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Summary
Current understanding of lipid genetics has come mainly from studies in European-ancestry populations; limited effort has focused on

Polynesian populations, whose unique population history and high prevalence of dyslipidemia may provide insight into the biological

foundations of variation in lipid levels. Here, we performed an association study to finemap a suggestive association on 5q35 with high-

density lipoprotein cholesterol (HDL-C) seen in Micronesian and Polynesian populations. Fine-mapping analyses in a cohort of 2,851

Samoan adults highlighted an association between a stop-gain variant (rs200884524; c.652C>T, p.R218*; posterior probability¼ 0.9987)

in BTNL9 and both lower HDL-C and greater triglycerides (TGs). Meta-analysis across this and several other cohorts of Polynesian

ancestry from Samoa, American Samoa, and Aotearoa New Zealand confirmed the presence of this association (bHDL-C ¼ �1.60 mg/

dL, pHDL-C ¼ 7.63 3 10�10; bTG ¼ 12.00 mg/dL, pTG ¼ 3.82 3 10�7). While this variant appears to be Polynesian specific, there is also

evidence of association from other multiancestry analyses in this region. This work provides evidence of a previously unexplored

contributor to the genetic architecture of lipid levels and underscores the importance of genetic analyses in understudied populations.
Introduction

Atherogenic lipid profiles—increased total cholesterol

(TC), low-density lipoprotein cholesterol (LDL-C), and

triglycerides (TGs) as well as decreased high-density lipo-

protein cholesterol (HDL-C)—are well-documented and

heritable risk factors for cardiovascular disease (CVD)

worldwide. While behavioral modifications and medica-

tion have been successful in improving lipid profiles,

CVD is still the leading cause of death worldwide, particu-

larly among people of Polynesian and Pacific Island

ancestry.1–5

The examination of the genetic underpinnings of lipid

variation through genome-wide association studies

(GWASs) has identified numerous genetic associations.

These discoveries have furthered the understanding of

CVD and potential therapeutic targets; however, this

research has primarily come from studies in European-

ancestry populations. Recent efforts to diversify research

on this topic have highlighted the importance of including
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diverse populations for gene discovery, yielding novel asso-

ciations, improved fine mapping, and better polygenic risk

scores.6 Despite this, limited effort has focused on Pol-

ynesian populations, whose unique population history

including genetic drift from founder effects, small popula-

tion sizes, and population bottlenecks may provide insight

into the biological foundations of variation in lipid levels,

which would not only benefit Polynesian individuals but

also those from other populations.7–9

One region of interest is 5q35, which has previously

been associated with HDL-C levels in Micronesian and

Samoan populations.10,11 The causal variant at this locus,

and the biological mechanism underlying this association

with an atherogenic lipid profile, is unknown.

The aim of this study was to fine map this association

signal in a cohort of 2,851 Samoan adults and replicate

this association in several independent Polynesian

cohorts from Samoa, American Samoa, and Aotearoa

New Zealand. We identified a strong candidate causal

variant at this locus, rs200884524—a stop-gain variant in
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BTNL9—that is associated with lower HDL-C and higher

TG concentrations.
Subjects and methods

An overview of the analytical methods is presented in Figure S1.

Discovery
We performed association testing between variants on 5q35 and

lipid levels in a discovery cohort comprising 2,851 Samoan adults

(at least 18 years old) drawn from a population-based sample re-

cruited from Samoa in 2010 (Table 1), data for which are available

from dbGaP (accession number: phs000914.v1.p1). The sample se-

lection, data collection methods, and phenotyping, including the

laboratory assays for serum lipid and lipoprotein levels, have been

previously described.12,13 Briefly, serum lipid levels (TC, HDL-C,

LDL-C, and TG) were derived from fasting whole-blood samples

collected after a minimum 10-h overnight fast. LDL-C levels

were estimated using the Friedewald equation,14 which does not

accurately estimate LDL-C in individuals with TG R400 mg/dL,

and, therefore, those individuals are missing LDL-C values. Ana-

lyses were performed without consideration of hypolipidemic

medication, as it was not measured. However, individuals who

reported taking medication for heart disease were excluded from

analyses, as previous sensitivity analyses identified an association

between self-reported use of heart disease medication and TC and

LDL-C.10

This study was approved by the institutional review board of

Brown University and the Health Research Committee of the Sa-

moa Ministry of Health. All participants gave written informed

consent via consent forms in the Samoan language.

