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Abstract

Developing methods for the non-invasive characterization of the mechanics of musculoskeletal 

tissues is an ongoing research focus in biomechanics. Often, these methods use the speed of 

shear wave propagation to characterize tissue mechanics (e.g., shear wave elastography and shear 

wave tensiometry). The primary purpose of this systematic review was to identify, compare, and 

contrast current methods for exciting and measuring shear wave propagation in musculoskeletal 

tissues. We conducted searches in the Web of Science, PubMed, and Scopus databases for studies 

published from January 1, 1900, to May 1, 2020. These searches targeted both shear wave 

excitation using acoustic pushes and mechanical taps, and shear wave speed measurement using 

ultrasound, magnetic resonance imaging, accelerometers, and laser Doppler vibrometers. Two 

reviewers independently screened and reviewed the articles, identifying 525 articles that met our 

search criteria. Regarding shear wave excitation, we found that acoustic pushes are useful for 

exciting shear waves through the thickness of the tissue of interest, and mechanical taps are useful 

for exciting shear waves in wearable applications. Regarding shear wave speed measurement, 

we found that ultrasound is used most broadly to measure shear waves due to its ability to 

study regional differences and target specific tissues of interest. The strengths of magnetic 

resonance imaging, accelerometers, and laser Doppler vibrometers make them advantageous to 

measure shear wave speed for high-resolution shear wave imaging, wearable measurements, and 

non-contact ex vivo measurements, respectively. The advantages that each method offers for 

exciting and measuring shear waves indicate that a variety of systems can be assembled using 

currently available technologies to determine musculoskeletal tissue material behavior across a 

range of innovative applications.
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Introduction

Characterizing the mechanics of musculoskeletal tissues is crucial for understanding the 

etiology and progression of diseases, injuries, and disorders; as well as normal functioning. 

The mechanics of these tissues, particularly the tissue loads (e.g., axial stresses) and intrinsic 

material properties (e.g., elastic and shear moduli), are known to change in response to 

changes in loading,411, 444 tissue health,34, 221, 384 and morphology.412 These changes occur 

both in the native tissue and following interventions such as orthopedic surgery420 and 

rehabilitation.452 Further, the material behavior of musculoskeletal tissues can change with 

aging461, 516 and following changes in overall health.303 While ex vivo mechanical tests 

such as axial, bending, and shear tests are valuable for characterizing tissue mechanics, 

they do not necessarily capture the complex loading environment of musculoskeletal tissues 

in vivo. Hence, the non-invasive evaluation of musculoskeletal tissue mechanics in vivo 

is fundamental to understanding the role of these tissues in human movement and the 

physiological processes that precede and follow disease or acute injury. Moreover, by 

characterizing these mechanics non-invasively, clinicians and researchers can evaluate tissue 

health without further disruption, enabling diagnostic monitoring and intervention planning.

Several methods for characterizing the mechanics of musculoskeletal tissues use the speed 

of shear wave propagation (i.e., shear wave speed) to non-invasively quantify tissue 

mechanics in vivo. These methods excite a shear wave in the tissue and then measure the 

speed with which the shear wave propagates along the tissue. The shear wave speed depends 

on both applied loads112, 337 and material properties of the tissue.132, 165, 337 To evaluate 

loading, a method often termed shear wave tensiometry can be used to measure the axial 

stress in a musculoskeletal tissue of interest across a broad range of tensile loads during 

functional activities.337 To evaluate material properties, a method often called shear wave 

elastography (SWE) can be used to measure tissue moduli and is commonly performed in 

unloaded or passively stretched tissues using ultrasound (e.g., Bercoff et al. 200461). This 

measurement can also be performed using magnetic resonance imaging (MRI), which is 

termed magnetic resonance elastography (MRE) (e.g., Debernard et al. 2011141). Despite 

the conceptual simplicity of these methods, the details of their implementation are highly 

dependent on the tissue type, loading state, boundary conditions, and mechanical parameters 

of interest (e.g., stress or shear modulus). This leads to challenges in identifying the most 

appropriate excitation and measurement methods to acquire meaningful data for a given 

application.

Systems to excite shear waves and measure the shear wave propagation speed are composed 

of two primary components: actuators and sensors. The fundamental requirement of an 

actuator is to transversely displace the tissue of interest to excite a shear wave. This may be 

accomplished using either non-contact or contact methods. An ultrasound transducer capable 
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of generating an acoustic push (i.e., acoustic radiation force impulse (ARFI)) is the most 

commonly used non-contact method (e.g., Nightingale et al. 2002381) (Figure 1). Several 

contact actuators have been used to create a mechanical tap, with a few examples including 

a piezoelectric actuator (e.g., Martin et al. 2018337), an electromagnetic actuator (e.g., 

Cortes et al. 2015132), and a pneumatic actuator (e.g., Debernard et al. 2011141) (Figure 1). 

Equally as important as the actuators used to excite shear waves are the sensors used to 

track transverse motion of either the tissue of interest or the overlying tissue during shear 

wave propagation (Figure 2). For example, medical imaging modalities such as ultrasound 

and MRI are commonly used to measure shear wave propagation. In these systems, the 

transverse displacement of the tissue is measured via serial imaging in a region of interest 

(e.g., Bercoff et al. 200461 and Muthupillai et al. 1995371). Transverse accelerations and 

velocities of the tissue surface can also be measured using accelerometers (e.g., Cescon 

et al. 200894) and laser Doppler vibrometers (e.g., Blank et al. 202070), respectively. 

