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Introduction

Both type 1 diabetes (T1DM) and type 2 diabetes (T2DM) 
disrupt normal glucose regulation. Regardless of diabetes 
type, people with diabetes commonly struggle with the 
effects of hyper- and hypoglycemia, which can increase 
long-term risk for cardiovascular disease and other comor-
bidities.1 As an example, recurrent hypoglycemia can reduce 
the body’s awareness of hypoglycemia and hinder self-regu-
lation.2 Therefore, an important research goal in diabetes is 
to understand and monitor glycemic patterns. Traditionally, 
glycemic control has been assessed using simple composite 
measures such as hemoglobin A1c (HbA1c), which repre-
sents average blood glucose levels from the past two to three 
months, or fasting blood glucose. Additional information can 
be obtained when patients self-monitor their blood glucose 
by multiple fingersticks, typically one to six times per day; 

yet this self-monitoring often results in incomplete and 
potentially inaccurate data.3

The advent of continuous glucose monitoring systems 
(CGMS) has led to the availability of detailed glucose data. 
CGMSs capture a person’s interstitial glucose at regular time 
intervals, typically once every five or 15 min, for up to two 
weeks. Continuous monitoring of glucose levels can give a 
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Abstract
Background: With the development of continuous glucose monitoring systems (CGMS), detailed glycemic data are now 
available for analysis. Yet analysis of this data-rich information can be formidable. The power of CGMS-derived data lies 
in its characterization of glycemic variability. In contrast, many standard glycemic measures like hemoglobin A1c (HbA1c) 
and self-monitored blood glucose inadequately describe glycemic variability and run the risk of bias toward overreporting 
hyperglycemia. Methods that adjust for this bias are often overlooked in clinical research due to difficulty of computation 
and lack of accessible analysis tools.

Methods: In response, we have developed a new R package rGV, which calculates a suite of 16 glycemic variability metrics 
when provided a single individual’s CGM data. rGV is versatile and robust; it is capable of handling data of many formats from 
many sensor types. We also created a companion R Shiny web app that provides these glycemic variability analysis tools 
without prior knowledge of R coding. We analyzed the statistical reliability of all the glycemic variability metrics included in 
rGV and illustrate the clinical utility of rGV by analyzing CGM data from three studies.

Results: In subjects without diabetes, greater glycemic variability was associated with higher HbA1c values. In patients with 
type 2 diabetes mellitus (T2DM), we found that high glucose is the primary driver of glycemic variability. In patients with type 
1 diabetes (T1DM), we found that naltrexone use may potentially reduce glycemic variability.

Conclusions: We present a new R package and accompanying web app to facilitate quick and easy computation of a suite 
of glycemic variability metrics.
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more detailed understanding of a patient’s level of glycemic 
control beyond traditional composite measures. The high 
density of data arising from CGMS, however, poses formi-
dable data analysis and interpretation

challenges. Yet, these data have the potential to improve 
our understanding of glycemic profiles, predict development 
of diseases and health conditions, and improve clinical care 
for individuals with diabetes.

Many metrics have been proposed in the diabetes litera-
ture12-24 to summarize an individual’s glucose profile, with 
specific emphasis on quantifying glycemic variability over 
one to two weeks. Glycemic variability, loosely defined as 
fluctuations in glucose levels within a day or across several 
days,4 is related to many adverse events including poorer 
quality of life5 and increased risk of cardiovascular events,6 
hypoglycemia, and mortality.7

Brown et al8 note that standard measures of glycemic pro-
file such as mean glucose, standard deviation (SD), and coef-
ficient of variation (CV) fail to adequately describe glycemic 
variability and can be biased towards overreporting hyper-
glycemia. Methods such as low and high blood glucose index 
(LBGI/HBGI), average daily risk range (ADRR), and glyce-
mic risk assessment diabetes equation (GRADE) adjust for 
this bias but are often neglected in clinical research due to 
difficulty of computation.9 Many of the glycemic variability 
metrics proposed in the literature are complicated to com-
pute and are typically not included in CGM reports. To date, 
there remains a paucity of publicly available tools that 
researchers and clinicians can use to calculate glycemic vari-
ability metrics.