Genotyping was performed using Genome-Wide Human SNP

6.0 arrays (Affymetrix), and extensive quality control was con-

ducted via a pipeline developed by Laurie et al.15 Additional details

for sample genotyping and genotype quality control are described

in Minster et al.13

A Samoan-specific genotype reference panel for imputation was

created using the whole-genome sequence (WGS) data from the

Trans-Omics for Precision Medicine (TOPMed) program from the

National Institutes of Health’s Heart, Lung, and Blood Institute

(NHLBI). The reference panel is comprised of high-quality (i.e.,

passing all quality control [QC] filters and with a minimum depth

of 10), bi-allelic markers from the freeze 8 call subset of the 1,284

individuals from the Samoan Adiposity Study. The reference panel

was phased using Eagle v.2.4.1.16 The Samoan-specific reference

panel was then used to impute genotype data for the remaining

Samoan participants in the discovery cohort who were not in

the reference panel. Briefly, genotyped variant coordinates were

converted to the hg38 genome build using LiftOver (https://

genome.ucsc.edu/cgi-bin/hgLiftOver). Then, data were aligned

to the reference panel using Genotype Harmonizer,17 using the

mafAlign option to align to the minor allele when LD alignment

failed and the minor allele frequency (MAF) was %30% in both

the input and reference sets. The resulting variants were then

phased with Eagle v.2.4.1,16 and genome-wide imputation was

performed using Minimac4.18 Imputed genotype dosages from

variants passing QC (r2 > 0.3) were combined with genotyped var-

iants for association testing.

We performed preliminary association testing between variants

in a 1-Mb region around the sentinel SNP from the preliminary

GWAS10 (hg38 chr5:180414895-181414895) and the four lipid
2 Human Genetics and Genomics Advances 4, 100155, January 12, 2
levels (TC, HDL-C, LDL-C, and TG) in the discovery cohort using

linear mixed modeling with inverse-normally transformed traits,

marginally rescaled variance (to restore it to the original variance

before the transformation), and additive genotype coding as

implemented in the GENESIS R package19,20 adjusting for the

following fixed effects: three principal components of ancestry

(generated through PC-AiR,21 which together accounted for

>98% variation), age, age2, sex, age 3 sex interaction, and

age2 3 sex interaction. Age was mean centered for all analyses to

avoid multicollinearity issues. Relatedness was measured through

an empirical kinship matrix generated with GENESIS and was

modeled through a random effect. Then, to estimate the effect

size of rs200884524 for use in the meta-analysis across cohorts,

we used a linear mixed-modeling strategy on the original lipid

levels (i.e., not transformed), adjusting for the same fixed and

random effects as implemented in the lmekin function in the

coxme R package.22 Thesemodels were also repeated for several car-

diometabolic traits as described in Minster et al.13 to examine the

potential pleiotropic effects of rs200884524.

As a sensitivity analysis to check for robustness against devia-

tions from normality, the association tests with rs200884524

were repeated using lipid-level residuals that were adjusted for

three principal components of ancestry, age, age2, sex, and

age 3 sex and age2 3 sex interactions and were then inverse-nor-

mally transformed23 using RankNorm function in the RNOmni R

package.24 To preserve the interpretation of the effect estimates,

the results of the untransformed trait analyses are presented. The

results of the sensitivity analysis were similar to the models in

which lipid levels were not transformed (Table S1).

To detect a potential secondary signal, conditional analyses

were run in the 5q35 region in the discovery cohort.

rs200884524, the lead SNP in the region, was modeled as a

fixed-effect covariate; the rest of the model parameters stayed

the same.