Given the multitude of actuators and sensors available, a prerequisite step to developing a 

system to non-invasively characterize the mechanics of musculoskeletal tissues is a thorough 

understanding of the technologies available for exciting shear waves and measuring shear 

wave speeds.

Accordingly, the primary objective of this systematic review is to identify, compare, and 

contrast commonly used methods for exciting shear waves and measuring shear wave 

speeds in musculoskeletal tissues. Our focus is on the application of these methods rather 

than their theoretical foundations, which have been reviewed previously (e.g., Sarvazyan 

et al. 2013442). With an understanding of the pros and cons of each method, researchers 

will be better prepared to develop novel measurement systems to assess the mechanics of 

musculoskeletal tissues in unique applications. A secondary objective is to compile shear 

wave speeds and measures of material properties in a broad range of musculoskeletal tissues 

and loading conditions. With these baseline datasets, researchers will be able to better 

evaluate whether the measurements of their novel systems are in the range of previous 

studies in similar tissues and/or loading conditions.

Methods

Literature Search Strategy

We conducted this systematic review according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines.364 The Web of Science 

(Clarivate, Web of Science Core Collection), PubMed (National Institutes of Health, US 

National Library of Medicine), and Scopus (Elsevier B.V.) databases were used to perform 

a systematic search of primary research articles that used shear wave excitation and 

measurement methods in musculoskeletal tissues. The search was limited to peer-reviewed 

primary research articles published in English. Other document types, including review 

articles, pre-prints, dissertations, book chapters, conference proceedings, and conference 

abstracts, were excluded. Search methods were developed with advising from librarians at 

the University of Wisconsin-Madison Ebling Library for the Health Sciences.

The search terms (Table S1) were used to assemble a preliminary pool of candidate articles 

from each of the three databases. Each search included broad search terms specifying the 
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tissue type, wave type, and description of propagation, as well as more specific search terms 

unique to the method of excitation or measurement, allowing search results to be categorized 

by method. The search terms for tissue type reflected the tissues of interest for this review, 

namely muscle, tendon, ligament, bone, and cartilaginous tissues (including menisci). The 

excitation methods were divided into two categories: ultrasound (i.e., acoustic push) and 

mechanical (i.e., mechanical tap) (Figure 1). The measurement methods were divided into 

four categories: ultrasound, MRI, accelerometers, and laser Doppler vibrometers (Figure 2).

For each Web of Science and PubMed search, at least one term from each of the broad 

categories (all rows in the left column in Table S1) and at least one term from the method 

categories (one row in the right column in Table S1) had to appear in any field for the 

article to be considered. For each Scopus search, the search domain was limited to article 

title, abstract, and keywords. This limited search domain was necessary because Scopus 

indexes the titles of all references listed within each journal article in the “all fields” setting, 

resulting in a large number of unrelated articles matching the search terms. Here is an 

example of the search for the mechanical tap excitation method: ( [Tissue Type] AND [Wave 

Type] AND [Description of Propagation] AND [Mechanical Tap] ) is: ( [(musculoskeletal* 

AND tissue*) OR (orthopedic* OR orthopaedic* OR muscu* OR muscl* OR tendon OR 

tendons OR ligament* OR bone* OR bony* OR cartilag* or menisc*)] AND [“shear 

wave*” OR “transverse wave*” OR “s-wave*” OR “surface wave*”] AND [propagat* OR 

elastography* OR speed* OR veloc*] AND [actuator* OR stimulat* OR push* OR piezo* 

OR shaker*] ). Refer to the supplementary material for a full description of the searches 

performed for each method-of-interest (Table S1).

The initial search, which was performed by a single reviewer, was limited to articles 

published between the dates of January 1, 1900 and December 31, 2019. This yielded a 

total of 912, 766, and 906 results in the Web of Science, PubMed, and Scopus databases, 

respectively (Figure 3). After merging the results from all databases for each method 

category, a total of 1,277 out of 2,584 articles were identified as duplicates and removed. We 

divided the remaining 1,307 articles evenly amongst teams of two independent reviewers. 

Within each team, each reviewer screened the titles, abstracts, and keywords of their 

assigned articles to ensure that the article fit within the scope of the review. Common 

reasons for article exclusion were an emphasis on theory or simulation without experimental 

validation, as well as non-musculoskeletal applications. Articles studying adipose tissue 

(e.g., heel pad and patellar fat pad), aponeurosis, fascia, joint capsule, and tumors were 

excluded from this review. Phantom studies in which the phantom was not specifically 

musculoskeletal tissue-mimicking were also excluded. For each of the articles remaining 

after screening, full-text articles were acquired and critically assessed for eligibility by teams 

of two independent reviewers. If an article was disagreed upon during either the screening or 

eligibility phases, the opinion of a third independent reviewer was used to reach a consensus.

The last search was performed on articles published between January 1, 2020 and May 

1, 2020 and yielded 77 additional articles that were subsequently screened and assessed 

for inclusion, as described previously. Ten articles were included from additional sources 

because they were known to the authors but did not appear in any of the searches. The 

final number of studies included in the systematic portion of this review after all screening, 
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eligibility assessments, and additional searches were performed were 69, 11, 476, 36, 6, and 

9 for the acoustic push, mechanical tap, ultrasound, MRI, accelerometers, and laser Doppler 

vibrometers, respectively.

Data Extraction and Risk of Bias

The outcomes of interest were descriptions of the experimental conditions, including 

the excitation and measurement methods, equipment, and subject/specimen information. 

