Bioscien-
ces), respectively.

Histology
Renal sections (6 mm) were cut from 10% formalin-fixed,
paraffin-embedded (FFPE) kidneys. Periodic acid-Schiff

(PAS) and hematoxylin-eosin (H-E) staining were per-
formed as previously described (9). Immunohistochemical
analyses were carried out with ImmPRESS HRP Horse
Anti-Rabbit IgG Polymer Detection Kit (Vector Labora-
tories). Heat-induced antigen retrieval was carried out
with citrate buffer (0.01 mol/L, pH 6), and endogenous
peroxidase activity was quenched through incubation of
sections in BLOXALL Blocking Solution. Sections were
then blocked with 2.5% horse serum, incubated overnight
with appropriate antibodies (Supplementary Table 1), and
detected with 3,30-diaminobenzidine. Tissue sections were
counterstained with H-E, and micrographs were captured
with an Olympus BX51 brightfield microscope. Fibronectin
or nitrotyrosine immunoreactivity was quantified with
ImageJ software. WT-1–positive cells in glomeruli (20 per
section) were counted.

Quantification of Morphology
All quantifications were performed in a masked manner
and carried out as previously described (24). We evaluated
glomerular mesangial expansion and glomerular volume
(GV) in sagittal kidney sections by examining 30–50 corti-
cal glomeruli per mouse (five mice per group). The index
of the mesangial expansion was defined as ratio of mesan-
gial area to glomerular tuft area. Glomerular area (GA)
was quantified with ImageJ and converted to GV with a
spherical approximation formula (GV = 1.2545(GA)1.5).

Electron Microscopy
Renal cortical tissue (�1 mm3) from diabetic and non-
diabetic WT and REDD1 KO mice was fixed with 2.5%
glutaraldehyde and 2% paraformaldehyde in 0.1 mol/L
phosphate buffer (pH 7.4), followed by 1% osmium tetrox-
ide in 0.1 mol/L phosphate buffer (pH 7.4) for 1 h. Sam-
ples were dehydrated in a graduated series of ethanol and
acetone and embedded in LX 112 (Ladd Research Indus-
tries, Williston, VT). Thin sections (65 nm) were stained
with uranyl acetate and lead citrate and viewed in a JEOL
JEM-1400 Transmission Electron Microscope (JEOL USA)
located at the Penn State College of Medicine Transmis-
sion Electron Microscopy Core (Research Resource Identi-
fier [RRID] SCR_021200).

In Situ Hybridization
REDD1 mRNA was detected with the RNAscope 2.5 HD As-
say-RED detection kit and the RNAscope probe Mm-Ddit4
(Advanced Cellular Diagnostics) targeting nucleotides
133–1480 of NM_029083.2. RNA in situ hybridization
(ISH) was carried out on 6 mm FFPE kidney sections ac-
cording to the manufacturer’s protocol. Sections were
deparaffinized and pretreated with heat and protease
before hybridization of REDD1 mRNA probe. Preamplifier,
amplifier, and alkaline phosphatase–labeled oligonucleoti-
des were sequentially hybridized followed by application
of a chromogenic substrate to produce red punctate dots.
Tissue was counterstained with Mayer hematoxylin, and
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micrographs were captured with an Olympus BX51 bright-
field microscope.

TUNEL
Apoptosis was measured with the DeadEnd fluorometric
terminal deoxynucleotidyl transferase dUTP nick end la-
beling (TUNEL) system assay kit (Promega) according to
the manufacturer’s instructions. Prior to TUNEL staining,
FFPE kidney sections were rehydrated and immunofluo-
rescence staining for WT-1 was carried out. Sections were
then fixed in 4% paraformaldehyde and permeabilized with
20 mg/mL Proteinase K and then incubated with TUNEL re-
action mixture for 60 min at 37�C in a humidified dark
chamber. Kidney sections were subsequently washed with
2× saline-sodium citrate buffer (0.3 mol/L sodium chlo-
ride, 0.03 mol/L sodium citrate) and PBS and mounted
with VECTASHIELD 1 DAPI (Vector Laboratories). Im-
ages were captured with the Leica SP8 confocal laser
microscope with frame-stack sequential scanning.