Bayesian fine mapping of the discovery cohort results was per-

formed using PAINTOR v.2.1.25 Annotations of variant impact

(high, moderate, low/modifier) as indicated by VEP v.91.126 were

used to inform the fine mapping.

Evidence of selection at this locus was assessed using nSL (num-

ber of segregation sites by length) analysis in 419 unrelated

Samoans from the discovery cohort with no evidence of non-

Oceanic admixture.27 WGS was completed by TOPMed, and a

MAF of >0.01 was used. Haplotype phasing was completed using

Eagle v.2.4.1.16 nSL was calculated with selscan in R.28
Replication
Samoan/American Samoan replication cohorts

Two cohorts consisting of a total of 1,466 Samoan and American

Samoan adults (at least 18 years old) were used for replication.

The first was a longitudinal study of adiposity and CVD risk factors

among adults from American Samoa and Samoa recruited between

1994 and 1995, during which lipid levels were measured from

fasting serum samples. LDL-C levels were estimated using the Frie-

dewald equation,14 which does not accurately estimate LDL-C in

individuals with TG R400 mg/dL, and, therefore, those indi-

viduals are missing LDL-C values. Detailed descriptions of the

sampling, recruitment, and phenotyping have been reported pre-

viously.29–31 The second study included adults from American Sa-

moa and Samoa, recruited in 2002–2003, and was drawn from an

extended family-based genetic linkage study of cardiometabolic

traits.32–34 Probands and relatives were unselected for obesity or
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Table 1. Characteristics of discovery and replication cohorts

Samoan discovery Samoan/American Samoan replication Aotearoa New Zealand replication

n ¼ 2,851

n ¼ 1,466

n ¼ 1,810
1994–1995 recruitment
(n ¼ 557)

2002–2003 recruitment
(n ¼ 909)

Samoa
American
Samoa Samoa

American
Samoa

East Polynesia
(n ¼ 1,109)

West Polynesia
(n ¼ 603)

East/West
Polynesia
(n ¼ 98)

Female Male Female Male Female Male Female Male Female Male Female Male Female Male Female Male

n ¼ 1,705 n ¼ 1,146 n ¼ 202 n ¼ 184 n ¼ 96 n ¼ 75 n ¼ 195 n ¼ 185 n ¼ 308 n ¼ 221 n ¼ 456 n ¼ 653 n ¼ 182 n ¼ 421 n ¼ 38 n ¼ 60

Age (years)

Mean 44.77 45.56 43.5 43.08 42.53 45.4 45.05 42.01 42.96 43.24 51.23 52.72 44.05 44.46 37.66 39.48

SD 11.09 11.29 8.49 8.81 7.57 10.5 16.79 15.72 16.03 16.42 15.48 14.32 15.71 13.99 13.77 16.15

TC (mg/dL)

Mean 199.23 200.27 199.35 196.79 198.68 194.57 203.87 195.86 187.39 188.71 191.41 191.55 180.42 190.12 178.9 193.74

SD 36.13 38.66 36.88 35.07 30.63 30.46 35.92 38.05 38.97 37.17 42.36 45.54 45.41 43.61 43.01 40.53

N Miss – – – – – – – – – – 1 – 1 – – –

HDL-C (mg/dL)

Mean 46.48 43.7 43.87 41.38 34.75 32.39 47.46 45.7 42 38.54 49.27 42.36 47.8 41.42 52.66 41.46

SD 10.82 11.18 10.62 11.02 7.66 8.22 10.37 11.48 8.25 8.86 15.08 12.52 12.79 12.32 14.18 12.17

N Miss – – – 3 – 4 1 – – – 1 – 1 1 – –

LDL-C (mg/dL) a

Mean 130.17 130.2 139.12 137.45 141.34 134.57 134.65 127.27 118.85 117.48 107.67 110.29 100.6 113.79 95.85 119.37

SD 32.43 34.38 33.22 32.37 30.85 35.91 32.39 36.57 34.58 33.57 34.82 40.94 37.18 39.16 35.7 32.63

N Miss 10 25 1 5 – 9 1 3 4 19 34 76 9 37 2 8

TG (mg/dL)