In this paper, we demonstrate the use of a new R package 
(rGV) and web-based tool which calculates a suite of 16 met-
rics when provided CGM data from a single individual. 
While previous work has shown that many of these metrics 
are highly correlated and thus provide overlapping informa-
tion,10 we present a large list of metrics so that researchers 
may choose which to focus on. While other software such as 
EasyGV,11 GLU,12 cgmanalyzer,13 and cgmanalysis14 can 
also calculate these metrics, they do not provide these met-
rics in an easy-to-use web-based tool that requires no prior 
coding knowledge. To our knowledge only one other web-
based CGM analysis tool, iglu,40 exists, but with different 
functionality than rGV. We illustrate the clinical utility of 
rGV by analyzing CGM data from three clinical studies in 
participants across the glycemic spectrum. We hypothesize 
that a wide range of glycemic variability metrics, including 
those not commonly used in clinical research, have relation-
ships with clinical health outcomes.

Materials and Methods

Study Samples

CGM data were collected during three separate studies per-
formed at the University of Minnesota (described below: 

NCT03129581, NCT03481530, NCT01053078); all studies 
were approved by the University’s Human Subjects 
Protection Program. The participants of the three studies 
(n = 54 in total) represent a broad range of glycemic levels 
and variability—subjects included individuals without dia-
betes as well as participants with T1DM or T2DM. Glucose 
was monitored by Freestyle Libre Pro sensors (15-minute 
inter-sample interval) in two studies (NCT03129581, 
NCT03481530), and by Dexcom Seven Plus sensors (5-min-
ute inter-sample interval) in one study (NCT01053078).

The first dataset comes from an ongoing study (2018-pres-
ent) on long-term hypoglycemic risk (NCT03481530), where 
CGM data were collected from 18 subjects with T2DM (ten 
females, eight males) prior to any intervention. Participants 
had an average age of 59.5 years (SD 12.3 years) and an aver-
age HbA1c of 7.6% (1.3%). All participants were assessed as 
having either high (n = 10) or low (n = 8) five-year risk for 
hypoglycemia as determined by risk models developed from 
the ACCORD trial.15 The risk groups did not show signifi-
cant differences in HbA1c (p = .095) or fructosamine 
(p = .076). Each subject wore two Freestyle Libre Pro sensors 
simultaneously, one on each arm, for two weeks. All subjects 
were blinded to readings from the sensors. We compared dif-
ferences in glycemic variability at the start of the study 
between the high- and low-risk groups and estimated the 
test-retest variability for each metric between the two sensors 
simultaneously worn by each subject.

The second dataset was collected from 2017 to 2019 in 
the SeeFood Study (NCT03129581), where 22 obese sub-
jects without self-reported diabetes were randomized to 
either time-restricted eating (n = 13) or unrestricted eating 
(n = 9) for 12 weeks.16 For this analysis, we used the blinded 
Freestyle Libre results (up to two weeks) obtained prior to 
randomization. We examined whether participants without 
diabetes but with dysglycemia had different glucose variabil-
ity metrics than those without diabetes and without dysgly-
cemia. Three definitions of dysglycemia were considered:

1. HbA1c based: Participants with HbA1c at or above 
5.7% are considered dysglycemic (n = 7), and those 
with HbA1c below 5.7% are euglycemic (n = 15).17

2. Homeostatic model assessment of insulin resistance 
(HOMA-IR) based: Participants with HOMA-IR 
scores18 at or above 2.5 mg/dL are dysglycemic 
(n = 8), and those with HOMA-IR scores below 
2.5 mg/dL are euglycemic (n = 13).19

3. Matsuda based: Participants with Matsuda Index20 at 
or above 4 are dysglycemic (n = 9), and those with 
Matsuda Index below 4 are euglycemic (n = 11).