Cell Culture
Conditionally immortalized human podocytes (CIHP-1) were
purchased from Dr. Moin Saleem’s laboratory at the Uni-
versity of Bristol (Bristol, U.K.), proliferated at 33�C in 5%
CO2, and then differentiated for 10 days at 37�C in 5%
CO2 (25). Cells were cultured in RPMI-1640 media (Sigma-
Aldrich) supplemented with 10% FBS and 1% penicillin/
streptomycin. CRISPR/Cas9 genome editing was used to
generate a stable CIHP-1 cell line deficient in REDD1
(REDD1 KO) as previously described (26). Cells were ex-
posed to culture medium containing either 30 mmol/L glu-
cose or 5 mmol/L glucose supplemented with 25 mmol/L
mannitol as an osmotic control. In specific studies, cells
were exposed to medium containing the GSK3 inhibitor
VP3.15 (1 mmol/L).

ROS Measurement
Renal lysates were centrifuged at 1,500g for 3 min, and the su-
pernatant was exposed to 10 mmol/L 20,70-dichlorofluorescein
(DCF). Fluorescence (excitation/emission = 504/529 nm)
was measured with a SpectraMax M5 plate reader (Molec-
ular Devices, San Jose, CA). Intracellular ROS were as-
sessed in CIHP-1 cultures with a DCFDA Cellular Reactive
Oxygen Species Detection Assay Kit (Abcam, Cambridge,
U.K.) according to the manufacturer’s instructions. Cellu-
lar ROS were imaged by confocal microscopy.

Antioxidant Response Element–Luciferase Reporter
Assay
Differentiated CIHP-1 WT and REDD1 KO cells were co-
transfected with the pRL-CMV Renilla luciferase (Promega)
and antioxidant response element (ARE)-firefly luciferase
(kindly provided by Dr. Jiyang Cai, University of Texas
Medical Branch) plasmids combined in a 10:1 ratio using
jetPRIME (Polyplus transfection). After 24 h, transfec-
tion media were removed, and cells were exposed to

hyperglycemic conditions for 48 h. Luciferase activity
was measured on a FlexStation 3 (Molecular Devices) with a
Dual-Luciferase Assay Kit (Promega).

Viability Assay
WT and REDD1 KO cells were plated at a density of 104 cells
per well in a 96-well plate in 200 mL culture medium and al-
lowed to adhere overnight at 33�C. Cells were then differen-
tiated for 10 days followed by exposure to hyperglycemic
conditions for 0–48 h. Cell viability was determined with the
MTT Cell Proliferation Assay Kit (Cayman Chemical, Ann Ar-
bor, MI) following the manufacturer’s instructions. Briefly,
10 mL of a 5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) solution was added to each
well. After 4 h incubation, the medium was carefully aspi-
rated, the purple formazan crystals were solubilized, and
optical density was measured at 570 nm.

Western Blotting
Total protein was extracted from cells in culture and tis-
sue that was flash frozen in liquid nitrogen. Approxi-
mately 20 mg of renal cortical tissue was homogenized
in 200 mL of lysis buffer (50 mmol/L Tris [pH 7.4],
150 mmol/L NaCl, 1% NP-40, 0.5% Na-deoxycholate, 1%
protease-phosphatase inhibitors) and protein concentrations
were estimated with DC protein assay (Bio-Rad Laboratories).
Protein from cell lysates or kidney homogenates were com-
bined with Laemmli buffer, boiled, and fractionated with use
of Criterion precast 4–20% gels (Bio-Rad Laboratories). Pro-
teins were transferred to polyvinylidene fluoride membrane,
reversibly stained for assessment of protein loading, blocked
in 5% milk in Tris-buffered solution Tween 20, and evaluated
with the appropriate antibodies (Supplementary Table 1).

