Skip to main content
. 2022 Oct 20;16:1034971. doi: 10.3389/fnins.2022.1034971

TABLE 3.

Classification performance tests after gene selection by the proposed hybrid algorithm.

Model name Accuracy Recall Precision F1 AUC
XGBClassifier 0.815 0.850 0.815 0.827 0.91 ± 0.09
LGBMClassifier 0.830 0.815 0.868 0.837 0.89 ± 0.07
RandomForestClassifier 0.831 0.825 0.826 0.836 0.93 ± 0.08
ExtraTreesClassifier 0.874 0.855 0.927 0.868 0.94 ± 0.07
GaussianNB 0.850 0.810 0.902 0.845 0.93 ± 0.08
KNeighborsClassifier 0.840 0.79 0.915 0.835 0.92 ± 0.10
LogisticRegression 0.872 0.895 0.887 0.884 0.93 ± 0.07
DecisionTreeClassifier 0.690 0.685 0.798 0.757 0.71 ± 0.23
SupportVectorMachineClassifier 0.919 0.940 0.930 0.929 0.93 ± 0.07
LinearDiscriminantAnalysis 0.874 0.895 0.882 0.883 0.92 ± 0.07
Mean 0.840 0.836 0.875 0.850 0.901

Bold values represent the average performance.