The final dataset comes from a pilot study (2009-2014) to 
assess the use of naltrexone as a treatment for impaired 
awareness of hypoglycemia in individuals with T1DM 
(NCT01053078).21 Subjects were randomized to receive 
either oral naltrexone (n = 6) or placebo (n = 8) for four 
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weeks. Each subject wore a Dexcom Seven Plus CGM sen-
sor for the week immediately preceding treatment and again 
for the final week of the four-week treatment period. Subjects 
were blinded to the monitor’s glucose readings. The effect of 
naltrexone on glucose variability is of interest; therefore, we 
will compare the between-group differences in glycemic 
variability from the week preceding treatment to glycemic 
variability in the final week of treatment.

Data Analysis

Data analysis was performed using R software with package 
rGV. R is a free, user-developed environment and language 
for statistical computing and graphics. R is available as Free 
Software under a General Public License in source code 
form; it compiles and runs on Windows, MacOS, and a wide 
variety of UNIX and UNIX-like platforms (https://www.r-
project.org/about.html). Users can expand R’s functionality 
by writing new functions and packages; instructions on how 
to access rGV are given at the end of this article. This section 
will briefly describe the capabilities of this package.

Our package, rGV, is flexible to the structure of the CGMS 
data that the user wishes to input. Given a CSV file, the func-
tion “read.CGM” returns a data frame with a time stamp and 
glucose value for each entry in the original data. With the 
proper inputs, this function can handle a broad range of data 

formats, including issues such as extraneous header lines, 
additional data columns, incomplete observations, a wide 
range of date and time formats, censored data (ie, “Low” or 
“High” in place of a numeric value), observations where the 
CGMS is performing calibration, and data sets from multiple 
sensors in one file. This flexibility makes the package capa-
ble of handling data from different CGM devices, such as 
Freestyle Libre Pro or Dexcom.

After data are transformed to the correct format using the 
read.CGM function, the package comes with a number of 
functions that calculate measures of glycemic variability 
proposed in the diabetes literature. For a complete list of 
these metrics and their formulas, see the technical appendix. 
These metrics fall into three broad categories.

1) Simple functions of the mean or SD of the glucose 
data. These include SD, CV, the glucose management 
indicator22 (GMI), and the J-index.23

2) Deviation in glucose levels over specific time win-
dows. Examples are continuous overall net glycemic 
action24 (CONGA), lability index25 (LI), mean of 
daily differences26 (MODD), mean absolute glu-
cose27 (MAG), distance travelled,28 and glycemic 
variability percentage29 (GVP).

3) Frequency and/or magnitude of extreme glucose val-
ues: LBGI/HBGI,30-32 M-value,33 GRADE,34 area 

Figure 1. Illustration of the rGV app. Users upload data and specify time inputs in the fields in the left screen. Users specify units  
and thresholds for CGM metrics in the top-center fields. Results in tabular and plot forms are provided in the center of the screen.  
Abbreviation: CGM, continuous glucose monitoring.

https://www.r-project.org/about.html
https://www.r-project.org/about.html
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under the curve (AUC), mean amplitude of glycemic 
excursions35 (MAGE, calculated using the Baghurst 
algorithm36), ADRR,37 time spent in a user-specified 
range38 (TIR), and number of episodes per day. The 
GV() function will return the entire suite of metrics 
for a given glucose trajectory.

The GV() function will return the entire suite of metrics for a 
given glucose trajectory.

The package also contains several functions for creating 
visualizations of the data. Once the data are read in using 
read.CGM, one can easily create plots of blood glucose over 
time, changes in blood glucose over specified time intervals, 
and “symmetrized” blood glucose values (used in the calcu-
lation of LBGI/HBGI and ADRR) over time.

In addition to the rGV package in R, we have built a web 
app through the R Shiny interface that allows the user to per-
form glycemic variability analyses without R. The app, 
located online at https://shiny.biostat.umn.edu/GV/, offers 
all of the same options as the R package and returns the same 
outputs. For clinical researchers unfamiliar with R or other 
programming languages, the app is a user-friendly way to 
read-in and analyze CGM data. Figure 1 shows a screenshot 
of the app after a dataset has been read in.