PCR Analysis
Total RNA was extracted with TRIzol (Invitrogen, Waltham,
MA). RNA (1 mg) was reverse transcribed with the High
Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, Waltham, MA) and subjected to quantitative real-
time PCR (QuantStudio 12K Flex Real-Time PCR System;
Thermo Fisher Scientific [RRID SCR_021098]) using
QuantiTect SYBR Green Master Mix (QIAGEN, German-
town, MD). Primer sequences are listed in Supplementary
Table 2. Mean cycle threshold (CT) values were determined
for control and experimental samples. Changes in mRNA
expression were normalized to GAPDH mRNA expression
with the 2�DDCT method.

Statistical Analysis
Data are expressed as means ± SD. Statistical analysis of
data with more than two groups were analyzed with two-
way ANOVA, and pairwise comparisons were made with
the Tukey test for multiple comparisons. Difference between
two-groups was determined with unpaired Student t test. The
relationships between REDD1 expression and blood glucose
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levels were tested with Spearman correlation analysis. Sig-
nificance was defined as P < 0.05 for all analyses.

Data and Resource Availability
The data sets and resources generated during this study
are available from the corresponding author on reason-
able request.

RESULTS

REDD1 Mediates Diabetes-Induced Renal Hypertrophy
and Albuminuria
After 16 weeks of STZ diabetes, REDD1 mRNA abundance
was increased in kidney tissue homogenates in coordination
with fasting blood glucose concentrations (Fig. 1A). A corre-
sponding increase in REDD1 protein expression was ob-
served in kidney tissue homogenates from diabetic mice
as compared with nondiabetic controls (Fig. 1B). Negligi-
ble REDD1 mRNA was detected in the glomeruli of non-
diabetic mice by ISH, whereas enhanced staining was
observed throughout the kidney cortex of diabetic mice
(Fig. 1C). For evaluation of a role for REDD1 in diabetes-
induced renal damage, mice with a germline disruption of
REDD1 were administered STZ. Following 16 weeks of dia-
betes, diabetic and nondiabetic REDD1 KO mice exhibited
fasting blood glucose concentrations similar to those ob-
served in diabetic and nondiabetic WT mice (Fig. 2A). Dia-
betes enhanced REDD1 mRNA (Fig. 2B) and protein
(Fig. 2C) expression in the kidney of WT mice. Diabetic
WT and REDD1 KO mice had reduced body weights as
compared with nondiabetic mice after 16 weeks of STZ
diabetes. However, there was no difference in body weight
with WT versus REDD1 KO mice (Fig. 2D). In WT mice,
diabetes increased kidney weight (Fig. 2E) and kidney–
to–body weight ratio (Fig. 2F). As compared with diabetic
WT mice, diabetic REDD1 KO mice exhibited reduced kid-
ney weight and kidney–to–body weight ratio. In support
of renal hypertrophy, rpS6 phosphorylation was enhanced
in STZ diabetic WT mice (Supplementary Fig. 1); however,
diabetes did not alter rpS6 phosphorylation in REDD1
KO mice. Urine volumes collected from diabetic WT and
REDD1 KO mice were significantly higher as compared
with their respective nondiabetic controls (Fig. 2G). Uri-
nalysis of diabetic WT mice showed an increased urinary
protein band at 60 kDa (Fig. 2H) and elevated urinary al-
bumin (Fig. 2I). Diabetic mice also exhibited a reduction
in urinary creatine concentration (Fig. 2J) and increased
urinary albumin–to–creatinine ratio (ACR) (Fig. 2K). REDD1
deletion prevented proteinuria and normalized urinary ACR
in diabetic mice.