Key results relevant to shear wave tensiometry and elastography were also extracted, 

particularly the shear wave speed, the shear moduli, and the elastic moduli. We emphasized 

the most representative results in studies where extensive conditions were studied. This 

involved prioritizing the presentation of in vivo results, common joint angles and tissues, 

and comparisons between the control and most extreme experimental groups (e.g., wave 

speed measurements under zero load and maximum load). Data from fibrocartilage (e.g., 

meniscus) and articular cartilage were grouped together for presentation of cartilaginous 

tissues. The articles were divided among each of the five reviewers for extraction of the 

pre-defined outcomes. A form was used to ensure consistency between reviewers, and the 

final extracted data was checked by one additional reviewer. No authors were contacted 

for additional information. After data extraction, we organized the papers by measurement 

modality and further by tissue type. To determine the effect of tissue load on measured 

shear wave speeds, we classified each paper as either “low” or “high” load according to 

the level of loading on the tissue reported in the paper. We classified load in in vivo 

studies as “low” if the tissue was stretched passively (e.g., during a passive range-of-motion 

task). We classified load in in vivo studies as “high” if the subject(s) actively contracted 

muscles at a minimum of 20% maximum voluntary contraction or the applied joint load 

was reported as high (e.g., during a laxity assessment). If the authors did not specify an 

activation percentage or applied load, then we classified the load level by approximating the 

amount of muscle activation given the nature of the task (e.g., holding a weight). In ex vivo 

studies, we classified the load as “high” when there was a reported load that was distinct 

from a reference or unloaded state. Otherwise, the load in ex vivo studies was classified as 

“low”. Tissue loads caused by ultrasound probe compression against the structure were also 

classified as “low”.

We minimized the risk of bias by reviewers by consulting a professional research librarian 

when developing the search terms and by having two independent reviewers perform article 

screening, eligibility assessments, and data extraction.210 A source of bias at the study-level 

may be exclusion of articles published in languages other than English.

Results

The 525 papers included in this systematic review are summarized in the following sub-

sections and in Tables S2-S5. These sub-sections are the same as those used during the 

search process (i.e., Methods Categories, Table S1) that included two excitation methods: 

ultrasound excitation (i.e., acoustic push) and mechanical excitation (i.e., mechanical tap) 

(Figure 1), and four measurement methods: ultrasound, MRI, accelerometers, and laser 

Doppler vibrometers (Figure 2). The supplemental tables that include all the extracted 
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data (Tables S2-S5) are organized by measurement method but include both excitation and 

measurement methods for each study when specified.

Ultrasound Shear Wave Excitation

In this systematic review, 449 studies, or 86% of the total included studies, utilized 

ultrasound technology to excite shear waves in musculoskeletal tissues including muscle 

(n = 322), tendon (n = 100), ligament (n = 21), cartilage (n = 9), and bone (n = 21), as 

well as musculoskeletal tissue-mimicking phantoms (n = 11). Common strategies of shear 

wave excitation among acoustic pushes included acoustic radiation force impulse (ARFI)381 

and supersonic shear imaging excitation (SSI).61 Studies using ultrasound excitation were 

conducted in musculoskeletal tissues ex vivo (n = 51), in situ (n = 11), and in vivo (n = 376). 

Shear waves excited by ultrasound were often measured using ultrasound as well.

Mechanical Shear Wave Excitation

In addition to the more common ultrasound wave generation technologies, 76 studies, or 

14% of the total included studies, utilized a mechanical tapping device to excite shear waves 

in musculoskeletal tissues. Mechanically excited shear waves were used to study muscle (n 

= 41), tendon (n = 18), ligament (n = 1), cartilage (n = 4), bone (n = 4), and musculoskeletal 

tissue-mimicking phantoms (n = 9). These mechanical excitation technologies have included 

piezoelectric actuators (e.g., Martin et al. 2018337), electromagnetic actuators (e.g., Cortes 

et al. 2015132), and pneumatic actuators (e.g., Debernard et al. 2011141). These studies were 

conducted in musculoskeletal tissues ex vivo (n = 24), in situ (n = 3), and in vivo (n = 41).

Ultrasound Shear Wave Measurement

In addition to excitation, ultrasound is frequently used to measure the propagation of shear 

waves in musculoskeletal tissues. In this systematic review, we found 476 studies that 

used ultrasound technology to measure shear wave propagation (Figure 3). Most frequently 

(90% of all included studies), ultrasound was used to both excite and measure shear wave 

propagation (Table S2). The ranges of mean shear wave speeds measured using ultrasound 

were 0.7–16.9 m/s in muscle, 0.5–36.0 m/s in tendon, 1.7–29.7 m/s in ligament, 2.9–5.3 

m/s in cartilage, 1074–3623 m/s in bone, and 1.2–7.0 m/s in phantoms (Table 3, Figure 4). 

Many of these studies also reported the shear or elastic moduli of the tissue. The ranges of 

mean shear moduli were 0.6–240.0 kPa in muscle, 8.4–563.5 kPa in tendon, 31.1–879.6 kPa 

in ligament, and 3.1–40.7 kPa in cartilage, 3.0–6.7 × 106 kPa in bone, and 3.8–64.6 kPa 

in phantoms (Table 4, Figure 5). The ranges of mean elastic moduli were 2.0–268.2 kPa in 

muscle, 22.6–722.4 kPa in tendon, 24.5–230.6 kPa in ligament, 17.1–50.3 kPa in cartilage, 

6.5–25.8 × 106 kPa in bone, and 52.5–187.6 kPa in phantoms (Table 5, Figure 6).