Statistical Analysis

To assess reliability of glycemic variability metrics, we cal-
culate the test-retest CV for each metric within each subject. 
This is equal to the SD of two repeated measures on the same 
subject divided by their mean. A small test-retest CV indi-
cates that the value of a metric is consistent across arms. 
Two-sample t-tests are used to test for group differences. P 
values are unadjusted for multiple comparisons unless other-
wise specified. P values less than .05 were considered statis-
tically significant.

Results

Test-Retest variability

We used the data from the hypoglycemia risk study 
(NCT03481530) to analyze the reliability of the CGMS data 
(Table 1) . Participants (n = 18) wore two CGM sensors, one 
on each arm, giving us two data sources for each individual 
over the course of the two-week study. For each participant, 
we calculate the full suite of glycemic variability metrics 
twice—once for each arm—and then calculate the test-retest 
CV. We note that this reliability analysis is specific to the 
Freestyle Libre Pro devices used in this study. The most reli-
able metrics (metrics with the smallest test-retest CV) 
included GMI (test-retest CV = 0.03), CV (0.04), SD (0.04), 
CONGA with n = 1 (0.05), MODD (0.05), and mean glucose 
(0.05). Metrics that emphasize glycemic excursions—such 
as AUC (0.56), % TIR<54 (0.54) and % TUR>250 (0.31)—
were the least reliable.

Relevance to Clinical Studies

SeeFood Study (NCT03129581)

In this study of participants without self-described diabetes 
(NCT03129581), many significant differences were found 
between subjects classified into dysglycemic and euglyce-
mic groups by their HbA1c values (Table 2). Subjects with 
HbA1c greater than or equal to 5.7 (n = 7) had significantly 
higher mean glucose (P = .011), J-index (P = .015), HBGI 
(P = .046), and GMI (P = .011) than subjects with HbA1c 
below 5.7 (n = 15). Dysglycemic subjects also had signifi-
cantly lower LBGI (P = .005), experienced fewer episodes of 
hypoglycemia (blood glucose below 70 mg/dL for at least 
20 minutes; P = .015) and spent less time with glucose levels 
below 100 mg/dL (% TIR70-99, P = .035). There were no sig-
nificant differences between groups in any of the metrics 

Table 1. Test-Retest Variability of CGM Metrics in 
Hypoglycemia Risk Study (n = 18).

Measure42 Test-retest CV

GMI 0.03
Coefficient of variation 0.04
Standard deviation 0.04
CONGA (n=1) 0.05
MODD 0.05
Mean glucose 0.05
ADRR 0.07
MAG 0.08
Lability index 0.09
J-index 0.09
GRADE 0.09
GRADE hyper % 0.09
M-value (R = 120 mg/dL) 0.09
MAGE 0.09
% Time in range70-180 0.10
GVP 0.11
% Time in range181-250 0.16
HBGI 0.19
GRADE Eu % 0.20
Distance travelled 0.23
% Time in range>250 0.31
Number of events below 55 mg/dL 0.37
Number of events below 70 mg/dL 0.40
% Time in range54-69 0.47
GRADE hypo % 0.53
% Time in range<54 0.54
LBGI 0.55
Area under the curve, threshold 

140 mg/dL (min × mg/dL)
0.56

Abbreviations: ADRR, average daily risk range; CGM, continuous glucose 
monitoring; GMI, glucose management indicator; GRADE, glycemic risk 
assessment diabetes equation; GVP, glycemic variability percentage; HBGI, 
high blood glucose index; LBGI, low blood glucose index; MAG, mean 
absolute glucose; MAGE, mean amplitude of glycemic excursions; MODD, 
mean of daily differences.

https://shiny.biostat.umn.edu/GV/
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when the groups were determined by Matsuda or HOMA-IR 
instead of HbA1c (data not shown).

