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Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial
EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide
these surgical procedures; however, their utility is limited by the sparsity of electrode implantation aswell as the nor-
mal confounds of spatiotemporally varying neural activity and connectivity.We propose that comparing intracranial
EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions,
identify targets for invasive treatment and increase our understanding of human epilepsy.
Mergingdata fromthePennEpilepsyCenter andapublicdatabase fromtheMontrealNeurological Institute,weaggregated
interictal intracranial EEG retrospectively across 166 subjects comprising >5000 channels. For each channel, we calculated
the normalized spectral power and coherence in each canonical frequency band.We constructed an intracranial EEG atlas
bymapping the distribution of each feature across the brain and tested the atlas against data from novel patients by gen-
eratinga z-score for eachchannel.Wedemonstrate that for seizureonset zoneswithin themesial temporal lobe,measures
of connectivityabnormalityprovidegreaterdistinguishingvalue thanunivariatemeasuresof abnormalneural activity.We
also find that patients with a longer diagnosis of epilepsy have greater abnormalities in connectivity. By integrating mea-
sures of both single-channel activity and inter-regional functional connectivity, we find a better accuracy in predicting the
seizure onset zones versus normal brain (area under the curve=0.77) compared with either group of features alone.
We propose that aggregating normative intracranial EEG data across epilepsy centres into a normative atlas provides a rigor-
ous, quantitative method to map epileptic networks and guide invasive therapy. We publicly share our data, infrastructure
andmethods, and propose an international framework for leveraging big data in surgical planning for refractory epilepsy.
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Introduction
For over 20 million patients with drug-resistant focal epilepsy,1

surgery offers the best chance at seizure freedom. An effective sur-
gical plan relies on accurately delineating brain regions that can
generate seizures, known as the epileptogenic zone.2 In many pa-
tients, clinicians cannot localize the epileptogenic zone through
purely noninvasive measures, such as scalp EEG, ictal semiology,
neuropsychological testing and neuroimaging, and instead rely
on recording seizures directly using intracranial EEG (iEEG).
These implanted electrodes record electrographic activity across
large cortical and subcortical areas at a high temporal resolution.
However, the current paradigm of subjective and qualitative inter-
pretation may lead to an inappropriate selection of surgical tar-
gets, perhaps partially explaining the fact that 40% of patients
fail to achieve seizure freedom.3,4 Furthermore, patients with
iEEGmust remain hospitalized forweeks in specializedmonitoring
units awaiting spontaneous seizures, which is associated with the
high cost and low accessibility of epilepsy surgery.5 There is an ur-
gent need to improve the approach to epilepsy surgery by develop-
ing reliable quantitativemeasures to identify epileptogenic tissues
before surgery and predict the likelihood of seizure recurrence
after different device and surgical interventions.

The two prevailing hypotheses that guide epilepsy surgery are
that (i) the epileptogenic zone is a discrete circumscribed region
that must be removed; or (ii) the epileptogenic zone is part of a dis-
tributed network that cannot be fully removed.6 Traditional iEEG
practice reflects the first hypothesis and relies upon capturing
qualitatively abnormal iEEG activity, such as focal spikes and pat-
terns of well-localized seizure onset7,8 at the level of individual
channels.9,10 Beyond these paroxysmal events, epileptogenic re-
gions may also cause focal differences in baseline rhythmic activ-
ity, such as slowing, between seizures.11 Studies that apply graph
theory to iEEG provide increasing evidence that epilepsy arises
from disordered brain networks, but there are nuances that
have prevented their effective clinical translation.12–20 While
many approaches successfully identify the epileptogenic
zone and predict surgical outcome, these studies suffer from sam-
pling bias which can vary by graph metric and by electrode
type.21,22 Beyond sampling bias, quantitativemethods ofmapping
epileptic networks are confounded by normal variation in the spa-
tial patterns of neural activity23 and connectivity.24 Approaching
iEEG data as containing important information that is both spa-
tially localized (consistent with the first hypothesis) and spatially
distributed (consistent with the second hypothesis) could benefit
epilepsy surgery. To our knowledge, only one study combined the
iEEG measurements at the electrode-level and the network-level
to quantify seizure onset.25 For reliablymapping epileptogenic tis-
sues, we anticipate that it will be crucial to assess electrode-level
activity and network-level connectivity measurements in a

common framework while controlling for the baseline deviations
expected across the brain.

Normative modelling offers a promising approach to robustly
map abnormal brain areas in a patient.26–28 This approach uses
data from healthy subjects to estimate a normal baseline range of
a given metric, and then quantifies abnormalities by the amount
that a metric’s value deviates from the normal range. Indeed, the
normative modelling framework is flexible enough to probe abnor-
malities in nodal activity and in inter-nodal connectivity.While nor-
mative modelling that leverages widely available non-invasive
imaging data of healthy subjects is routine,29 clinicians very rarely
implant iEEG electrodes in patients without epilepsy. However, re-
cent work has shown that aggregating a high number of
non-epileptogenic iEEG channels across a large cohort can permit
the estimation of normative iEEG neural activity23 and functional
connectivity.24We therefore expect that comparing patients’ interic-
tal quantitative iEEG features against the normative population will
allow us to identify regions that can generate spikes and seizures.