Magnetic Resonance Imaging Shear Wave Measurement

There were 36 studies that used MRI measurements of shear wave propagation in 

conjunction with either ultrasound or mechanically excited shear waves to study muscle, 

cartilage, and tissue-mimicking phantoms (Table S3). The range of mean shear wave speeds 

was 1.0–4.7 m/s for muscle (Table 3, Figure 4). The mean shear wave speed was 2.9 m/s in 

phantoms (n = 1) (Table 3, Figure 4). The ranges of the mean shear moduli were 1.3–54.0 
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kPa in muscle, 1083–7714 kPa in cartilage, and 2.9–28.5 kPa in phantoms (Table 4, Figure 

5). The range of mean elastic moduli was 11.4–71.0 kPa in muscle (Table 5, Figure 6).

Accelerometer Shear Wave Measurement

Six studies used accelerometer measurements of shear wave propagation in conjunction with 

mechanically excited shear waves to study muscle and tendon (Table S4). The mean shear 

wave speed was 2.4 m/s in muscle (n = 1) (Table 3, Figure 4). The range of mean shear wave 

speeds was 34.1–85.6 m/s in tendon (Table 3, Figure 4).

Laser Doppler Vibrometer Shear Wave Measurement

Nine studies used laser Doppler vibrometers to measure shear wave propagation (Table 

S5). Laser Doppler vibrometers were most commonly used with mechanically excited shear 

waves to measure the mechanics of muscle, tendon, ligament, cartilage, and bone tissues, as 

well as tissue-mimicking phantoms. The ranges of mean shear wave speeds were 4.0–12.4 

m/s in muscle and 24.2–165.0 m/s in phantoms (Table 3, Figure 4). The mean shear wave 

speed was 128.0 m/s in ligament (n = 1). The ranges of mean shear moduli were 700–1000 

kPa in cartilage and 0.8–0.9 kPa in phantoms (Table 4, Figure 5).

Discussion

The primary purpose of this systematic review was to identify the broad range of 

technologies and methods for exciting shear waves and measuring shear wave speeds 

in musculoskeletal tissues, then compare and contrast them to provide insight into 

building novel excitation and measurerments systems for future clinical and biomechanical 

investigations. Our secondary purpose was to summarize the range of shear wave speeds, 

shear moduli, and/or elastic moduli in the 525 papers by tissue and measurement type. We 

further sub-divided these summaries by the sensor used to measure shear wave speeds.

Ultrasound Shear Wave Excitation

The most common technique used to excite shear waves includes methods that use an 

acoustic push applied transversely to the tissue of interest (Figure 1). Acoustic pushes using 

an ultrasound transducer are viable for non-invasively characterizing material properties 

of human tissue in vivo and are particularly useful because they provide a stimulus that 

can extend through the depth of a tissue of interest; hence, acoustic pushes are useful for 

studying deep tissues (e.g., multifidus22 and tibialis posterior387). In an acoustic push, the 

ultrasound transducer emits an acoustic radiation force impulse (ARFI) capable of exciting 

shear waves at a prescribed focal depth using one or a sequence of pushing beams.381 

Another implementation of an acoustic push commonly used in musculoskeletal tissues 

is supersonic shear imaging (SSI), in which successive focused pushing beams are used 

to build fast, two-plane shear waves through constructive interference of each sequential 

shear wave excited at locations through the depth of the tissue.61 Another method a series 

of unfocused pushing beams across the tissue width to generate a 2D elasticity map 

using shear waves generated in one experimental collection (comb-push ultrasound shear 

elastography (CUSE)).458 However, the unfocused pushing method limits this technique to 
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surface level tissues like tendon and muscle, and this method has yet to be used widely 

across musculoskeletal tissues.

There are distinct advantages and disadvantages to exciting shear waves using an acoustic 

push (Table 1). For example, acoustic pushes can excite a shear wave uniformly through 

the entire tissue thickness (i.e., a plane wave). Additionally, it is easier to excite a particular 

tissue or tissue region with the image guidance provided by ultrasonography. A disadvantage 

of ultrasonic excitation is that it may be burdensome to measure shear wave speeds in 

musculoskeletal tissues during movement. Additionally, the structure of the tissue of interest 

(e.g., muscle fiber pennation482) can cause scattering of the acoustic push and variable 

acoustic attenuation, which can lead to a reduction in displacement amplitude near the focal 

location.390 This is especially true of anisotropic tissues,188 where users may need to know 

the primary direction of anisotropy prior to shear wave excitation. However, acoustic pushes 

are the most feasible form of excitation in methods that use ultrasound to measure shear 

waves because it limits the components necessary to excite and measure in the system.

Mechanical Shear Wave Excitation

The second most common technique used to excite shear waves includes methods that use 

mechanical excitation to generate a shear wave in the tissue of interest. This method of 

excitation has most frequently been used in vivo. For instance, mechanical taps are the 

primary method of excitation for shear wave tensiometry, where shear waves are excited 

using a wearable piezoelectric tapper mounted superficial to the skin over the tissue of 

interest.162, 262, 337 Additionally, piezoelectric tappers have been used to excite shear waves 

in tissues ex vivo, such as tendon, ligament, and muscle.70, 314, 339 Mechanical excitation 

methods have also been used when monitoring shear waves using ultrasonic imaging. For 

example, shear waves excited by piezoelectric elements have been used to study the material 

properties of cancellous bone.35 Handheld mechanical shakers have also been used to 

excite shear waves in the Achilles and semitendinosus tendons, with the resulting shear 

wave speeds being measured using ultrasound.132, 465 Finally, mechanical excitation is a 

prominent method of shear wave excitation used during MRE.50, 58, 380, 391

There are distinct advantages and disadvantages to exciting shear waves using a mechanical 