Mean 114.97 139.16 85.01 101.42 115.2 172.83 109.38 119.26 131.28 191.64 180.88 216.8 163.07 201.47 145.98 208.49

SD 80.47 112.7 76.41 95.75 52.17 121.92 54.4 94.9 75.68 171.68 120.22 153.45 117.71 133.27 94.24 137.91

Mean (SD) are given for age, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides
(TGs) for each cohort. When applicable, the number of participants missing the measurement (N miss) is given.
aLDL-C was estimated using the Friedewald equation so individuals with TG R400 mg/dL have missing LDL-C values.
related phenotypes, and all individuals self-reported Samoan

ancestry. The recruitment process, criteria used for inclusion in

this study, and phenotyping have been described in detail previ-

ously.35,36 To account for temporal differences, each of the two

studies was modeled separately—Samoa/American Samoa 1994–

1995 (n ¼ 557) and Samoa/American Samoa 2002–2003 (n ¼
909). Participants in these two cohorts were genotyped using the

Infinium Global Screening Array-24 v.3.0 BeadChip (Illumina,

CA, USA) with custom content that included rs200884524. These

studies were approved by the institutional review boards of Brown

University and the American Samoa Department of Health, as well

as the Health Research Committee of the Samoa Ministry of

Health. All participants gave written informed consent.

Aotearoa New Zealand replication cohorts

A total of 1,810 adults (at least 16 years old) of Polynesian (NZ

Maori and Pacific) ancestry were recruited from Aotearoa New Zea-

land as part of a study of risk factors for gout, type 2 diabetes, and

kidney disease. Lipid parameters (VLDL and TG) have previously

been associated with gout in an Aotearoa NZ Polynesian cohort.37

Participants were divided into three replication cohorts based on
Human
the self-reported ancestry of their grandparents (East Polynesia

[Aotearoa New Zealand M�aori and Cook Island M�aori] n ¼
1,109; West Polynesia [Samoa, Tonga, Pukapuka, and Niue], n ¼
603; and Mixed East/West Polynesia, n ¼ 98). A separate M�aori

sample set from the rohe (area) of the Ng�ati Porou iwi (tribe) of

the Tair�awhiti (East Coast of the North Island of New Zealand) re-

gion was also included in the East Polynesia group. This sample set

was recruited in collaboration with the Ng�ati Porou Hauora

(Health Service) Charitable Trust. The details of sampling, recruit-

ment, phenotyping, and creation of principal components of

ancestry have been previously reported.38,39 Briefly, lipid levels

were measured from serum samples at Southern Community Lab-

oratories (Dunedin, NZ). LDL-C levels were estimated using the

Friedewald equation,14 which does not accurately estimate

LDL-C in individuals with TG R400 mg/dL, and, therefore, those

individuals are missing LDL-C values. Genotyping of rs200884524

was carried out using the TaqMan SNP genotyping assay technol-

ogy (Applied Biosystems, Foster City, CA, USA) using a LightCycler

480 Real-Time Polymerase Chain Reaction (PCR) system (Roche,

Indianapolis, IN, USA). This study was approved by the New
Genetics and Genomics Advances 4, 100155, January 12, 2023 3



Zealand Multi-Region Ethics Committee and the Northern Y Re-

gion Health Research Ethics Committee. All participants gave

written informed consent.

Replication analyses

Association testing for rs200884524, the sentinel SNP in the 5q35

region as identified in the discovery cohort, and the lipid levels

(TC, HDL-C, LDL-C, and TG) was performed in each of the five

replication cohorts using linear mixed modeling, adjusting for

the following fixed effects: principal components (PCs) of ancestry

(four PCs generated through PC-AiR21 were used for the Samoan/

American Samoan replication cohorts, three PCs for the Aotearoa

New Zealand replication cohorts), polity (an indicator of Samoa/

American Samoa in the two respective cohorts), age, age2, sex,

age 3 sex interaction, and age2 3 sex interaction. Age was mean

centered within each cohort for all analyses to avoid multicolli-

nearity issues. Relatedness was measured through empirical

kinship matrices and modeled as a random effect using the lmekin

function in the coxme R package.22 For the Samoan/American

Samoan replication cohorts, the empirical kinship matrix was

generated with GENESIS;19,20 for the Aotearoa New Zealand repli-

cation cohorts, the empirical kinship matrix was calculated in

PLINK v.1.940,41 as described previously.38

Meta-analysis
The effects of rs200884524 on the four lipid traits from the discov-