Here, we expand a previously published normative iEEG atlas23

by harmonizing it with additional data from good outcome epilepsy
patients. Further, we estimate a normal range of fluctuations in
band-power and functional connectivity strength. In each patient,
we quantify abnormalities in brain regions as deviations from the
normal range, both in regional iEEG activity and regional connectiv-
ity profiles measurements. We hypothesize the following: (i) these
measurements from epileptogenic tissue are more abnormal than
the samemeasurements from non-epileptogenic tissue; (ii) that ab-
normalities in band-power and connectivitymeasurements provide
complimentary information; and (iii) these abnormalities correlate
with a range of clinically important phenomena. We also open our
collaborative framework and publicly release our iEEGdata and atlas
so that others can build upon our data andmethods. Overall, we aim
toestablish a framework for collaboratively aggregatingdata, knowl-
edge and experience across centres in a rigorous way, with the goal
of globally improving invasive treatment for epilepsy.

Patients and methods
We retrospectively analysed data from 166 patients with drug re-
sistant epilepsy. Sixty of these subjects underwent iEEG implant-
ation as part of presurgical evaluation at the Hospital of the
University of Pennsylvania (HUP). As no single centre has a high en-
ough volume to support the construction of a comprehensive iEEG
atlas, we leveraged a high-quality, publicly available iEEG dataset of
106 subjects at the Montreal Neurological Institute (MNI) and two
other centres, specifically 1772 channels of their data that were
judged as clinically normal and released as the MNI Open iEEG
Atlas (https://mni-open-ieegatlas.research.mcgill.ca).23 Across the
multicentre cohort, each patient underwent implantation with
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subdural grid and strip electrodes (electrocortiography), only depth
electrodes (stereo-EEG) or a mixture of both. At HUP, all subjects
underwent either resection or laser ablation after electrode explant.
We also determined surgical outcome on the Engel scale at a min-
imum of 6 months after surgery, and at the 12-month and 24-month
post-operative interval for the majority of patients. Thirty-eight HUP
patients had a good surgical outcome (Engel 1) at their most recent
follow-up, whereas the remaining 22 subjects had Engel 2+outcome.
All subjects consented to data collection and sharing, and we per-
formed all research through protocols approved by the Institutional
Review Board of the University of Pennsylvania. The overall charac-
teristics of the HUP cohort are described in Table 1, and we include
patient-specific data in Supplementary Table 1.

Data selection

We selected 60 s of data in two 30-s clips for each subject that met
the following criteria in order of priority: (i) free of artefact; (ii) at
least 2h before the beginning of a seizure and at least 2h after a
subclinical seizure, 6h after a focal seizure or 12h after a general-
ized seizure; (iii) free of spikes if possible; and (iv) not within the
first 72 h of recording to minimize immediate implant and anaes-
thesia effects. All selected clips met conditions (i) and (ii), and the
majority of clipsmet conditions (iii) and (iv).Weused clips that cap-
tured awake brain activity, determined both by the selection of day-
time epochs and the use of a custom non-REM sleep detector

developed using MNI data and validated on HUP data
(Supplementary material). We first montaged the HUP data into a
bipolar configuration to match that of the MNI Open iEEG Atlas. We
used a first-order Butterworth filter with a passband of 0.5 to 80 Hz
to remove high-frequency oscillations (HFOs), and we also applied a
60 Hz IIR notch filter to remove line noise. To match the MNI atlas,
we down-sampled the data to 200 Hz from its original 512 or
1024 Hz sampling rate. We excluded any channels contaminated by
clear artifact as well as bipolar pairs in which both contacts were in
white matter, or either contact was located outside of the brain.

As our study requires a distinction between clinically normal
and abnormal regions, we also used a validated algorithm to detect
and quantify interictal spikes9 (Supplementary material). We con-
sidered a region that generates at least one spike per hour to be
part of the irritative zone.2 We also recorded clinically-determined
seizure onset zones as marked by fellowship-trained neurologists
in the official report from the patients stay in the epilepsymonitor-
ing unit. We included all seizure onset zones including subclinical
events and did not distinguish between a patient’s primary seizure
type and secondary semiologies.

EachHUPpatient underwent a standard epilepsy imaging proto-
col including pre- and post-implant 3D T1-weighted MRI and post-
implant CT. Using Advanced normalization tools,30 the post-
implant imaging was registered to the pre-implant MRI, which
was separately registered to MNI space for use with neuroimaging
atlases. Electrode contact coordinates were derived from the post-
implant CT using custom software and localizations confirmed by
visualization in ITK-SNAP.31 We then registered the pre-implant
MRI into MNI space for use with neuroimaging atlases. Finally, we
used a semi-automated algorithm previously described and vali-
dated20 to perform resection and ablation zone segmentations
which determine the electrode contacts targeted by surgery.