Diabetes-Induced Renal Pathology Required REDD1
Glomerular structure (Fig. 3A, panels a–d) and mesangial
proliferation (Fig. 3A, panels e–h) were examined with H-E
and PAS staining, respectively. Histologic examination re-
vealed glomerular hypertrophy, basement membrane thick-
ening, and mesangial proliferation in diabetic WT mice

as compared with nondiabetic controls. Increased GV
(Fig. 3B) and compressed Bowman capsule were observed
in diabetic WT mice. Mesangial expansion was also
observed within glomeruli of diabetic WT mice (Fig. 3C).
Features of renal pathology were significantly attenuated
or absent in diabetic REDD1 KO mice. In particular, GV
and mesangial index were reduced in diabetic REDD1 KO
mice as compared with diabetic WT mice. REDD1 deletion
also decreased matrix deposition in diabetic mice, evidenced
by reduced fibronectin expression (Fig. 3A, panels i–l, and
Fig. 3D). Expression of mRNAs encoding profibrotic markers
TGF-b1, a-SMA, fibronectin, and collagen 1A1 were en-
hanced in the kidney of diabetic WT mice as compared
with nondiabetic controls, whereas the mRNA encoding
the tight junction protein E-cadherin was reduced (Fig. 3E).
Fibrotic markers were reduced, and E-cadherin expression
was increased, in the kidney of diabetic REDD1 KO mice
as compared with diabetic WT mice.

REDD1 Contributes to Diabetes-Induced Podocytopenia
Hyperglycemia-induced podocyte loss has previously been
reported in cell cultures and rodent models of diabetes
(12,27). WT-1 immunolabeling was used to identify podo-
cytes. WT-1 is essential for renal development as well as
maintaining the differentiated state of podocytes in the
adult kidney (28). A decrease in WT-1–positive cells was
observed in glomeruli from diabetic WT mice (Fig. 4A).
However, REDD1 deletion prevented reduced WT-1 ex-
pression in diabetic mice (Fig. 4B). A role for REDD1 in
podocytopenia was also supported by reduced expression
of the podocyte marker podocin in kidney homogenates
from diabetic WT mice but not diabetic REDD1 KO mice
(Fig. 4C). Normal podocyte architecture with filtration slits
and evenly spaced slit diaphragms were observed in elec-
tron micrographs of renal tissue from nondiabetic mice
(Fig. 4D). By contrast, glomerular basement membrane
thickening and foot process effacement with distancing of
slit pores were observed diabetic WT mice. In contrast
with diabetic WT mice, podocyte architecture was pre-
served in diabetic REDD1 KO mice. For investigation of a
role for REDD1 in human podocytes, CIHP cells were
exposed to hyperglycemic culture conditions, which in-
creased both REDD1 mRNA (Fig. 4E) and protein (Fig. 4F)
expression. Metabolic viability assessment using MTT
showed reduced viability of WT podocytes after 24–48 h of
exposure to hyperglycemic conditions (Fig. 4G). However,
hyperglycemic conditions did not reduce viability of
REDD1-deficient podocytes. Hyperglycemic conditions also
increased cleaved caspase 3 expression in WT, but not in
REDD1 KO, podocytes (Fig. 4H).

REDD1 Contributes to Oxidative Stress in the Kidney
of Diabetic Mice
Increased ROS levels were observed in kidney homoge-
nates from diabetic mice (Fig. 5A). Protein oxidation iden-
tified by nitrotyrosine immunolabeling was also elevated
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in the kidney of diabetic mice (Fig. 5B and C). Both ROS
levels and nitrotyrosine labeling were reduced in the kidney
of diabetic REDD1 KO mice as compared with diabetic WT
mice. Exposure to hyperglycemic culture media also
enhanced ROS levels in WT podocytes; however, high
glucose–induced ROS were not observed in REDD1
KO podocytes (Fig. 5D and E). To assess the impact of
REDD1 on the Nrf2-mediated antioxidant response, an
Nrf2 ARE-luciferase reporter was expressed in podocytes.
Exposure to hyperglycemic conditions reduced Nrf2 activity
in WT cells (Fig. 5F). REDD1 KO podocytes exhibited en-
hanced Nrf2 activity as compared with WT podocytes,
and the suppressive effect of hyperglycemic conditions on
Nrf2 required REDD1. Examination of Nrf2 target mRNA

transcript (i.e., GCLC, GCLM, HO-1, and NQO1) expres-
sion was consistent with constitutive activation of Nrf2
in the absence of REDD1 (Fig. 5G).