ery and 5 replication cohort analyses were combined using an in-

verse-variance fixed-effect meta-analysis as implemented in the

rmeta R package.42 Additionally, meta-analyses were conducted

separately across the two Samoan/American Samoan replication

cohorts and the three Aotearoa New Zealand replication cohorts.

Heterogeneity was assessed with Cochran’s Q statistic.
Results

Descriptions of age, TC, HDL-C, LDL-C, and TG levels in

the discovery and replication cohorts are given in Table 1.

Generally, the cohorts were very similar (with the excep-

tion of TG, which varies more widely across cohorts).

The association analyses in the discovery cohort in the

1-Mb region on 5q35 (Figures S2–S5) highlighted an asso-

ciation between a stop-gain variant (rs200884524;

c.652C>T, p.R218*) in the butyrophilin-like 9 (BTNL9)

gene with HDL-C (p¼ 4.053 10�8; Figure S2). Conditional

analyses on rs200884524 showed some evidence of a sec-

ondary signal approximately 0.449 Mb upstream from

the lead variant in the region (rs71680280; CA>C, condi-

tional p ¼ 6.52 3 10�6, linkage disequilibrium [LD] with

rs200884524 r2 ¼ 0.035, Figure S2). Bayesian fine mapping

pointed to rs200884524 with high posterior probability

(PP) of causality (PP ¼ 0.9987); all other variants in the re-

gion had PP <0.10. rs200884524 did not show evidence of

association with any other cardiometabolic phenotype

measured (Table S1).

The estimated effects of rs200884524 on the four lipid

levels for each cohort are given in Table 2. rs200884524

was significantly associated with lower average HDL-C

levels overall (meta-analysis b ¼ �1.60 mg/dL, p ¼
7.63 3 10�10; Figure 1), with no evidence of heterogeneity

of effect across cohorts (p ¼ 0.65). Similarly, rs200884524
4 Human Genetics and Genomics Advances 4, 100155, January 12, 2
was significantly associated with higher average TG levels

overall (meta-analysis b ¼ 12.00 mg/dL, p ¼ 3.82 3 10�7,

heterogeneity p ¼ 0.75). Sensitivity analyses using in-

verse-normal-transformed phenotypes showed similar

results (Table S2). rs200884524 accounts for 0.94% and

0.68% of the variation in HDL-C and TG, respectively, in

the discovery cohort.

rs200884524 has MAF <0.0001 in gnomAD v.3.1.1

(accessed February 16, 2022); of the 14 alleles seen in

gnomAD, 7 are from East Asians, with no observed homo-

zygotes. However, we observed a MAF of 0.223 in the

Samoan discovery cohort with 163 observed homozygotes.

The MAFs of rs200884524 ranged from 0.049 to 0.233 in

the Samoan/American Samoan and Aotearoa New Zealand

replication cohorts, with higher frequencies observed

among the Western Polynesian participants (Table 2).

Consistent with these disparate allele frequencies,

rs200884524 also showed evidence of positive selection

in the discovery cohort (nSL score of 1.79, 98.9 percentile

in the Samoan genome).
Discussion

We found strong evidence of association between a stop-

gain variant in BTNL9, rs200884524, and atherogenic

serum lipid profiles (lower HDL-C, higher TG) across

several independent cohorts of Polynesian individuals.