Construction of the MNI-HUP intracranial EEG atlas

To ensure that data from our centre could be compared and com-
bined with the 1772 channels of normative MNI data (Fig. 1A), we
implemented a rigorous data selection process that closely fol-
lowed the gold-standard methods of Frauscher et al.23 Similar to
the MNI dataset, we defined an abnormal channel as one that is
within the seizure onset zone, irritative zone, or was within the re-
section zone. In traditional epilepsy surgery, normal tissue may be
resected due to surgical considerations. In our cohort, only 56 out of
2899 abnormal channels were resected but not determined to be in
the irritative or epileptogenic zones.We grouped these 56 channels
with the rest of the abnormal channels to ensurewe did not use any
of these channels in our strict definition of channels which re-
present normative activity. This process yielded 532 clinically nor-
mal HUP channels (Fig. 1B) and 2899 clinically abnormal channels.
Using MNI coordinates, we mapped each channel onto the auto-
mated anatomical labelling atlas (Fig. 1C). However, we eliminated
regions that are not typically targeted by iEEG, including the cere-
bellum and basal ganglia, and further aggregated neighbouring
gyri in regions with low sampling to increase the samples in each
region. This process reduced the number of regions of our atlas
to 20 in each hemisphere and permitted a higher coverage of inter-
regional edges from which we could estimate normative connect-
ivity when compared with automated anatomical labelling
(Supplementary Figs 1 and 2). After ensuring similar bandpower
in the HUP and MNI datasets (Fig. 1D and Supplementary Fig. 3),
we finally combined normative HUP andMNI data into a composite
iEEG atlas consisting of 2304 channels across the brain (Fig. 1E).

Table 1 Summary of demographics of patient cohort

Latest surgical
outcome

Engel 1 Engel 2+

P-value

Number of patients 38 22
Sex 0.46a

Female 17 12
Male 21 10

Laterality 0.50a

Right 19 9
Left 19 13

Pre-surgical MRI 0.05a

Lesional 22 7
Non-lesional 16 15

Age onset 14.9± 11.7 17.5± 14.5 0.63b

Age surgery 38.8± 10.8 35.2± 11.8 0.69b

Target 0.39a

Temporal 28 14
Frontal 7 6

Parietal 2 0
Insular 1 2

Implant type 0.008a

Electrocortiography 20 4
Stereo-EEG 18 18

Surgery type 0.01a

Resection 25 7
Ablation 13 15

Node count
Total in grey matter 82.1± 25.1 91.8± 30.5 0.16b

Removed 12.3± 10.7 8.5 ± 6.2 0.12b

Initially Engel 1 before relapse N/A 8

Patients were grouped by initial surgical outcome. Left column shows patients that

achieved Engel 1 outcome at 6 months. Right column shows patients that had poor

surgical outcome at 6 months.
aRank-sum test.
bPearson Chi-square test.
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Detecting intracranial EEG electrographic
abnormalities

In every patient, for each ‘test’ iEEG electrode contact, we identified
a set of electrode contacts implanted in the same brain area in the
normativeHUP-MNI iEEG atlas (Fig. 2A and B). In both ‘test’ andnor-
mative channels, we calculated the power spectral density from 0.5
to 80 Hz in 0.5 Hz steps (Fig. 2C) using Welch’s method32 with a 2-s
Hamming window and a 1-s overlap. We normalized the spectral

density to have a sum of 1 as surface and depth electrodes may
have different impedances and therefore signal amplitude, but pre-

served frequency content.23 Thus, our method allows us to deter-

mine whether the distribution of power across frequency bands

differs from the normative distribution, but not whether absolute

power is abnormally low or high. We calculated normalized spec-

tral content in the following frequency bands: delta (0.5–4 Hz), the-

ta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–80 Hz),

Figure 1 Construction of our normative iEEG atlas. (A) We aggregated 1772 normal channels across 106 patients from the MNI open iEEG atlas with (B)
532 clinically normal channels from 38 HUP patients. (C) We localized each channel to a region in a predefined atlas. (D) We did not observe significant
differences in relative band power between HUP and MNI atlases. (E) Combining HUP and MNI data yielded a total composite, normative iEEG atlas of
2304 channels across 144 patients. ROI = region of interest.
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taking the median value within each band. We compared the
‘test’ channel’s spectral features to those of the normative
HUP-MNI iEEG atlas in the same region (Fig. 2D and E), which
yielded z-scores of spectral density for each channel in the test
patient (Fig. 2F). We completed this process for each channel in
each patient so that all channels in our study received a z-score
of spectral density in each frequency band. As wewere concerned
primarily with the presence and not the directionality of any ab-
normality, we took the absolute value of each z-score. Thus,
each of the 2304 normative and 2899 abnormal channels across
patients received a |z| score of neural activity abnormality in
each frequency band.

Mapping iEEG network abnormalities

We also developed methods for assessing the abnormality of func-
tional connectivity using the normative iEEG atlas. For each patient,

we divided the interictal epoch into 1-s intervals and computed the

median coherence between each pair of channels over time to obtain

a single subject-specific adjacency matrix for each of the five afore-

mentioned frequency bands. Each of the edges in each patient’s ad-

jacency matrix were then standardized against the distribution of

normative atlas edges between the same pair of brain regions

(Fig. 3A–F). These steps transformed the coherence value for each

pair of channels in a patient to a measure of connectivity

Figure 2 Mapping abnormalities of iEEG spectral activity. (A)We aggregate all normative channelswithin a given region. (B) In an example test patient,
we select each channel. (C) We calculate the power in each frequency band for each normative electrode and estimate the normal distribution across
channels. (D) Comparison between the calculated relative band-power of the test channel shown in Ewith normative distribution inC. (F) This process
yields a |z| score of spectral activity for each frequency band at each electrode contact in the test patient.
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abnormality, where the value of each edge represents the distance
between observed value of coherence and the expected, normative
connectivity between the pair of sampled regions. As before, we cal-
culated the absolute value of z-scores to detect the presence rather
than the direction of abnormalities. Since each channel has a large
number of edges representing its connections to other channels in
that patient, we required a method to assign it a single value repre-
senting its overall connectivity abnormality within each frequency
band. Thus, we assigned the 75th percentile across all edge |z| scores
for each channel (Fig. 3G and H). We chose the 75th percentile as it
captured a high level of abnormality but was not as sensitive to out-
liers as the maximum edge weight value for each node. This process
yielded a single connectivity abnormality feature for each channel
(Fig. 3I).