Hypoglycemic Risk Study (NCT03481530)

In this study, all participants had T2DM and were stratified 
into high or low five-year risk for hypoglycemia based on 
risk models developed from the ACCORD trial. Differences 
in HbA1c (P = .095) and fructosamine (P = .076) between the 
high- and low-risk groups were not significant (Table 3). 
However, there were significant differences between groups 
in several of the glucose variability metrics mentioned above: 
CV (P = .029), SD (P = .013), MAGE (P = .012), and MODD 
(P = .022). In all three metrics, the high-risk group showed 
greater glycemic variability than the low-risk group. 
Regardless of risk group status, short-term hypoglycemia 
was infrequent, as shown by the TIR metrics. The low-risk 
group spent an average of 4.47% of the time with glucose at 
or below 70 mg/dL, while the high-risk group spent only 
3.96% of the time in this range. On the other hand, the high-
risk group experienced more hyperglycemia, with high-risk 

participants spending 42.45% of the time with blood glucose 
above 180 mg/dL and low-risk participants spending only 
29.64% of the time in the same category.

Naltrexone Study (NCT01053078)

Unlike the previously mentioned studies (which used 
Freestyle Libre Pro sensors), this study (NCT01053078) 
used Dexcom devices to gather CGM data. In this study of 
individuals with T1DM and impaired awareness of hypogly-
cemia, glucose was monitored for one week both before 
treatment randomization (naltrexone or placebo) and in the 
final week of the four-week treatment regime. We compare 
the differences between the pre-treatment and post-treatment 
glucose variability metrics within the naltrexone and placebo 
groups. Perhaps in part due to the small sample size of the 
pilot study, there were no significant results after adjusting 
for multiple comparisons with a Holm correction39 (results 
not shown). However, there is some evidence that the nal-
trexone group saw a larger decrease in poor glycemic out-
comes than the placebo group did (Table 4). This is shown by 

Table 2. Comparison of CGM Metrics Between Euglycemic and Dysglycemic Groups in SeeFood Study.

Measure [mean (SD)]42 HbA1c < 5.7 (n = 15) Hba1c ≥ 5.7 (n = 7) P value (bold<.05)

HbA1c (%) 5.23 (0.33) 5.96 (0.10)  
Mean glucose (mg/dL) 88.64 (5.99) 100.35 (8.66) .011
Standard deviation (mg/dL) 15.56 (3.21) 19.65 (5.62) .111
CONGA1 16.64 (3.45) 19.6 (3.38) .082
Lability index 287.73 (118.6) 393.51 (127.67) .091
J-index 10.91 (1.53) 14.53 (2.89) .015
LBGI 3.4 (1.36) 1.85 (0.89) .005
HBGI 0.06 (0.06) 0.3 (0.25) .046
GRADE 1.24 (0.81) 1.49 (0.64) .457
GRADE hypo % 0.39 (0.23) 0.18 (0.13) .011
GRADE Eu % 0.54 (0.19) 0.6 (0.16) .476
GRADE hyper % 0.07 (0.07) 0.22 (0.17) .049
MODD 14.39 (3.33) 16.69 (4.55) .263
MAGE 24.93 (7.55) 34.20 (13.49) .130
ADRR high 14.09 (4.21) 13.92 (4.28) .930
M-value (R = 120 mg/dL) 11.28 (2.94) 9.68 (1.77) .130
MAG 21.41 (3.36) 26.32 (14.18) .399
Coefficient of variation 0.18 (0.04) 0.19 (0.05) .410
Area under the curve, threshold 140 mg/dL (min × mg/dL) 3630.2 (2822.8) 10578.5 (7985.7) .062
% Time in range70-99 70.62 (10.51) 51.1 (19) .035
% Time in range100-139 19.98 (10.49) 39.88 (18.13) .027
% Time in range140-180 1.15 (1.13) 4.96 (4.51) .067
GMI 5.43 (0.14) 5.71 (0.21) .011
GVP 10.96 (3.01) 18.43 (18.77) .340
Distance travelled 5250.13 (1633.1) 8428.86 (10063) .440
Number of episodes below 54 for at least 20 mins 0.12 (0.17) 0.05 (0.07) .196
Number of episodes below 70 for at least 20 mins 1.01 (0.81) 0.38 (0.3) .015