Interestingly, this variant appears to be Polynesian spe-

cific—common in those of Western Polynesian ancestry

(which includes Samoa), rarer in those of Eastern Polyne-

sian ancestry, and absent from other non-Polynesian pop-

ulations. When compared with effect sizes of other index

variants from GWASs of HDL-C,6 the effect size of

rs200884524 was moderate to large, which is similar to

other findings in this population.13,43,44

Moreover, the identification of rs200884524 was ach-

ieved using a population-specific genotype imputation

panel, highlighting the importance of such panels when

working with isolated populations. Previous work (using

the discovery cohort from these results) observed a sugges-

tive association between this region and HDL-C10 but was

limited to SNP array data only rather than the dense data

from imputed genotypes. The sparse genotypes in this re-

gion did not facilitate accurate fine mapping. In fact, we

previously nominated MGAT1 as the causal gene for this

locus as the stop-gain variant in BTNL9was not genotyped.

Once the dense information from imputed genotypes was

available, it was easy to identify the stop-gain variant

rs200884524 as a variant of interest, which led us to

include it with the custom content selected for genotyping

in the Samoan/American Samoan replication cohorts.

These results highlight the necessity of population-specific

imputation reference panels and the fruitfulness of gene

discovery in isolated populations.

There is evidence that rs200884524 plays a role in

nonsense-mediated decay (NMD) efficacy; the variant is
023



Table 2. rs200884524 association results for untransformed lipid levels: Total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol
(LDL-C), and triglycerides (TG)

Cohort

TC HDL-C LDL-C TG

b (95% CI) mg/dL b (95% CI) mg/dL b (95% CI) mg/dL b (95% CI) mg/dL

p p p p

Samoan Discovery (n ¼ 2,851; MAF ¼ 0.223) �1.65 (�3.91, 0.61) �1.84 (�2.54, �1.14)a �0.93 (�2.98, 1.12) 13.48 (7.49, 19.47)a

0.15 2.74 3 10�7a 0.37 1.04 3 10�5a

Samoan/American Samoan replication cohorts

1994–1995 Samoan/American Samoan
(n ¼ 557; MAF ¼ 0.233)

0.68 (�3.91, 5.26) �1.98 (�3.35, �0.60) 0.85 (�3.64, 5.34) 15.60 (3.67, 27.53)

2002–2003 Samoa/American Samoan (n ¼
909; MAF ¼ 0.202)

0.76 (�3.27, 4.79) �0.83 (�1.99, 0.33) 0.71 (�3.09, 4.50) 4.65 (�7.88, 17.17)

Meta-analysis of 2 Samoan/American
Samoan replication cohorts

0.72 (�2.30, 3.75) �1.31 (�2.19, �0.42)a 0.77 (�2.13, 3.66) 10.39 (1.75, 19.03)a

Meta-analysis effect p value 0.64 3.86 3 10�3a 0.60 0.018a

Heterogeneity p value 0.98 0.21 0.96 0.21

Aotearoa New Zealand replication cohorts

Eastern Polynesian (n ¼ 1,109; MAF ¼
0.049)

�1.40 (�9.57, 6.76) �0.58 (�3.16, 1.99) �1.63 (�9.10, 5.84) 15.52 (�10.85, 41.88)

Western Polynesian (n ¼ 603; MAF ¼
0.216)

�1.21 (�6.98, 4.56) �1.54 (�3.21, 0.14) 0.06 (�5.27, 5.40) 4.90 (�11.97, 21.76)

Mixed Eastern/Western Polynesian (n ¼
98; MAF ¼ 0.133)

0.48 (�15.27, 16.24) �2.90 (�7.71, 1.91) 4.88 (�8.05, 17.80) 12.41 (�35.63, 60.44)

Meta-analysis of 3 Aotearoa New Zealand
replication cohorts

�1.13 (�5.65, 3.39) �1.38 (�2.73, �0.04)a 0.04 (�4.08, 4.15) 8.34 (�5.29, 21.96)

Meta-analysis effect p value 0.62 0.044a 0.99 0.23

Heterogeneity p value 0.98 0.68 0.69 0.79

Meta-analysis (all cohorts) �0.85 (�2.53, 0.83) �1.60 (�2.11, �1.09)a �0.31 (�1.86, 1.24) 12 (7.37, 16.63)a