Statistical methods

When calculating abnormality scores for electrographic and net-
work abnormalities, we pooled all normative channels in a given

region across patients to estimate the expected feature mean

and variance rather than first averaging within-patient. We did

not observe significant differences between channel-wise and

patient-wise pooling in a limited analysis (Supplementary Fig. 4).

To predict the epileptogenic nature of each channel, we developed

a random forest algorithm to distinguish normative channels from

those that were marked as located within the seizure onset zone

and subsequently resected. In our random forest classifier, the

training labels and ground truth of the ‘epileptogenic’ class were

seizure onset nodeswithin the resection zone, whereas the ground

Figure 3 Mapping abnormalities of iEEG functional connectivity. (A) We aggregate normative connectivity between pairs of regions and (B) compare it
to connections between the same pair of regions in a test subject. (C) Across all inter-regional pairs we calculate connectivity in each frequency band
(D). (E) We also calculate connectivity in the test patient in each frequency band comprising an adjacency matrix in the test patient (F). In order to cal-
culate abnormality scores for each node (G), we calculate the 75th percentile |z| across all edges for each node (H), yielding a single connectivity abnor-
mality feature for each channel (I).
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truth for the ‘normal tissue’ class were non-resected nodes that
were not in the seizure onset or irritative zones. Using 10-fold
cross-validation at the patient level, we trained the algorithm
and then applied it to all channels across each subject, including
those which were neither clinically normal nor within the
resected seizure onset zone. We quantified overall classifier per-
formance using the area under the receiver operating characteris-
tic curve (AUC) and compared the performance between the full
feature set and models trained using only univariate or only bi-
variate features. From the random forest output, we selected the
probability that each channel was in the resected seizure onset
zone as a proxy of epileptogenicity. The area under the precision-
recall curve (AUPRC) is a binary classification performance metric
that is better for rare events and independent of model specifi-
city.33 We chose this metric for quantifying classifier performance
on a per-patient level because within each patient, especially
those which underwent focal laser ablation, the number of chan-
nels targeted by surgery is small compared with the total number
of channels. Thus, a higher level of AUPRC meant that the pre-
dicted epileptogenicity better aligned with the resection or abla-
tion zone.

Data availability

In the interest of helping network techniques such as ours reach
clinical practice, we share all code and data from this study. All pre-
implant, post-implant, and post-resection or ablation imaging as
well as full intracranial EEG records are available at ieeg.org34 using
the patient IDs available in Supplementary Table 2. All code as well
as .mat files containing the processed atlas adjacency matrices, and
information about clinicalmetadata is available at GitHub.com/jber-
nabei/iEEG_atlas. The HUP Open iEEG Atlas is publicly available
at https://discover.pennsieve.io/datasets/179. A description of each
of the data fields contained within the file is available in
Supplementary Table 2.

Results
Mapping univariate abnormalities in neural activity

We first sought to determine whether abnormalities in interictal
spectral content robustly identify regions that generate spikes
and seizures. We compared the median normalized spectral dens-
ity in each frequency band and each brain region (aggregating
nodes from the same region in each hemisphere) between datasets
using the rank-sum test and adjusted the significance level to α=
0.0005 to correct for 100 comparisons (20 regions× 5 frequencies).
We show the results for the eight regions with the largest number
of resected electrodes in the atlas (Fig. 4; see Supplementary Fig. 5
for the remaining regions). We found that inmany regions, the irri-
tative and seizure onset zones were distinguishable from healthy,
uninvolved brain represented by the normative atlas in at least
one frequency band. In many cases, particularly in the fusiform
gyrus, inferior temporal gyrus, and medial frontal gyrus, the spec-
tral density curve had a relatively steeper fall-off than uninvolved
brain, resulting in higher amounts of low-frequency activity and
lower amounts of high-frequency content. However, in other clinic-
ally relevant regionsmaking up themesial temporal lobe, including
the hippocampus, amygdala and parahippocampal gyrus, we ob-
served no discernable difference in spectral content between nor-
mal and epileptogenic tissue. In comparison with normalized
spectral density features, we found that within-patient absolute
bandpower did not reliably discriminate between epileptogenic
and normal tissues (Supplementary Fig. 6). These findings imply
that clinical abnormalities often, but not always, result in region-
specific aberrations in spectral content. Thus, we also mapped ab-
normalities in interictal connectivity to better distinguish clinically
normal and abnormal channels.