excitation (Table 1). When measuring shear wave speeds during human movement, it may 

be more feasible to excite shear waves using a mechanical actuator162, 262, 337 than an 

acoustic push due to the smaller size and profile of a piezoelectric actuator compared to that 

of an ultrasound probe. Additionally, mechanical actuators provide a method of excitation 

that generates a 3D displacement field,199 can be high in amplitude and untethered, and 

is typically easier to adapt for compatibility with MRI,488 which is why they are used 

more frequently than ultrasound-generated acoustic pushes in MRE. A final advantage 

of mechanical actuators is their capacity to generate a greater magnitude of input motion/

force, which increases the amplitude of the shear wave and thus the signal-to-noise ratio 

of the measurement. A disadvantage of using a mechanical actuator is that it generates a 

complex excitation that contains both compressive and shear wave components.132 Hence, 

mechanical actuators may not excite a uniform shear wave through the depth of the 

tissue, which is why they are infrequently used in studies exploring spatial variations in 
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shear wave propagation measured using ultrasound. Additionally, noninvasive mechanical 

actuators are limited to applications of superficial tissues because the induced motion must 

pass through overlying tissue before exciting a shear wave in the tissue of interest. In 

conclusion, mechanical actuators are most feasible for exciting high-amplitude shear waves 

in superficial tissues, such as in wearable applications.

Ultrasound Shear Wave Measurement

Ultrasound is the most common clinical tool used to measure shear wave speeds in 

musculoskeletal tissues. To our knowledge, one of the first applications using this method 

for measuring shear wave propagation on musculoskeletal tissue was employed in animal 

tissue ex vivo. This study by Ramana et al. showed that shear wave speed measurements 

could be used to characterize material properties in striated leg muscle.418 Since then, 

shear wave elastography has seen widespread use in other applications and has emerged 

as the primary method for measuring shear wave speeds in vivo, where muscles are the 

most common musculoskeletal tissue studied. Using ultrasound, shear wave speeds can 

be measured in parallel and pennate muscles, such as the biceps brachii,4, 102, 170 biceps 

femoris,18, 71, 122 and soleus,287 in healthy skeletal muscle with unique functions (e.g., 

masseter45), and in skeletal muscles with unique fiber patterns (e.g., pectoralis major306). 

Hence, the versatility of ultrasound measurement of shear wave speed often makes it the best 

candidate for research groups interested in more than one type of muscle.

A likely source of variation in ultrasound-measured shear wave speeds (Figure 4) is the 

variability in the specific joint pose, subject demographics, and tissue health. This can easily 

be seen in studies focused on the Achilles tendon, which is a tissue widely studied with 

elastography because it is a large, superficial tendon. Ruan et al. noted that shear wave 

speeds can differ by 0.5–1.5 m/s between the relaxed and tensioned Achilles tendon, and 

that measured shear wave speeds can be greater in older groups of subjects.425 DeWall et 

al. reported shear wave speeds of 7.2 m/s in the plantarflexed and 12.0 m/s in the neutral 

Achilles tendon,147 while Karatekin et al. reported shear wave speeds of 6.5 m/s in the 

plantarflexed and 7.4 m/s in the neutral Achilles tendon, albeit in an ankle orthosis.259 

Dewall et al. also showed that tear thickness may alter measured shear wave speeds in an 

ex vivo tendon model.146 Finally, shear wave speeds in the unloaded Achilles, and thus 

material properties, are known to vary for subjects with tendinopathy.126, 151, 555 Together, 

these studies indicate that even tissues of the same type can have different shear wave 

speeds during different loading conditions and across different age groups, and that these 

differences are further exacerbated by tissue pathology, which can also alter the shear wave 

speed measured in the tissue.151 Thus, when comparing measured shear wave speeds to 

those from prior studies, it is important to identify a study with similar specific joint poses, 

subject demographics, and tissue health.

There are distinct advantages and disadvantages to measuring shear waves using ultrasound 

(Table 2). A distinct advantage of using this modality is the ability to measure shear wave 

speeds in deep tissues and in tissues with material properties that vary regionally.147 Further, 

the corresponding image is useful for guiding handheld measurements and can be used to 

verify measurement location relative to the tissue of interest and the direction of tissue 
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anisotropy in fibrous tissues. However, as stated previously, ultrasound systems that excite 

shear waves may have variable excitation patterns due to the structure of the tissue of 

interest.390, 482 Additionally, shear wave speeds and material properties measured using 

ultrasound elastography are dependent on tissue anisotropy,38,40,82,91,297 so users must make 

an educated assumption about tissue anisotropy with respect to transducer orientation prior 

to measurement to avoid misinterpretation of experimental results.32 Finally, when using 

ultrasound elastography on tissues undergoing high loads, especially in stiff, transversely 

isotropic tissues like the Achilles tendon, one must consider the tradeoff between spatial 

and temporal resolution within a set ultrasound system. A key example of this is a study 

by Martin et al., who found that shear wave speeds exceeding 12–14 m/s can saturate the 

ultrasound signal using a Supersonic Imagine Aixplorer system.336 These effects should be 

accounted for when designing an experimental setup using a clinical ultrasound system. 

In conclusion, measuring shear wave propagation using ultrasound is most feasible under 

experimental conditions that do not require both high spatial and temporal resolution (e.g., 

detailed measurements in static tissue, or low-resolution measurements in a dynamically 

loaded tissue).