REDD1-Dependent Activation of GSK3b Contributes to
Diabetic Nephropathy

We previously demonstrated that REDD1-dependent GSK3b
activation contributes to Nrf2 suppression in the retina
of diabetic mice (18). In the kidney of diabetic WT mice,
we observed a reduction in the inhibitory phosphorylation
of GSK3b at Ser9 (Fig. 6A–B). The suppressive effect of
diabetes on GSK3b phosphorylation was absent in REDD1
KO mice, and GSK3b phosphorylation was increased in
diabetic REDD1 KO mice as compared with diabetic WT
mice. Similarly, GSK3b phosphorylation was reduced in
WT podocytes on exposure to hyperglycemic conditions,
and REDD1 was required for this effect (Fig. 6C). Together,
the observations support REDD1-dependent activation of
GSK3b in response to diabetes/hyperglycemic conditions.
For examination of the role of GSK3b, GSK3 activity was
inhibited using VP3.15. In podocytes exposed to hypergly-
cemic conditions, VP3.15 reduced glycogen synthase phos-
phorylation (Supplementary Fig. 2A) and attenuated ROS
levels (Fig. 6D). Moreover, GSK3b inhibition attenuated
hyperglycemia-induced loss of podocyte viability (Fig. 6E).
For determination of the benefits of GSK3b suppression
on renal defects, 13 weeks after STZ administration dia-
betic mice were administered VP3.15 daily for 3 weeks
(Supplementary Fig. 2B). VP3.15 did not alter body weight
(Supplementary Fig. 2C). Efficacy of the treatment was
confirmed by reduced glycogen synthase phosphorylation
in renal tissue lysates of diabetic mice (Supplementary
Fig. 2D). In diabetic mice receiving VP3.15, renal hyper-
trophy (Supplementary Fig. 2E and F) and urinary proteins
(Supplementary Fig. 2G) were reduced. Evidence for im-
proved renal function was suggested by a trend toward
lower urine ACR in diabetic mice receiving VP3.15 as com-
pared with DMSO vehicle (P = 0.1276) (Supplementary
Fig. 1H–J). Importantly, GSK3b inhibition prevented
diabetes-induced ROS in kidney homogenates (Fig. 6F).
GSK3b inhibition also prevented diabetes-induced po-
docyte loss (Fig. 6G and H) and attenuated podocyte
apoptosis in diabetic mice, as assessed according to
colocalization of WT-1– and TUNEL-positive cells (Fig. 6G
and I and Supplementary Fig. 3).

DISCUSSION

Herein, we examined a role for REDD1 in the develop-
ment of renal complications in a well-characterized pre-
clinical model of type 1 diabetes. REDD1 induction was
observed in the kidney of STZ diabetic mice, as well as in
human podocytes exposed to hyperglycemic conditions.
Diabetes-induced mesangial expansion, matrix deposition,
and glomerular ultrastructural alternations were relieved
in REDD1 KO mice. Single-cell sequencing supports that
REDD1 expression is not localized to a particular cell type
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within the kidney (29). REDD1 was initially identified as
a stress response gene that was transcriptionally induced
in response to hypoxia and oxidative stress (30) but sub-
sequently shown to be elevated in response to cellular
stressors including nutrient deprivation and endoplasmic
reticular stress (31,32). Increased REDD1 mRNA expression

in the renal cortex of diabetic mice supports transcriptional
upregulation of REDD1 with STZ diabetes. The studies
here also provide evidence that REDD1 acts to pro-
mote renal oxidative stress via GSK3b-dependent sup-
pression of the Nrf2 antioxidant response. Overall, the
findings support a model wherein diabetes-induced
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renal REDD1 causes glomerular podocyte damage through
disrupted redox homeostasis (Fig. 7).