Mapping abnormalities using bivariate features

Based on the observation that the univariate feature of spectral
density did not effectively distinguishmesial temporal lobe chan-
nels that generated spikes and seizures from those that did not,

Figure 4 Univariate features are clinically useful. Within the eight most frequently resected regions in our dataset, spectral density is often different
between the irritative zone, seizure onset zone, and the normative atlas. In each region and frequency band, we independently tested whether the
median normalized band-power was different in the seizure onset zone versus the normative atlas, and the irritative zone versus the normative atlas.
We completed this process for each of the following five frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–
80 Hz) and across all 20 regions. We thus Bonferroni corrected each test for 100 multiple comparisons. The asterisk above the Greek letters means
the seizure onset zone is significantly different from normal, whereas theplus symbol below the letters means the irritative zone is significantly dif-
ferent from normal, Bonferroni corrected for 100 comparisons to α=0.0005. The shaded area represents the interquartile interval.
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we asked whether |z| scores of connectivity could do so (Fig. 5A),
hypothesizing that the seizure onset zonewould have the highest
level of abnormality. For each mesial temporal lobe channel, we
calculated the mean coherence |z| across the five frequency
bands, and averaged these scores within mesial temporal lobe ir-
ritative, seizure onset and uninvolved zones for each patient. We
observed a higher mean coherence |z| score across patients in

both the irritative zone and seizure onset zone versus uninvolved

channels (rank-sum test P < 1 × 10−5, Cohen’s d= 1.16 and rank-

sum test P < 1 × 10−5, Cohen’s d= 1.51 respectively). We also ob-

served a higher |z| score in the seizure onset zone versus the irri-

tative zone (rank-sum test P= 0.045, Cohen’s d= 0.34). These

findings reveal that connectivity is an effective feature for distin-

guishing normal and abnormal brain, particularly in the mesial

temporal lobe, which is a region of high clinical relevance in tem-

poral lobe epilepsy.
We then sought to investigate whether connectivity abnormal-

ity could reveal broad aberrations in brain networks which were of

clinical relevance (Fig. 5B).Wehypothesized that patientswhohave

had seizures for a longer period of time, measured in years from

first seizure to iEEG implant, would have more abnormal brains.

Indeed,we found a positive correlation betweenmedian connectiv-

ity abnormality and length of epilepsy diagnosis (Pearson r=0.25,

one-tailed P=0.030). However, we did not observe a correlation be-

tween median activity abnormality and length of diagnosis

(Pearson r=−0.10, one-tailed P=0.78). This finding supports the no-

tion that the cumulative burden of epilepsy progressively affects

broadly distributed brain networks.
We additionally investigated the relationship between abnor-

malities in neural activity and functional connectivity (Fig. 5C).

Whilewe have established that bothmetrics are useful and provide

complimentary information such as in the mesial temporal lobe,

we expected that the correlations between these metrics would

not be uniform across patients. In particular, we hypothesized

that good outcome patients would have a higher concordance be-

tween abnormality in connectivity and neural activity compared

with poor outcome subjects. We computed the Pearson correlation

between spectral density and coherence |z| scores within each fre-

quency band pair, and then calculated the average activity-

connectivity correlation across the five bands. We found that

good surgical outcome patients have a higher activity and connect-

ivity abnormality correlation comparedwith poor surgical outcome

patients (Pearson r=0.11 ±0.12 versus r=0.04± 0.10, rank-sum test
one-tailed P=0.037, Cohen’s d=0.56). This finding emphasizes the
complicated relationship betweenunivariate and bivariate features
and shows that poor outcome patients in particular may have dis-
cordant abnormality features.

Multivariate prediction of epileptogenicity

From the z-scores of each feature we sought to quantify the pre-
dicted epileptogenicity of each channel which could serve as an
important tool in planning epilepsy surgery. To yield the best
mapping of the epileptogenic zone, we trained a random forest
classifier to classify nodes that were resected and part of the seiz-
ure onset zone from nodes which were deemed normal (Fig. 6A).
We found that using both connectivity and activity |z|-scores
yielded a superior classification cross-validation performance
(AUC=0.77) compared with either connectivity or spectral dens-
ity features alone (AUC=0.68 and 0.65, respectively). To ensure
we did not bias our results by choosing absolute value of abnor-
mality scores or the 75th percentile threshold of connectivity ab-
normality, we computed the AUC using alternative methods. We
found that absolute abnormality scores better identified resected
seizure onset zone nodes than directional scores and observed a
trend towards better AUC with higher abnormality thresholds
(Supplementary Fig. 7). We then asked which individual features
weremost important inmaking classifications of resected seizure
onset zone versus normal tissue. We used the curvature test35,36

to determine the change in out-of-bag predictor error when leav-
ing out each feature and found that the most important features
were delta band connectivity, delta band activity and gamma
band connectivity (Fig. 6B).