Magnetic Resonance Imaging Shear Wave Measurement

In addition to ultrasound, MRI is an imaging modality commonly used to measure shear 

wave propagation in musculoskeletal applications. MRI offers an additional dimension 

to image, as well as improved resolution relative to ultrasound. To our knowledge, the 

first in vivo musculoskeletal application of MRE was performed by Dresner et al. on the 

biceps brachii, where they measured an increase in muscle stiffness with increasing muscle 

contraction.158 These results agreed with previously published stiffnesses determined via 

sonoelastography,311 suggesting that MRE is a viable method for determining material 

properties of muscle in vivo. The majority of studies using MRE in vivo have focused 

on lower extremity muscles, and several studies have reported a shear modulus of 2.1–4.6 

kPa in the vastus medialis at rest.59, 141, 142 However, this may change with pathology 

and contraction.57, 58 Basford et al. noted that the shear modulus was much higher for 

muscles in the shank;50 however, more recent studies in the soleus, gastrocnemius, and 

tibialis anterior have quantified a shear modulus lower than the quadriceps group (1.9–2.0 

kPa).203 Differences in measured material properties like these across studies could be due 

to experimental setups that have changed over time.

There are distinct advantages and disadvantages to measuring shear waves using MRE 

(Table 2). The first advantage is that MRE has a higher processing resolution than ultrasound 

elastography, which can provide a more detailed description of local shear wave speeds 

and thus material properties. Second, like ultrasound, MRE analysis can image deep tissues 

in the extremity of interest. A final advantage of MRE is that the tissue’s mechanical 

information obtained from MRE can be combined with structural information from 3D 

images reconstructed using MRI. Despite these numerous advantages, MRE is not used to 

measure fast longitudinal waves that have a frequency exceeding the maximum vibration 

frequencies observable in MRE (1 kHz).462 This disadvantage is why MRE is commonly 

used in unloaded muscle instead of loaded tendon or ligament. A second disadvantage is that 

with higher resolution comes longer collection and processing times,61 which is the reason 
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that the tissue of interest remains stationary during the collection time in most studies. In 

conclusion, MRE is most feasible for acquiring high resolution, local shear wave speed 

measurements in tissues under quasi-static loading.

Accelerometer Shear Wave Measurement

The recent use of accelerometers to measure shear wave speeds has enabled the 

characterization of tendon loading during dynamic human movement in vivo (i.e., shear 

wave tensiometry). Martin et al. used two accelerometers to measure the speeds of 

mechanically excited shear waves to track physiological loads in the Achilles, patellar, 

and biceps femoris tendons.337 Interestingly, they found that loading patterns observed 

in ex vivo porcine digital flexor tendons and in vivo human Achilles tendons (20–80 

m/s) could be predicted similarly using an analytical tensioned beam model. Such a 

development has enabled additional investigations into the aging Achilles tendon (e.g., 

Ebrahimi et al. 2020162) and the calibration of a subject-specific shear wave speed-stress 

relationship during walking or isometric loading (e.g., Keuler et al. 2019262 and Martin et al. 

2020338). Accelerometry has also been used to investigate shear waves produced by muscle 

contractions in the tibialis anterior muscle in vivo. Cescon et al. showed in healthy adults 

that shear waves propagating along muscle fibers were an order of magnitude slower than 

those in tendon (2.4 ± 1.1 m/s),94 which may be due to the relationship between the shear 

wave speed and axial tissue stress.337

There are several advantages and disadvantages to measuring shear wave propagation using 

accelerometers (Table 2). The primary advantage is that the small size of accelerometers 

make it simple to obtain wearable measurements. The small size together with the higher 

dynamic range of these sensors compared to the imaging modalities makes it possible to 

measure higher shear wave speeds that arise during functional activities (Figure 4). For 

example, accelerometers have been used to track shear waves in tendons loaded up to 48 

MPa.262 The primary disadvantage of accelerometers is that shear wave speed measurements 

can only be performed in superficial tissues. Additionally, it is more challenging to perform 

regional measurements with accelerometers than with one of the imaging measurement 

methods. This is because accelerometers do not have image-guidance, thus it is challenging 

to relate the position of accelerometers to a precise location on the tissue, or in a direction of 

principal tissue anisotropy if not otherwise known. In conclusion, the use of accelerometers 

is most feasible for global measurements of shear wave propagation on superficial tissues.

Laser Doppler Vibrometer Shear Wave Measurement

Laser Doppler vibrometry is an established non-contact measurement method for 

monitoring the transverse motion of elastic materials.424 This method provides non-contact 

measurements at specific locations and has primarily been used in quasi-static ex vivo 

applications. Previous studies have used this method to measure shear wave speeds 

in collateral ligaments and flexor tendons ex vivo (ranges = 40–130 and 30–100 m/s, 

respectively).70, 339 Both studies concluded that the relationship between shear wave speed 

and stress is consistent with an analytical beam model.337 Laser Doppler vibrometers have 

also been used to investigate muscle contractions in vivo. Salman et al. demonstrated that 

mechanically excited shear waves, with speeds between 4 and 12 m/s, can be measured 
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using laser Doppler vibrometers in the human bicep during isometric contractions up to 60% 

of maximum voluntary contraction.438, 439 Salman and colleagues went on to perform the 

same measurement on Achilles tendons in vivo, reporting shear wave speeds ranging from 

10 to 40 m/s for varying ankle flexion.437 Together, these studies demonstrate the utility 

of using laser Doppler vibrometers to monitor tissue motion and track shear waves using 

non-contact measurements directly on the tissue or skin surface.

