TABLE 3.
Classification performance tests after gene selection by the proposed hybrid algorithm.
Model name | Accuracy | Recall | Precision | F1 | AUC |
XGBClassifier | 0.815 | 0.850 | 0.815 | 0.827 | 0.91 ± 0.09 |
LGBMClassifier | 0.830 | 0.815 | 0.868 | 0.837 | 0.89 ± 0.07 |
RandomForestClassifier | 0.831 | 0.825 | 0.826 | 0.836 | 0.93 ± 0.08 |
ExtraTreesClassifier | 0.874 | 0.855 | 0.927 | 0.868 | 0.94 ± 0.07 |
GaussianNB | 0.850 | 0.810 | 0.902 | 0.845 | 0.93 ± 0.08 |
KNeighborsClassifier | 0.840 | 0.79 | 0.915 | 0.835 | 0.92 ± 0.10 |
LogisticRegression | 0.872 | 0.895 | 0.887 | 0.884 | 0.93 ± 0.07 |
DecisionTreeClassifier | 0.690 | 0.685 | 0.798 | 0.757 | 0.71 ± 0.23 |
SupportVectorMachineClassifier | 0.919 | 0.940 | 0.930 | 0.929 | 0.93 ± 0.07 |
LinearDiscriminantAnalysis | 0.874 | 0.895 | 0.882 | 0.883 | 0.92 ± 0.07 |
Mean | 0.840 | 0.836 | 0.875 | 0.850 | 0.901 |
Bold values represent the average performance.