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Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has

improved our understanding of cancer immunology, but complex spatial analyses of

tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass

cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor

and immune cell architecture and correlate it to clinicopathological features such as cell of

origin, gene mutations, and responsiveness to chemotherapy. To understand the poor

response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC

data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences

in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor

cells and identified tumor-centric subregions of immune activation, immune suppression,

and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us

to identify markers such as CXCR3, which are associated with penetration of immune cells

into immune desert regions, with important implications for engineered cellular therapies.

This is the first study to integrate tumor mutational profiling, cell of origin classification,

and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the

single-cell level. We demonstrate that, far from being histopathologically monotonous,

DLBCL has a complex tumor architecture, and that changes in tumor topology can be

correlated with clinically relevant features. This analysis identifies candidate biomarkers

and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination

treatment strategies in immuno-oncology and cellular therapies.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma.
Although many patients are cured with standard chemo-immunotherapy, up to 40% of patients with
DLBCL ultimately succumb to their disease.1 The composition of the tumor microenvironment (TME) has
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Key Points

� We use IMC to
demonstrate that
among homogenous
tumors such as
DLBCL, there are
pockets of tumor cells
that escape immune
penetration.

� We identify TME
features that correlate
with chemo-resistance
and mutational
signatures and identify
an immunological
structure in DLBCL.
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emerged as an important predictor of DLBCL outcome in gene
expression profiling studies.2-5 Additional studies have highlighted
the importance of individual populations of immune cells such as
CD4 and CD8 T cell, macrophages, dendritic cells, and regular reg-
ulator T cells (TREG), but none of these studies have simultaneously
profiled the TME in a comprehensive manner.4,6-11 Recent methodo-
logical advances now allow highly multiplexed single-cell immuno-
phenotypic characterization of TME in cancer, but studies focused
on DLBCL have not been reported.12-15

Early attempts to subclassify DLBCL relied on gene expression
or immunohistochemistry, and these approaches identified 2
major subgroups with prognostic significance: a favorable ger-
minal center B-cell (GCB) type and an unfavorable activated
B-cell, or non-GCB, type.16,17 More recent attempts using
DNA mutations, structural variants, and/or gene expression in
combination have revealed 5 or 6 subtypes.18,19 However, inte-
gration of mutational analysis with functional and spatial param-
eters derived from DLBCL TME analyses has not yet been
reported.

Programmed cell death receptor 1 ligand (PD-L1) is a member of
the B7 family that is expressed on tumor cells and is a predictor of
poor survival in multiple epithelial and hematologic malignancies,
including DLBCL.20-23 Blockade of PD-1/PD-L1 signaling with
monoclonal antibodies such as nivolumab and pembrolizumab in
patients with relapsed/refractory Hodgkin lymphoma has resulted in
high and durable clinical response rates.24-26 Unlike in Hodgkin lym-
phoma, the response rate to PD-1/PD-L1 blockade in relapsed/
refractory DLBCL has been disappointingly low (#10%), even
though PD-L1 is expressed in a significant subset of DLBCL and is
associated with poor prognosis.27 The reasons for this discrepancy
between PD-L1 expression and the failure of PD-1/PD-L1 pathway
inhibition in relapsed/refractory DLBCL represent a major knowl-
edge gap in the field.

In this study, we characterize the TME in 33 cases of DLBCL,
including the cell types, frequency, functional state, and spatial
topology using imaging mass cytometry (IMC).28 We perform spatial
analysis of the DLBCL tumor architecture to reveal immunologic
subregions of tumor immune interaction at single-cell resolution.
Finally, using our previous study of Hodgkin lymphoma, we identify
key differences between the Hodgkin lymphoma and DLBCL TME
components that might explain their differential responses to
immune checkpoint inhibitor (ICI) therapy.29

Methods

Image analysis pipeline

The ion counts for each metal-labeled antibody were compensated
and converted to OME-TIFF images.30,31 Pixel hot spots for each
antibody were removed using the 95th percentile threshold across.32

Image segmentation

Segmentation was performed using probability maps from cropped
images and pixel classification trained on selected channels corre-
sponding to background/nuclei/cytoplasm.32-34

Table 1. Clinicopathological characteristics of the cohort

Parameters n (%)

Age, mean 6 SD (range) 49 6 15 (20-82)

Sex

F 9 (27)

M 24 (73)

Ethnicity

Black 1 (3)

Asian 5 (15)

Caucasian 2 (6)