There are several advantages and disadvantages to measuring shear wave propagation using 

laser Doppler vibrometers (Table 2). Like accelerometers, laser Doppler vibrometers have a 

higher dynamic range than ultrasound and MRI, which allow shear waves to be measured 

during functional tissue loading and in tissues with high moduli.70, 155, 156, 337, 437–439 

Additionally, laser Doppler vibrometers are a non-contact measurement method, which 

enables users to measure shear wave speeds without regard for contact dynamics or inertial 

effects between the sensor and the tissue surface. The primary disadvantage of laser Doppler 

vibrometers is that they are sensitive to focal distance, which limits their use to tissues that 

primarily move in a single plane (e.g., axial loading ex vivo). Additionally, laser vibrometers 

require a sufficient intensity of light to reflect back to the laser origin,424 meaning that users 

may be limited by signal-to-noise ratio in applications where retro-reflective tape cannot 

be used. Finally, like when using ultrasound or accelerometers, users must understand the 

material anisotropy prior to aligning lasers to avoid misinterpretation of shear wave speeds. 

In conclusion, using laser Doppler vibrometers to measure shear wave propagation is most 

feasible in ex vivo, single plane loading experimental conditions.

Conclusions

With the advent of new sensors and enhancements to existing imaging modalities, using 

shear wave propagation to investigate musculoskeletal tissue mechanics is more readily 

accessible. As such, the contents of this systematic review demonstrate that the use of 

shear waves to characterize the mechanics of musculoskeletal tissues has proliferated, 

with over half of the included studies being published in the last three years (Figure 7). 

Among excitation methods, acoustic pushes and mechanical taps are particularly useful in 

accessing deep tissues and superficial tissues during motion, respectively. Various setups 

that combine one of these excitation methods with ultrasound, MRI, accelerometers, or 

laser Doppler vibrometers can be used to determine shear wave speeds and thus material 

properties or loading for a wide variety of musculoskeletal tissues. Given the multitude of 

possible combinations of excitation and measurement technologies, researchers can use the 

advantages and disadvantages of different combinations presented in this review to identify 

the optimal method for a given application.
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Figure 1: 
The two primary methods used to excite shear waves in musculoskeletal tissues are 

(a) acoustic pushes, such as an acoustic radiation force impulse (ARFI) (shown), 

supersonic shear imaging (SSI), and comb-push ultrasound shear elastography (CUSE) 

based techniques, and (b) mechanical taps using electrodynamic, piezoelectric elements, or 

electromagnetic shakers (shown).
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Figure 2: 
The four primary methods used to measure shear waves are (a) ultrasound, (b) magnetic 

resonance imaging (MRI), (c) accelerometers (Accel), and (d) laser Doppler vibrometers 

(LDVs).
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Figure 3. 
PRISMA flow chart showing the number of articles included and removed at each stage 

of the search process (US = Ultrasound, MRI = Magnetic Resonance Imaging, and LDV 

= Laser Doppler Vibrometers). Note that the numbers may differ from the sum from each 

excitation and measurement category because some papers: 1) used more than one excitation 

or measurement method, 2) do not state which excitation or measurement method was used, 

and/or 3) appear in both excitation and measurement categories.
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Figure 4. 
Scatter plots show the mean shear wave speeds reported in muscle, tendon, ligament, 

cartilage (including both articular and fibrocartilage), bone, and tissue-mimicking phantoms. 

These reported values are further divided by the measurement method used (i.e., ultrasound 

(US), magnetic resonance imaging (MRI), accelerometers (Accel), and laser Doppler 

vibrometers (LDV)) and the experimental condition (i.e., in vivo, ex vivo, in situ). Solid 

horizontal lines indicate the mean of all measurements within a condition. The number of 

conditions/subgroups across all studies (ns) is indicated in the x-axis label. Mean values 

exceeding measurements from other studies by over two orders of magnitude were excluded 

from the scatter but can be found in Tables S2-5.
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Figure 5. 
Scatter plots show the mean shear moduli reported in muscle, tendon, ligament, cartilage 

(including both articular and fibrocartilage), bone, and tissue-mimicking phantoms. These 

reported values are further divided by the measurement method used (i.e., ultrasound (US), 

magnetic resonance imaging (MRI), accelerometers (Accel), and laser Doppler vibrometers 

(LDV)) and the experimental condition (i.e., in vivo, ex vivo, in situ). Solid horizontal 

lines indicate the mean of all measurements within a condition. The number of conditions/

subgroups across all studies (ns) is indicated in the x-axis label. Mean values exceeding 

measurements from other studies by over two orders of magnitude were excluded from 

the scatter but can be found in Tables S2-5. Note that Accel was left in the legend 

for consistency, but there were no papers that reported shear modulus measured with 

accelerometers.
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Figure 6. 
Scatter plots show the mean elastic moduli reported in muscle, tendon, ligament, cartilage 

(including both articular and fibrocartilage), bone, and tissue-mimicking phantoms. These 

reported values are further divided by the measurement method used (i.e., ultrasound (US) 

and magnetic resonance imaging (MRI)) and the experimental condition (i.e., in vivo, 

ex vivo, in situ). Solid horizontal lines indicate the mean of all measurements within a 

condition. The number of conditions/subgroups across all studies (ns) is indicated in the 

x-axis label. Mean values exceeding measurements from other studies by over two orders of 

magnitude were excluded from the scatter but can be found in Tables S2-5. Note that Accel 

and LDV were left in the legend for consistency, but there were no papers that reported 

elastic modulus measured with either modality.
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Figure 7. 
Pie charts and bar graphs show the rapidly increasing number of papers that met our 

search criteria, especially within the last decade. Overall, ultrasound was the most widely 

used among measurement techniques, with MRI being the second most widely used. Laser 