Abbreviations: ADRR, average daily risk range; CONGA, continuous overall net glycemic action; CGM, continuous glucose monitoring; GMI, glucose 
management indicator; GRADE, glycemic risk assessment diabetes equation; GVP, glycemic variability percentage; hbA1c, hemoglobin A1c; HBGI, high 
blood glucose index; LBGI, low blood glucose index; MAG, mean absolute glucose; MAGE, mean amplitude of glycemic excursions; MODD, mean of daily 
differences.
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Table 4. Group Comparisons of CGM Metrics for Naltrexone Study.

Measure [mean (SD)]42
Treatment group difference 

(n = 6)
Placebo group difference 

(n = 8) t statistic
Unadjusted 

P value

ADRR −4.39 (6.21) −0.55 (15.6) −0.632 .542
Area under the curve −1170.75 (4044.63) 533.88 (2992.56) −0.869 .408
CONGA1 −3.07 (9.95) −1.4 (10.65) −0.303 .768
Coefficient of variation −0.05 (0.08) −0.05 (0.09) 0.018 .986
GMI 0.07 (0.58) 0.36 (1.12) −0.628 .543
GRADE −1.49 (2.52) 1.93 (6.1) −1.433 .183
GRADE Eu % 0.03 (0.03) −0.01 (0.07) 1.369 .202
GRADE hyper % 0.09 (0.23) 0.03 (0.15) 0.569 .585
GRADE hypo % −0.12 (0.25) −0.02 (0.13) −0.902 .396
HBGI −0.63 (3.01) 2.1 (8.3) −0.861 .411
J-index −2.03 (14.43) 5.49 (29.3) −0.632 .541
LBGI −1.72 (3.14) −0.24 (2) −1.013 .341
Lability index −387.8 (883.32) −30.91 (1437.14) −0.573 .578
M-value (R = 120 mg/dL) −5.69 (6.67) 2.53 (18.41) −1.165 .273
MAG −7.74 (14.53) 8.03 (30.62) −1.278 .229
MAGE 0.4 (30.16) 0.74 (46.0) −0.016 .987
Mean glucose (mg/dL) 2.98 (24.15) 15.08 (46.82) −0.628 .543
MODD −5.86 (12.86) −4.46 (28.65) −0.116 .91
Number of episodes below 54 mg/dL −0.25 (1.23) −0.26 (0.49) 0.034 .974
Number of episodes below 70 mg/dL −0.49 (1.14) −0.5 (0.72) 0.008 .994
Standard deviation (mg/dL) −4.66 (15.92) −3.78 (20.36) −0.091 .929
% Time in range<70 −4.14 (8.7) 0.65 (5.78) −1.169 .275
% Time in range70-99 −2.32 (2.77) −2.41 (2.64) 0.062 .951
% Time in range100-139 7.35 (14.48) −6.17 (26.93) 1.206 .253
% Time in range140-180 1.97 (11.75) 1.81 (5.41) 0.031 .976
% Time in range>180 −2.86 (5.52) 6.11 (23.09) −1.06 .32
GVP −12.07 (17.02) 7.77 (35.59) −1.381 .196
Distance travelled 397.83 (3391.43) −229.75 (2397.39) .387 .708

Abbreviations: ADRR, average daily risk range; CONGA, continuous overall net glycemic action; CGM, continuous glucose monitoring; GMI, glucose 
management indicator; GRADE, glycemic risk assessment diabetes equation; GVP, glycemic variability percentage; hbA1c, hemoglobin A1c; HBGI, high blood 
glucose index; LBGI, low blood glucose index; MAG, mean absolute glucose; MAGE, mean amplitude of glycemic excursions; MODD, mean of daily differences.