Hispanic 25 (76)

LDH

Not elevated 16 (49)

Elevated 17 (51)

IPI score

0-2 23 (70)

3-5 10 (30)

EBER

Positive 6 (18)

Negative 27 (82)

Hans COO

GCB 17 (51)

Non-GCB 16 (49)

Mutation status 22 (67)

TP53 8 (24)

BCL2 3 (9)

BCL6 2 (6)

CD79b 6 (18)

SGK1 1 (3)

MYD88.L265P 2 (6)

NOTCH1 3 (9)

NOTCH2 3 (9)

EZH2 4 (12)

9p24 chromosomal gain 8 (24)

Stage

I/II 15 (45)

III/IV 18 (55)

Response status

CR 22 (67)

Non-CR 7 (21)

Unknown 4 (12)

Treatment

Chemo-immunotherapy 29 (88)

Not done/LTF 4 (12)

Double-hit tumors were excluded from this data set.
COO, cell of origin; CR, complete response; EBER, Epstein-Barr virus-encoded

small RNAs; GCB: germinal center B cell; LDH, lactate dehydrogenase serum levels;
LTF, lost to follow-up; non-GCB, non-germinal center B cell; REF, refractory to
treatment.
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Figure 1. IMC analysis of DLBCL TME identifies heterogeneity of immune infiltration and cellular subtypes. (A) The complete single-cell network uniform

manifold approximation and projection (UMAP) depicts the manifold approximation for each cell and shows the lineage marker intensity correspondence to each manifold.

UMAP (left) depicts the identified tumor, CD4, CD8, TREG, macrophage, and endothelial components generated by PhenoGraph clustering. Each PhenoGraph subpopulation

is denoted with a color organized by TME compartments related to the primary lineage marker. The adjacent UMAP (right) depicts the primary lineage marker (min/max)

intensity of each major phenotype. The corresponding heatmap depicts the min/max normalized expression intensity summarized by major cell components. (B) Of the
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Statistical analysis

Phenotype classification used hyperbolic arc-sine transformation
and Min/Max scaling relative to the 99th percentile.14,35 Phenotype
expression for annotations used mixed-effects linear model and
Z-scale standardization with Benjamini-Hochberg (BH) test correc-
tions (a-level 0.05).

Analysis workflow

Image quality control used histoCAT.36 Spatial interaction parame-
ters were n 5 1000, a-level 5 0.01, r 5 15 mm (https://github.
com/BodenmillerGroup/neighbouRhood). Neighborhoods of at least
4% were compared between groups via analysis of variance
(ANOVA; BH q , 0.05).

Phenotype identification

Phenotype components/states applied meta-clustering over lineage,
inducible and morphological features (k1 5 45, k2 5 15).

TMA/replicate batch analysis

Kullback-Leibler divergence scores were computed for replicate
regions of interest (ROIs) using TME proportions across tissue
microarray (TMA). Phenotype association between treatment refrac-
tory, IPI, and double expressor profile

One multivariate linear model was fit using model parameters
including treatment refractory, each Chapuy coordinate signature
(C1-C5), high IPI ($ 3), sex, double expressor, and replicates cor-
responding to each participant. Top features were identified using
BH p adjustment.37

BCL2 and MYC protein were measured by immune-histochemistry.
BCL2 overexpression was measured using a 40% cutoff judged by
IHC, and MYC overexpression was determined as 70% threshold.
Patients classified as double expressors were identified as BCL2
above the 40% and MYC above the 70% threshold.

Phenotype association with mutation signatures

(C1-C5)

The molecular variants of a limited gene panel (Cancer Genetics
Inc.) were obtained in 22 subjects and used in concordance with
the list recently reported.19 The overlapping mutations allowed for
the reconstruction of each signature (ie, 9/14 top-ranked mutations
in our panel overlapped with C1, 1/1 per C2, 9/10 per C3, 15/24
per C4, and 6/10 per C5). Statistical testing using the described
linear model design identified significant differences of cluster abun-
dance and expression (BH q , 0.05).

Cross-cohort analysis

The integration analysis between cohorts Z-standardized each ROI
and adjusted for the batch effect. The Pearson x2 test was used to
assess homogeneity of expression by randomly sampling (n 5 100
iterations)38 and cross-validated using 2-way ANOVA. Rigorous sta-
tistical testing of phenotypic enrichments used b regression models
for case proportions and enriched spatial neighborhoods (P , .01)
were compared using ANOVA (BH q , 0.05).