We then sought to determine the predicted epileptogenicity of
the irritative zone, given that the algorithm was only trained on
the resected seizure onset zone nodes and normal nodes (Fig. 6C).
We found that the irritative zone was predicted to have higher epi-
leptogenicity compared with the uninvolved zone (rank-sum P=
0.0093), and also that the seizure onset zone had higher predicted
epileptogenicity than the irritative zone (rank-sum P=0.012). As ex-
pected from the cross-validation results, the seizure onset zonehad
higher predicted epileptogenicity than the uninvolved zone (rank-
sum P=1.1 × 10−4). These results suggest that the irritative zone is
of intermediate abnormality compared with regions that can gen-
erate seizures and those that cannot. We also asked whether

Figure 5 Bivariate features are clinically meaningful. (A) Mean coherence |z| is higher in the irritative zone (mean=1.72±0.43) and seizure onset
zone (SOZ) (mean=1.87± 0.44) comparedwith uninvolved brain (mean=1.24±0.39, rank-sum test one-tailed P<1 × 10−5, Cohen’s d=1.16 and rank-sum
test one-tailed P<1 × 10−5, Cohen’s d=1.51 respectively). The seizure onset zone also has a higher |z| score versus the irritative zone (rank-sum test
one-tailed P=0.045, Cohen’s d=0.34) (B) Mean coherence absolute z-score is positively correlated with the length of epilepsy diagnosis (Pearson r=
0.25, P=0.030). (C) The absolute z-score of power ismore positively correlatedwith the absolute z-score of coherencewithin each good outcome patient
compared with within each poor outcome patient (rank-sum test one-tailed P=0.037, Cohen’s d=0.56).
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good and poor outcome patients had different patient-level per-
formance of predicted epileptogenicity (Fig. 6D). We found that
the precision-recall tradeoff for resected tissues was higher in
good outcome versus poor outcome patients (AUPRC 0.25 ±0.17 ver-
sus 0.14±0.11, rank-sum P=0.013, Cohen’s d=0.78), implying that
the predicted nodes were more often resected in good outcome pa-
tients. Of the 60 subjects in theHUP cohort, 40 hadhighermean epi-
leptogenicity within the resection zone than outside of it, whereas
our approach would have suggested an alternate approach in 20
subjects (Supplementary Fig. 8). However, we did not observe a dif-
ference in outcome groups.

We finally sought to illustrate how normative atlas mapping
could be an effective strategy for guiding epilepsy surgery through
three clinical cases. The first case (Fig. 7A) corresponds to a good
outcome (Engel 1A) patient with parietal lobe epilepsy, in which
high levels of predicted epileptogenicity cluster in and around
the resection zone. The second case (Fig. 7B) corresponds to a
good outcome (Engel 1B) patient with temporal lobe epilepsy in
which high levels of predicted epileptogenicity cluster in and
near the resection zone. The third case (Fig. 7C) corresponds to a
poor outcome (Engel 2A) patient which underwent a right tem-
poral lobe laser but did not become seizure free. The ablated
nodes had moderate levels of abnormality. However, the contra-
lateral mesial temporal lobe from which spikes were observed
to originate had a higher level of predicted epileptogenicity, sug-
gesting that this region might have been a better surgical target.
Overall, these examples are mean to demonstrate that examining

these spatial maps may help clinicians select between hypothe-
sized epileptogenic zones during epilepsy surgical evaluation
without the need for directly recording seizures on in hospital
iEEG, which some investigators suggestmay give inaccurate local-
ization compared with seizures recorded out of hospital over
longer periods of time37,38.

Stability of interictal abnormalities over time

To test the stability of our normative atlasmapping approach, we
first tested whether features of neural activity and functional
connectivity remain stable at different levels of antiepileptic
drug dosing. While many patients undergo antiepileptic drug
withdrawal during iEEG implantation to provoke seizures, the
pattern and extent of withdrawal is often heterogeneous. In
three HUP patients we compared 60-s clips recorded on days of
full antiepileptic drug dosing, with clips recorded 24 h away
from the most recent dose after a taper. We found high correla-
tions in the values of spectral density (mean Pearson r = 0.72)
and coherence (mean Pearson r = 0.75) between these states
(Supplementary Fig. 9). While we could not ensure the same anti-
epileptic drug loading across all patients, we further tested the
stability of abnormality scores and epileptogenicity prediction
in two additional 60-s clips selected >1 h away from our initial re-
cordings. We observed high correlations in patient-specific ab-
normality |z| scores across all 10 spectral density and coherence
features (mean Pearson r = 0.57, Supplementary Fig. 10A) and

Figure 6 Multivariate identification of epileptogenic regions. (A) Classification for resected seizure onset zone (SOZ) versus normal brain. Using a com-
bination of bivariate and univariate features yields a better AUC (0.77, blue curve) compared with only bivariate (0.68, yellow curve) or only univariate
features (0.65, purple curve). (B) Curvature test of feature importance reveals delta band coherence is the single best feature, followed by delta band
power and gamma band coherence. (C) The irritative zone (IZ) has an intermediate level of predicted epileptogenicity comparedwith the seizure onset
zone (rank-sum P=0.012, Cohen’s d=0.59) and uninvolved brain (rank-sum P=0.0093, Cohen’s d=0.27). (D) Quantifying the patient-specific area under
the precision recall curve for the seizure onset zone reveals a better performance for Engel 1 subjects versus Engel 2+ subjects (AUPRC 0.25± 0.17 versus
0.14± 0.11, rank-sum P=0.013, Cohen’s d=0.78).
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further observed a significant correlation between predicted epi-
leptogenicity in 54 out of 60 patients (mean Pearson r = 0.53,
Supplementary Fig. 10B). These findings concur with past work
showing stability of epileptogenic zone identification from iEEG
connectivity across time14 and support the generalizability of
ourmethods as uncovering a patient-specific fingerprint of inter-
ictal epileptogenicity.