Microalbuminuria is an important indicator of DN pro-
gression and often caused by the dysfunction of the
glomerular filtration barrier (33). Podocytes are a core
component of this filtration barrier and play a central
role in maintaining glomerular structural and functional in-
tegrity. Podocyte injury is a key factor in DN progression,

with foot process effacement, detachment from the glo-
merular basement membrane, and podocyte apoptosis of-
ten observed in the earliest stages of disease (34,35).
Disrupted glomerular architecture, foot process effacement,
distancing of slit pores, and podocytopenia were observed
in diabetic mice. Remarkably, markers of podocyte dysfunc-
tion were absent or reduced in the kidney of diabetic
REDD1 KO mice and renal barrier function was preserved.
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Hyperglycemia is a major determinant of podocytopenia
and DN progression (12,36). Podocyte cultures exposed to
conditions including elevated glucose concentrations un-
dergo apoptosis due to activation of p38 MAPK and clas-
sical caspase 3 signaling (12). A role for REDD1 in high
glucose–induced caspase activation and cell death was
previously demonstrated in R28 neuronal precursor cells
(15). In support of that observation, we found that REDD1
deletion prevented an increase in cleaved caspase 3

expression and reduced viability in human podocyte cul-
tures exposed to hyperglycemic conditions. The principle
pathways responsible for hyperglycemia-induced tissue
damage are all linked to the overproduction of ROS (37).
An imbalance between ROS production and the cellular an-
tioxidant response leads to development of oxidative
stress, which is a key driver of DN pathology (38–40).
Combating oxidative stress with antioxidant adjuvant ther-
apies has been successful in delaying if not preventing the
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development of DN pathologies in preclinical rodent
models (41,42). In clinical studies, antioxidant supple-
mentation consistently improves albuminuria (43). En-
hanced REDD1 expression is associated with multiple
disease models in which oxidative stress is a driver of pa-
thology (44). In the retina of diabetic mice and in retinal
cell cultures exposed to hyperglycemic conditions, REDD1
contributes to the development of oxidative stress (15,17).
Moreover, multiple reports have implicated hyperglyce-
mia-induced oxidative stress as a trigger for cell death
mechanisms including apoptosis (12,15,36,45). In the
current study, REDD1 deletion blunted oxidative stress
in the kidney of diabetic mice and in human podocytes ex-
posed to hyperglycemic conditions.

The transcription factor Nrf2 regulates expression of
>200 antioxidant response genes by binding to an ARE
enhancer region of their promoters (45,46). Nrf2 is classi-
cally regulated by the adaptor protein Kelch-like ECH-
associated protein 1 (Keap1), which facilitates proteasomal
degradation of the transcription factor. When ROS accumu-
late, cysteine residues on Keap1 become oxidized and Nrf2
is allowed to translocate into the nucleus to promote the

production of antioxidants (47). In addition, GSK3b directly
phosphorylates Nrf2 to promote its nuclear exclusion and
degradation by a protein cluster containing the ubiquitin
ligase adapter b-transducin repeat–containing protein
(b-TrCP) (48). In human podocytes exposed to hyperglyce-
mic conditions, ROS levels were enhanced in coordination
with suppression of Nrf2 activity. REDD1 deletion prevented
the suppressive effect of hyperglycemic conditions on
Nrf2 activity, and also podocytes lacking REDD1 exhibited
chronic hyperactivation of Nrf2. Previous work from our
laboratory provides evidence that REDD1 acts to suppress
Nrf2 activity by promoting GSK3-dependent proteasomal
degradation of the transcription factor (18).