Meta-analysis effect p value 0.32 7.63 3 10�10a 0.70 3.82 3 10�7a

Heterogeneity p value 0.90 0.65 0.89 0.75

For individual cohorts, bs, 95% confidence intervals (CIs), and p values obtained from linear mixed models adjusting for fixed effects of principal components of
ancestry, polity (Samoa/American Samoa), age, age2, sex, age 3 sex interaction, and age2 3 sex interaction. Age was mean centered for all analyses to avoid
multicollinearity issues. Relatedness was measured through an empirical kinship matrix and was modeled through a random effect. For meta-analyses, bs,
95% CIs, and p values were obtained from inverse-variance fixed-effect meta-analyses. Heterogeneity p values are from Cochran’s Q test.
aResults with p <0.05.
located in exon 4 of 11 in BTNL9 and has strong mRNA

degradation predicted (NMDetective score 0.645,46). While

BTNL9 is not constrained/predicted to be loss-of-function

intolerant (predicted LoF observed/expected ¼ 0.94, gno-

mAD v.2.1.1), the role of the BTNL9 protein in human dis-

ease is still unknown.

Despite the Tallele of rs200884524 having a very low fre-

quency in other populations, the association between var-

iants in this region and lipid levels does not appear to be

Polynesian specific. Results from studies of the UKBiobank

and the Global Lipids Genetics Consortium demonstrate

evidence of association in this region as well. Specifically,

an intron variant in nearby BTNL3 (�61 kb away from

rs200884524) was significantly associated with HDL-C in

a GWAS of �459,000 individuals of European descent

(rs138354839, pHDL-C ¼ 9.70 3 10�13).47 Additionally, var-

iants in and upstream of BTNL8 (�128–169 kb away from

rs200884524) were associated with total and HDL-C in a
Human
large, multiancestry meta-analysis (rs138692142, pHDL-

C ¼ 8.09 3 10�17; rs188238483 pTC ¼ 3.39 3 10�9).6

Each of these variants is rare in the Samoan discovery

cohort presented here (MAF ¼ 0.009, 0.0003, and 0.000

03, respectively). The positions of these variants in rela-

tionship to the stop gain are depicted in Figure 2.

Furthermore, there were significant associations between

pLoF variants in BTNL9 and both apolipoprotein A and

HDL-C observed in gene-based studies of European-

ancestry individuals also from the UKBiobank.48–50 Both

associations are driven by a single variant (rs367635312,

pApoA ¼ 1.93 3 10�9, pHDL-C ¼ 1.48 3 10�7, MAF ¼
0.0125 in non-Finnish Europeans). This variant is also

rare in the Samoan discovery cohort (MAF ¼ 0.00016).

Interestingly, the region also harbors a �55-kb common

deletion with consequence in BTNL8 and BTNL3

(DEL_5_65831 gnomAD SVs v.2.1). This deletion is com-

mon in those of Asian, American, and European descent
Genetics and Genomics Advances 4, 100155, January 12, 2023 5



Figure 1. Meta-analysis results of rs200884524 for high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)
Effect estimates (beta) and 95% confidence intervals (CIs) for HDL-C (mg/dL) and TG (mg/dL) are given for each cohort (abbreviations:
Samoan [S], American Samoan [AS], Replication [Rep], Aotearoa New Zealand [An NZ], Eastern Polynesian [EP], Western Polynesian
[WP]). Meta analysis results were obtained using inverse-variance fixed-effects meta-analysis. Arrows indicate CIs that have been trun-
cated for plotting.
but rare in African and Oceanic (Papuan and Melanesian)

populations.51 The frequency of this deletion in Polyne-

sians is unknown as Polynesians have differing genetic

ancestries from Papuans and Melanesians. Functional

analysis has shown that this deletion down-regulates

BTNL9 in lymphoblastoid cell lines.51 This deletion is in

high LD (r2 > 0.80) with 26 SNVs in the UKBiobank.50,52

The SNV in very high LD with the deletion (rs72494581,

LD with deletion 0.97) showed minimal evidence of asso-
6 Human Genetics and Genomics Advances 4, 100155, January 12, 2
ciation with HDL-C in the Pan-UKBiobank (p ¼ 0.056 in