Discussion
Developing new approaches to treating medicine-refractory sei-
zures requires a better understanding of the relationship between

the abnormal brain and epilepsy. Due to the brain’s vast heterogen-
eity in structure and function, it seemsunlikely that any single inter-
ictal biomarker will universally distinguish normal from abnormal
tissue. We have demonstrated that normative iEEG mapping using
only short clips of interictal data provides a flexible framework to
identify epileptogenic regions andmay explain several clinically im-
portant phenomena: namely, that the irritative zone is of intermedi-
ate abnormality between normal and seizure onset regions and that
abnormalities in functional connectivity likely increase with longer
diagnoses of epilepsy.

Our finding that mapping neural activity and functional con-
nectivity together is superior to using either individually sheds light

Figure 7 Mapping predicted epileptogenicity from abnormality scores. Left: Distribution of electrode contacts on surface of brain (red: seizure onset
zone, green: irritative zone, blue: uninvolved zone, pink dotted outline: resection zone).Middle: Recordings from a channel in the seizure onset, irrita-
tive and uninvolved zones (grey) and their |z| scores (blue to red) for each of the 10 features. Right: Predicted epileptogenicity from the random forest
model at each electrode location (blue to red). (A) Good outcome (Engel 1A) patient with parietal lobe epilepsy, in which high levels of predicted epi-
leptogenicity cluster in and near the resection zone. (B) Good outcome (Engel 1B) patient with temporal lobe epilepsy in which high levels of predicted
epileptogenicity cluster in and near the resection zone. (C) Poor outcome (Engel 2A) patient underwent a right temporal lobe laser ablation with min-
imal improvement. The ablated nodes had low levels of abnormality; however, the contralateral mesial temporal lobe from which spikes were ob-
served to originate had a higher level of predicted epileptogenicity and could have been a better surgical target.
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on an important debate in epilepsy surgery: It is not clear whether
epilepsy should be viewed as a focal problemwithin a network (and
thus adequately probed by univariate methods which consider
each channel independently) or as a broader, integrated network
disorder (thus required concerted study of connectivity using
multivariate methods)6. Our findings provide evidence for the util-
ity and integration of both frameworks to best understand how epi-
lepsy affects the brain. In particular, neocortex may manifest
abnormalities due to epilepsy by changes in the spectral content
of oscillatory activity, whereas epileptogenic tissue in the mesial
temporal lobe may undergo changes in baseline connectivity.
Our approach to normative iEEG mapping provides a flexible and
generalizable framework for exploring each of these hypotheses
at both the individual patient and group levels and may serve as
a tool to target epilepsy surgery using the bestmetric for each ana-
tomic region.

Our study adds to a growing body of work on normative ana-
lysis of intracranial EEG.23,24,39,40 We directly built upon the work
of Frauscher et al. 2018,23 in which the authors demonstrated the
approach of aggregating curated normative data and showed
that spectral features including peak frequencies differ through-
out cortical regions. Our extension demonstrates that the spectral
parameters of interictal iEEG generalize across centres, and that
deviations from normal frequency content are indeed indicative
of regions that can manifest epileptic activity. We also adapted a
multi-patient functional connectivity approach from Betzel
et al., 2018,24 in which the authors demonstrated that integrating
adjacency matrices across patients provides group-level electro-
cortiograph connectivity that closely mirrors functional MRI con-
nectivity, tracts whitematter pathways, and is influenced by gene
co-expression. Here, we have confirmed that deviations from
expected, normative connectivity indeed can also distinguish poten-
tially epileptogenic regions. Another recent study has demonstrated
the value of normative modelling in mapping epileptogenic tissues
using univariate spectral features.40 Our study reproduces some
of these results on a different dataset while also including the net-
work connectivity measurements. We speculate that combining
data from multiple centres can accelerate our efforts to develop
important clinical tools that routinely use normative modelling
to map epileptic networks.

Our finding that abnormalities in delta power, delta connectiv-
ity and gamma connectivity are the most important contributors
in predicting epileptogenicity aligns with findings of previous stud-
ies. Focal slowing activity recorded in the delta frequency range is
an electrographic marker of cerebral dysfunction41 and correlates
with medically intractable seizures. Analysing power and coher-
ence abnormalities, Walker et al.42 suggested that normalization
of focal slowing by neurofeedback training can render patients
seizure-free. Furthermore, slow-wave power can help localize the
seizure onset zone43 and is associated with focal structural lesions
on MRI such as cortical malformations.11 In contrast, many studies
have reported HFOs as a promising marker of seizure onset zone
and post-surgery outcomes. HFOs originate from functionally iso-
lated areas and their presence correlates with gamma frequency
band.44,45While themulticentre dataset in our study only contained
frequency content from0.5–80 Hz, higher frequency spectra such as
the ripple (80–250 Hz) and fast ripple (250–500 Hz) bands contain
additional pathologic HFO activity. Still, it is crucial to distinguish
these pathological HFOs from normal physiological HFOs, such as
those which occur during cognitive processes.46–48 Recent work
has used an analogous atlas approach39 to differentiate patho-
logical from physiological HFOs, and we envision that extending

our normative iEEG atlas into higher frequency bands and integrat-
ing HFO content would allow us to better identify epileptogenic
zones.