Table 3. Comparisons of HbA1c, Fructosamine, and CGM Metrics Between High- and Low-Risk Groups in Hypoglycemic Risk Study.

Measure [mean (SD)]42
High five-year hypoglycemia risk 

(n = 10)
Low five-year hypoglycemia risk  

(n = 8)
P value  

(bold<.05)

HbA1c (%) 8.11 (0.89) 7.03 (1.48) .095
Fructosamine (mmol/L) 320.1 (47.6) 282.3 (36.9) .076
Coefficient of variation 0.33 (0.07) 0.26 (0.06) .029
Standard deviation (mg/dL) 56.73 (9.36) 38.67 (15.17) .013
MODD 54.43 (10.16) 37.17 (16.07) .022
MAGE 109.03 (23.04) 71.39 (30.33) .012
Number of events <54 mg/dL per day 0.49 (1.31) 0.29 (0.46) .66
Number of events <70 mg/dL per day 1.05 (1.72) 1.67 (2.18) .053
% Time in range<54 1.9 (5.35) 0.51 (0.8) .439
% Time in range54-69 2.06 (3.59) 3.96 (5.09) .389
% Time in range70-180 53.6 (19.44) 65.89 (32.53) .366
% Time in range181-250 26.96 (7.42) 20 (22.19) .419
% Time in range>250 15.49 (18.63) 9.64 (14.55) .465

Additional glycemic variability measures which were not significantly different (P > .05) between the two groups include: CONGA, lability index, J-index, LBGI, HBGI, GRADE, 
ADRR, MAG, MAGE, M-value, GMI, mean glucose.
Abbreviations: ADRR, average daily risk range; CONGA, continuous overall net glycemic action; CGM, continuous glucose monitoring; GMI, glucose management indicator; 
GRADE, glycemic risk assessment diabetes equation; GVP, glycemic variability percentage; hbA1c, hemoglobin A1c; HBGI, high blood glucose index; LBGI, low blood glucose 
index; MAG, mean absolute glucose; MAGE, mean amplitude of glycemic excursions; MODD, mean of daily differences.
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the fact that, while not reaching significant levels, most of 
the mean differences comparing pre- and post-treatment 
variability metrics are negative (whereas most of the placebo 
group mean differences are positive), indicating that the nal-
trexone group saw larger decreases in (among others) 
GRADE, MAG, M-value (with R = 120 mg/dL), LBGI, % 
TIR<54 and % TIR>250 than the placebo group. We also use 
this data to compare the values of rGV’s functions to those of 
the cgmanalysis package, as shown in Table 5.

Discussion

In this study, we have illustrated that quantifying glycemic 
variability from CGM data represents an opportunity to 
expand our knowledge of glycemic control. Unfortunately, 
the current practice is to quantify glycemic control by HbA1c 
or fasting glucose and glycemic variability by simple mea-
sures such as SD and CV. While easy to calculate, these met-
rics present the risk for bias toward hyperglycemia. Metrics 
that avoid such biases and provide a more detailed snapshot 
of glycemic variability, such as LBGI, HBGI, GRADE, and 
others have often been underused clinically because of the 
difficulty of computing them.5 To ease the computational 
burden of performing such in-depth analysis of CGM data, 
we presented a new R package rGV and accompanying web 
app that allow for easy computation and visualization of a 
host of glycemic variability metrics.

Our work complements the current literature. While there 
is an existing Excel macro that performs much of the same 
analysis (EasyGV11), the rGV package is much more flexible 
to different data formats and has the ability to read-in raw 
CSV output from a sensor. rGV also computes several met-
rics that are not available in EasyGV, including GMI, CV, 
and TIR.