Doppler vibrometers have emerged as a measurement technique only within the last decade 

(2010s).
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Table 1:

Advantages and disadvantages of shear wave excitation methods

Advantages Disadvantages

Ultrasound 
Excitation

•Can excite a shear wave through the entire thickness
•Can excite deep tissues
•Easily compatible with ultrasound elastography

•Acoustic scattering due to tissue geometries (e.g., pennation)
•Difficult to perform during movement

Mechanical 
Excitation

•Easy to use during movement
•Compatible with all measurement methods
•Can excite large-amplitude shear waves

•Generates multiple types of waves (e.g., shear, compressional)
•Cannot excite deep tissues
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Table 2:

Advantages and disadvantages of shear wave measurement methods

Advantages Disadvantages

Ultrasound •Permits shear wave speed measurements across 
entire tissue depth
•Can measure in deep tissue

•Limited temporal resolution on most systems
•Burdensome to use during functional tasks
•Need to know tissue anisotropy relative to transducer orientation

Magnetic Resonance 
Imaging

•Easy to pair shear wave speed measurements 
with 3D geometry acquisition
•Non-contact
•Can measure in deep tissues

•Burdensome to use during functional tasks
•Long processing time

Accelerometers •Works well during movement
•High dynamic range

•Must be in contact with tissue surface or on skin over tissue
•Limited to superficial tissues
•Sensitive to design of sensor holder

Laser Doppler 
Vibrometers

•Non-contact
•Point-and-shoot
•High dynamic range

•Difficult to perform in vivo measurements, especially during 
movement
•Sensitive to focal distance and light scatter
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Table 3:

Ranges of mean values of reported shear wave speeds. Values reported can be visualized in Figure 4. Mean 

values from two studies143,418 were excluded as the reported shear wave speeds in muscle occur on the scale 

of mm/s and km/s, respectively (results from all studies can be found in Tables S2-5).

Shear Wave Speed [m/s]

In Vivo Ex Vivo In Situ Phantom

Low High Low High Low High Low High

Muscle

US 0.7–9.7 1.6–16.9 1.9–10.0 − − − − −

MRI 1.0–4.1 − 4.7–4.7 − − − − −

Accel 2.4 − − − − − − −

LDV 4.0–4.5 12.2–12.4 − − − − − −

Tendon

US 0.5–21.0 4.0–6.1 1.8–28.0 5.0–36.0 2.9–7.1 4.9–9.9 − −

MRI − − − − − − − −

Accel − 34.1–85.6 − − − − − −

LDV − − − − − − − −

Ligament

US 1.7–29.7 5.1–5.2 − − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − 128.0 − − − −

Cartilage

US 2.9–3.5 − 5.3 5.3 − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Bone

US − − 1074–3623 − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Phantom

US − − − − − − 1.2–7.0 −

MRI − − − − − − 2.9 −

Accel − − − − − − − −

LDV − − − − − − 24.2–165.0 −

Abbreviations used: US = Ultrasound, MRI = Magnetic Resonance Imaging, Accel = Accelerometers, and LDV = Laser Doppler Vibrometers.
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Table 4:

Ranges of mean values of reported shear moduli. Values reported can be visualized in Figure 5. Mean values 

from one study418 were excluded as the reported shear moduli in muscle occur on the scale of GPa (results 

from all studies can be found in Tables S2-5).

Shear Modulus [kPa]

In Vivo Ex Vivo In Situ Phantom

Low High Low High Low High Low High

Muscle

US 0.6–205.5 1.1–122.8 1.6–240.0 − 38.2–72.4 61.3–129.3 − −

MRI 1.3–54.0 − 4.2–23.5 − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Tendon

US 9.5–563.5 − 8.4–14.6 67.1–89.9 126.7–392.0 − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Ligament

US 31.1–879.6 − − − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Cartilage

US 3.1–40.7 4.5–36.7 31.9 − − − − −

MRI − − 1083–7714 − − − − −

Accel − − − − − − − −

LDV − − − − 700–1000 − − −

Bone

US − − 3×106−6.7×106 − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Phantom

US − − − − − − 3.8–64.6 −

MRI − − − − − − 2.9–28.5 −

Accel − − − − − − − −

LDV − − − − − − 0.8–0.9 −

Abbreviations used: US = Ultrasound, MRI = Magnetic Resonance Imaging, Accel = Accelerometers, and LDV = Laser Doppler Vibrometers.
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Table 5:

Ranges of mean values of reported elastic moduli. Values reported can be visualized in Figure 6. Mean values 

from one study418 were excluded as the reported elastic moduli in muscle occur on the scale of GPa (results 

from all studies can be found in Tables S2-5).

Elastic Modulus [kPa]

In Vivo Ex Vivo In Situ Phantom

Low High Low High Low High Low High

Muscle

US 2.0–145.6 3.3–268.2 37.0–106.8 − 50.5–63.9 − − −

MRI 11.4–16.0 − 71.0 − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Tendon

US 22.6–722.4 − − − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Ligament

US 24.5–230.6 − − − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Cartilage

US 17.1–50.3 − − − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Bone

US − − 6.5×106−25.8×106 − − − − −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Phantom

US − − − − − − 52.5–187.6 −

MRI − − − − − − − −

Accel − − − − − − − −

LDV − − − − − − − −

Abbreviations used: US = Ultrasound, MRI = Magnetic Resonance Imaging, Accel = Accelerometers, and LDV = Laser Doppler Vibrometers.
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