Diabetes-induced GSK3b activation is observed in vari-
ous tissues including the kidney (21). In the glomerulus,
GSK3b is an evolutionarily conserved, redox-sensitive
serine/threonine protein kinase that is predominantly
expressed in podocytes (49,50). GSK3b expression in
podocytes serves as a critical regulator of kidney function,
injury, and repair (49,50). REDD1 promotes GSK3b activa-
tion via suppression of the protein kinase Akt. More specifi-
cally, REDD1 mediates dephosphorylation of Akt at Thr308
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via recruitment of the protein phosphatase 2A, resulting
in attenuated Akt activation (20). Akt phosphorylates the
N-terminus of GSK3b at Ser9, which reduces GSK3b ki-
nase activity by obstructing substrate recognition (51).
In the retina of diabetic mice, REDD1 protein expres-
sion is enhanced and necessary for attenuated GSK3b
phosphorylation (17). Data presented here extend from
these studies in demonstrating that REDD1 was neces-
sary for suppression of GSK3b phosphorylation in both
the kidney of diabetic mice and in podocytes exposed
to hyperglycemic conditions. GSK3 inhibitors have been
successfully used to prevent deficits in renal function
and cardiac remodeling in rodent models of diabetes
and diabetic ischemia reperfusion injury (22,52,53).
Herein, benefits of REDD1 deletion in the prevention
of DN pathology were recapitulated by GSK3 inhibi-
tion. We found that administration of a GSK3 inhibitor
to diabetic mice reduced kidney hypertrophy, normalized
ROS levels, and attenuated podocyte loss.

Mechanisms underlying compensatory kidney hyper-
trophy are not well characterized but are thought to involve
hyperactivation of the protein kinase mTOR (mechanistic
target of rapamycin) in complex 1 (mTORC1) (54). Acti-
vation of mTORC1 enhances phosphorylation of rpS6,
promoting cell growth and proliferation in response to
nutrients and growth factors. Rheb-GTP is an obligate
activator of mTORC1, and insulin binding to its recep-
tor promotes Rheb-GTP loading (55,56). REDD1 acts as
a dominant regulator of mTORC1 signaling and sup-
presses mTORC1 kinase activity by reducing Rheb-GTP
(20). In support of the prior report (57), we observed
enhanced phosphorylation of rpS6 in the kidney of STZ
diabetic mice, which is consistent with activation of
mTORC1. In nondiabetic REDD1 KO mice, rpS6 phos-
phorylation in the kidney was enhanced as compared
with nondiabetic WT mice, and there was no change
with STZ diabetes. Consequently, rpS6 phosphorylation
was similar in diabetic WT and diabetic REDD1 KO
mice. The findings suggest that REDD1 expression may
contribute to rpS6 phosphorylation in the kidney of
nondiabetic mice but do not support REDD1-dependent
mTORC1 suppression in the context of diabetes. Upre-
gulation of mTORC1 signaling in the context of diabe-
tes is paradoxical, as both insulin deficiency and increased
REDD1 expression should act counter to its activation.
One possibility is that diabetes promotes mTORC1 activa-
tion despite a relative reduction in Rheb-GTP. This could
potentially be accomplished by enhanced lysosomal locali-
zation of mTORC1, as is seen with amino acid signaling
(58,59).

Overall, the findings provide new insight into the mecha-
nism whereby type 1 diabetes and hyperglycemic conditions
contribute to the development of renal complications. At
present, whether REDD1 plays a similar role in the develop-
ment of renal damage in type 2 diabetes is not known.
However, REDD1 expression is upregulated in skeletal

muscle of both patients with type 2 diabetes (60) and ro-
dent models of obesity (61), and evidence supports a role
for the protein in development of insulin resistance. In
the kidney of STZ diabetic mice, REDD1 expression was
increased and GSK3b phosphorylation was decreased
concomitant with podocytopenia and renal injury. How-
ever, REDD1 deletion reduced oxidative stress in the kid-
ney of diabetic mice and prevented both podocyte loss
and the resulting glomerular filtration defects. The data
are consistent with a mechanism wherein a REDD1/
GSK3b signaling axis acts to negatively regulate redox ho-
meostasis in the podocytes resulting in podocytopenia and
albuminuria. These proof-of-concept studies support the
possibility that therapeutic intervention to repress REDD1
expression in the kidney may offer hope for maintaining
renal function in patients with diabetes.
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