For reference, we used the naltrexone data to compare the 
results relative to the cgmanalysis package for the nine metrics 
calculated by both packages (CONGA1, CV, GMI, HBGI/
LBGI, J-index, MAGE, MODD, and SD). The results can be 
found in Table 5. For all metrics except HBGI/LBGI, correla-
tion between rGV and cgmanalysis was above 0.975, with 
small differences explained by rounding in cgmanalysis out-
put. The discrepancy in HBGI/LBGI values arises from differ-
ences in calculation, with rGV following the formula described 
by Kovatchev et al.30 Both packages find the glucose transfor-
mation f(BG) and then the quadratic risk function 
r(BG) = 10*f(BG).2 LBGI is the mean of rl(BG), where rGV 
lets rl(BG) = r(BG) if f(BG) is negative and 0 otherwise. rGV 
follows this process correctly while the cgmanalysis package 
instead lets LBGI be the mean of all positive rl(BG) values.

The new iglu R package40 has many of the same function-
alities as rGV and is another excellent tool for assessing gly-
cemic variability in CGM data. However, we believe that 
rGV is more flexible when reading in CGM data, as rGV can 
(1) explicitly handle many different date-time formats, (2) 
exclude marked “calibration” rows from analysis, (3) replace 
“high” and “low” glucose indicators with specific values, 
and (4) separate out multiple sensors whose data comes from 
a single file.

Using rGV, we made the following clinical observations. 
In patients without diabetes, we observed that greater glyce-
mic variability was associated with higher HbA1c values. In 
patients with T2DM, we found that high glucose is a primary 
driver of glycemic variability, confirming the findings of 
Rodbard,41 among others. This implies that care of patients 
with high short-term glycemic variability should focus on 
ameliorating the risks of hyperglycemia in the future. In 
patients with T1DM and impaired awareness of hypoglyce-
mia, we found some evidence that naltrexone may reduce 
glycemic variability. This suggests an avenue for possible 
further research. Our findings show that metrics of glycemic 
variability beyond SD and CV can illuminate new informa-
tion about glycemic control.

The strengths of this work include the following: the rGV 
package and the accompanying web app will allow future 
researchers to quickly and easily compute a wide range of 
glycemic variability metrics that can facilitate more in-depth 
research into glycemic trajectories and their impact on health 
outcomes.

Limitations exist. While computing a large list of metrics 
can offer a full picture of a patient’s level of glycemic con-
trol, there is also the possibility that clinicians may be over-
whelmed by the sheer amount of information, much of which 
is overlapping. Furthermore, hypothesis testing involving 
many metrics will need to be adjusted for multiple compari-
sons in order to avoid highly increased rates of Type I error. 
Like any other kind of data analysis, care must be taken to 
ensure the clinical relevance of the described findings. 
Finally, recent work by Moscardo et al42 shows that some 
metrics are much better at discriminating between different 

Table 5. Correlations Between rGV and cgmanalysis14 Metrics 
for Naltrexone Study Data.

Metric42 Correlation

Coefficient of variation 1.000
CONGA1 0.999
GMI 0.999
HBGI 0.942
J-index 1.000
LBGI* 0.828
MAGE 1.000
MODD 0.978
Standard deviation 1.000

*The correlation for LBGI is low because of differences between the 
two software packages in calculation of the metric. rGV following 
the formula described by Kovatchev et al.31 Both packages find the 
glucose transformation f(BG) and then the quadratic risk function 
r(BG) = 10*f(BG).2 LBGI is the mean of rl(BG), where rGV sets 
rl(BG) = r(BG) if f(BG) is negative and sets rl(BG) = 0 otherwise. In 
contrast, the cgmanalysis package sets LBGI to be the mean of all positive 
rl(BG) values (ie, it does not average in 0s for the non-positive values).
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subjects in small samples, work that is potentially of interest 
in interpreting the output of rGV.

Conclusion

In conclusion, we have presented a new R package and 
accompanying web app to facilitate quick and easy computa-
tion of a suite of glycemic variability metrics, some of which 
have been under-utilized by the research community due to 
their computational complexity.

Summary

We present a new R package and accompanying web app to facili-
tate quick and easy computation of a suite of glycemic variability 
metrics.
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