meta-analysis across all populations, p ¼ 0.037 in individ-

uals of European descent).50,53 Because of the low allele

frequency of rs200884524 in non-Polynesian popula-

tions, it is unknown if the stop-gain variant is in LD

with this deletion. Further work is needed to explore the

interplay of this deletion with rs200884524 to examine

the causal mechanism and resulting biological impact

on lipids.
023



Figure 2. Variants of interest in BTNL9 region
Variant IDs, position (build hg38), reference and alternate alleles, andminor allele frequency (MAF) in the Samoan discovery cohort and
in gnomAD are given for the stop-gained variant in BTNL9 identified in the Samoan discovery cohort (pink), 4 variants with lipid asso-
ciations in the UK Biobank (UKB; blue), a deletion upstream of BTNL9 (orange), and a variant in high linkage disequilibrium (LD) with
the deletion in UKB (purple). BTNL8, BTNL3, and BTNL9 coordinates for MANE transcripts are plotted for reference, with black bars rep-
resenting exonic regions. For DEL_5_65831, hg38 coordinates were obtained using LiftOver (https://genome.ucsc.edu/cgi-bin/
hgLiftOver) on the positions defined in gnomAD SV v.2.1 (hg19).
Little is known about the function of BTNL9 and

the mechanism by which it may impact serum lipids;

however, it has been previously associated with cardiomy-

opathy,54–56 pre-eclampsia,57 and various cancers.58,59

BTNL9 has a cell- and tissue-specific expression pattern—

it is most highly expressed in human B cells of adipose tis-

sue, lung, thymus, spleen, and heart.60 Moreover, BTNL9 is

localized to the plasma membrane and binds to immune

cell surfaces.61 BTNL9 belongs to the butyrophilin (BTN)

family of membrane proteins, which is part of a superfam-

ily of immunoglobulin (Ig) receptors.62 Several studies

suggest a role of BTN proteins in inflammatory and immu-

nological functions,61,63–72 supported by the shared extra-

cellular characteristics and homology of the BTN proteins

with the B7 family (which includes ligands and receptors

for T cell activity).62 BTNL9 is member of a BTN subfamily

along with BTNL3 and BTNL8, which all diverged from a

common ancestor.62 While BTNL3 and BTNL8 are primate

specific, BTNL9 is conserved across several mammalian

species; however, the protein structure differs across spe-

cies. Human BTNL9 has two substitution mutations that

result in the loss of the IgC domain that is present in other

mammals.62 In mice, the receptor to Btnl9 was shown to

be expressed in immune cells, supporting the hypothe-
Human
sized immune function.62,73 Future functional work is

needed to identify the biological role of BTNL9 in lipid

and lipoprotein metabolism, immune function, and, ulti-

mately, cardiovascular (and potentially cancer) risk.

Additional work is necessary to characterize the relation-

ship between variation in BTNL9 and lipid levels, espe-

cially analyzing the impact of the nearby deletion in

BTNL8/BTNL3, as well as any potential interaction be-

tween immune cells and lipid transport pathways. Howev-

er, these findings fine map the suggestive association in

5q35 to a stop-gain variant in BTNL9, providing evidence

of a new contributor to the genetic architecture of lipids.

This work highlights the importance of measuring associa-

tion in non-European populations as it can provide insight

not only into population-specific findings and benefits but

also into cross-population associations, which may lead to

therapeutic targets able to benefit multiple population

groups.

Data and code availability

The discovery cohort data used for this study are available

through dbGaP (accession numbers: phs000914.v1.p1 and

phs000972.v5.p1). The Samoan/American Samoan and

Aotearoa New Zealand replication cohorts’ data have not
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been deposited in a public repository because participants

did not give consent for data sharing. Code used for data

analysis will be made available upon request.
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