Normative atlasmodelling also provides an important illustration
of clinically relevant phenomena. Previously, others have reported
that an increasing length of diagnosis is correlated with increased
cross-hippocampal connectivity on functional MRI.49 We validate
and extend those findings by confirming their presence on intracra-
nial EEG, showing that these abnormalities may be present in
other regions, and that they are not explained by changes in elec-
trographic activity. Indeed, our observations provide further evi-
dence for epilepsy as a dynamic disorder, causing progressive
changes in the brain over time. Importantly, we also find distrib-
uted abnormalities even in putatively uninvolved regions of the
brain, even in patients that achieve good surgical outcome.
These changes have been observed as well in similar studies of
structural connectivity.27 It is unclear whether these abnormal-
ities are pathologic, as they could be compensatory for regions
which have lost their normal function due to epileptic processes,
such as mesial temporal sclerosis. Furthermore, even if they are
pathologic, it is possible theymay not become clinicallymeaning-
ful on the timescale of our study and could contribute to late re-
lapse many years after surgery.

Limitations and future directions

Our study represents a significant foray into applying full-brain at-
las approaches to iEEG, with the goal of developing rigorous, quan-
titative methods that can be applied across centres to guide
epilepsy surgery but comes with several limitations. One of these
is that the assumption of normal activity and connectivity in unin-
volved brain regions in individuals with medication -resistant epi-
lepsy may not be universally valid. For example, uninvolved
regions may exert inhibitory activity on a seizure focus as part of
an inhibitory surround and could have abnormal activity as a result
of this heightened inhibition. Indeed, even in good outcome pa-
tients, abnormalities in structural connectivity are observed out-
side of the resection zone27 and may not be significant enough to
cause seizures. Future work and data sharing across centres could
address this by incorporating patients implanted with iEEG for pur-
poses such as treating facial pain50 or for underlying psychiatric
conditions, in which no epileptic foci exist.

Another significant limitation is the spatial scale atwhichwemap
activity and connectivity. In this study we focus on connectivity be-
tween gross anatomic regions, whilemany of the aberrations in con-
nectivity existwithin regionsof interest and thus couldnot be probed
byour current approach.However, thenatural stepwouldbe to break
up automated anatomical labelling regions into even smaller parcel-
lations, and such atlases of up to 600 regions have been used by our
group in different contexts.51 Even with 166 patients—which repre-
sents one of the largest published patient cohorts in a computational
iEEG study—we did not have dense enough coverage in every region
to have sufficient spatial granularity to evaluate more areas.
However, as we show the power of building upon previously estab-
lished datasets, we hope for others to further build upon our norma-
tive atlas mapping, which could allow this approach to be taken in
the future. Amuch larger cohort could also allow us to calculate nor-
mative features across patients rather than across channels. This
step could also ensure that all possible connections in the functional
connectivity atlas are represented and have sufficient samples for
the median and variance in connectivity to be accurately estimated.
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The finding that one third of our subjects, including those who
achieved seizure freedom, would have a different surgical ap-
proach suggested by our model is not altogether surprising. In
some of these subjects, our predicted epileptogenic tissues may
have also served as a feasible surgical strategy, whereas in others
it is possible that truly epileptogenic tissues were unsampled by
iEEG or did not have clear interictal abnormalities. Furthermore,
eloquent cortex containing important motor and speech function
must be avoided even when seizures originate from those regions.
Additionally, it is possible that the spatial patterns of epileptogeni-
city are more important than their presence or degree. Further
study is required to better understand which groups of patients
could undergo epilepsy surgery guided purely from interictal find-
ings versus those for which ictal recordings are critical.

To expand the utility of our atlas of iEEG connectivity for epi-
lepsy surgery, the natural next step is to join our approach with
similar methods in neuroimaging. Doing so may allow for investi-
gators to identify abnormal connections in regions that are not typ-
ically implanted by iEEG, such as central grey matter structures
including the thalamus, which is implicated in seizure generation
and propagation. Furthermore, combining our approachwith diffu-
sion tensor imaging could help answer whether functional con-
nectivity abnormalities as measured by iEEG are highly correlated
to structural abnormalities, or whether these phenomena are
only loosely related. Finally, future work could explore the utility
of similar methods applied to non-invasive, high-density scalp
EEG. Using full-brain iEEG atlas approaches could enable clinicians
to better understand the relationship between structure and func-
tion and might ultimately allow iEEG to be replaced with fully non-
invasive studies in some patients.

Conclusions
In this studywe demonstrate the feasibility of using an atlas of iEEG
for brain mapping in patients with drug-resistant epilepsy under-
going surgical evaluation. We show that clinically abnormal re-
gions including the seizure onset zone and the irritative zone are
detectable by the z-score of quantitative measures against the nor-
mative atlas.We also demonstrate that connectivity augments uni-
variate measures of activity, particularly in the mesial temporal
lobe, and show good classification of seizure onset zone versus nor-
mal channels. Through extensive data sharing we may soon reach
adequate accuracy and brain coverage to use the atlas method as a
preferred quantitative method for identifying the epileptogenic
zone from intracranial EEG which could offer a substantial im-
provement for epilepsy surgery outcomes.
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