TABLE 2.
Classification performance tests before gene selection.
| Model name | Accuracy | Recall | Precision | F1 | AUC |
| XGBClassifier | 0.772 | 0.730 | 0.856 | 0.763 | 0.82 ± 0.14 |
| LGBMClassifier | 0.714 | 0.750 | 0.763 | 0.732 | 0.81 ± 0.11 |
| RandomForestClassifier | 0.763 | 0.750 | 0.802 | 0.749 | 0.81 ± 0.10 |
| ExtraTreesClassifier | 0.758 | 0.765 | 0.787 | 0.758 | 0.83 ± 0.08 |
| GaussianNB | 0.817 | 0.745 | 0.885 | 0.804 | 0.84 ± 0.11 |
| KNeighborsClassifier | 0.713 | 0.680 | 0.767 | 0.713 | 0.76 ± 0.12 |
| LogisticRegression | 0.817 | 0.815 | 0.858 | 0.826 | 0.87 ± 0.11 |
| DecisionTreeClassifier | 0.639 | 0.675 | 0.743 | 0.715 | 0.66 ± 0.20 |
| SupportVectorMachineClassifier | 0.794 | 0.725 | 0.895 | 0.777 | 0.84 ± 0.07 |
| LinearDiscriminantAnalysis | 0.736 | 0.680 | 0.752 | 0.691 | 0.84 ± 0.11 |
| Mean | 0.752 | 0.732 | 0.812 | 0.753 | 0.808 |
Bold values represent the average performance.