Spatial classification

The tumor-centric neighborhood used 5-NN (centroid) average dis-
tances that were meta-clustered (k1 5 45, k2 5 15).39 The spatial
modeling of the tumor topologies included all cases except case 20
because this case had approximately 97% immune cells and less
than 5% tumor cells. Spatial regularity testing applied the Clark-
Evans aggregation index and the comparisons used Student t-test
(Tukey test a-level 0.05). Tumor-centric topological classes required
10% prevalent across cohort. The genetic signature association
with topological proportions used logistic regression.

Results

IMC analysis of DLBCL TME identifies heterogeneity

of immune infiltration and cellular subtypes

To comprehensively quantify the cellular and spatial heterogeneity in
DLBCL, we designed an IMC panel to broadly cover T cells, B cells,
macrophages, and structural markers as well as markers for immune
activation and/or exhaustion (supplemental Table 1). We performed
IMC on 41 representative tumor samples from 33 cases that were
selected from a previously described cohort based on adequacy of
residual tissue for analysis (supplemental Figure 1).40 IMC-derived
features were correlated with clinical features such as cell-of-origin
(COO) by IHC Hans criteria, presence of mutations, and responses
to chemotherapy (Table 1; supplemental Figure 1; supplemental Fig-
ure 2). In the cohort, 22 (67%) of the patients achieved a sustained
complete response to rituximab-based chemoimmunotherapy,
whereas 7 (21%) were primary refractory (REF) or relapsed within
1 year. Four patients did not receive chemotherapy and were
excluded from response to therapy analysis.

IMC produces images similar to immunohistochemistry or immuno-
fluorescence with the added advantage of increased multiplex stain-
ing. The images were segmented using pixel classification training
into single cells yielding on average 16,889 (SD 5 4,393) cells per
ROI, as previously described (supplemental Figure 3).32,34,36 Cellu-
lar expression of cell lineage, inducible states, and spatial features

Figure 1 (continued) 39.5% of cells composing the TME, the composition was dominated by CD4, CD8, and macrophages, which make up 92.3% of the immune

microenvironment. In a multivariate beta model adjusted for each Chapuy signature class, cell-of-origin, and high IPI ($ 3), CD4 T cell-relative TME proportion was 2.88

(95% CI, 1.26-6.57; P 5 .012) times increased among cases in C4 coordinate signature compared with cases not in C4. CD8 T-cell TME proportion was 1.96 (95% CI,

1.11-3.48; P 5 .02) times increased among C2 cases compared with other signatures, whereas TREG TME proportions were 0.40 (95% CI, 0.19-0.86; P 5 .019) times

that of those not in C2. These data suggest, holding other terms as constant, that there is heterogeneity of TME abundances associated with molecular signatures. (C) Left:

Initial pathologist review revealed various degrees of immune infiltrate in DLBCL. Pseudo-colored images representative of cases with low (top), medium (middle), and high

(bottom) degree of immune infiltrate. Right: Cases ranked in order of absolute proportion of immune cells (9.42%-90.14%). See Supplemental Figure 7 for all cases.

(D) Analysis of the TME composition showed marked heterogeneity in the distribution of CD4, CD8, TREG, and macrophages across cases, such that the proportion of CD4

increases with the increasing proportion of immune infiltrate, but the proportion of macrophages decreases with the increasing proportion of immune infiltrate. (E) Negative

correlation between the proportion of CD4 T cells and that of macrophages. The x-axis denotes CD4 T-helper case proportions and the y-axis denotes the macrophage case

proportions.
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Figure 2. Association between genetic mutations, cell of origin, and abundance of subcellular phenotypes in DLBCL TME. (A) Subphenotypes were created
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15 microns and a permutation test (1000; P , .01) comparing significant spatial colocalizations (cyan), or significant avoidance (black) for each pairwise subpopulation as a

total sum of signed interaction scores. (Right) Heatmap depicts the heterogeneity state/inducible marker expression (Z-score). The left-most adjacent graphs include cluster
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were hierarchically clustered with Phenograph to identify major phe-
notype clusters such as endothelial, TREG, CD8 T cells, CD4 T cells,
macrophages, and B-cell tumors (Figure 1A).

Hierarchical meta-clustering across ROIs first identified 14 meta-
clusters which were well distributed across cases and quality con-
trol analysis ensured that cluster annotations were appropriately
defined (supplemental Figures 4-6). The major cell components
across the 33 cases included 58.2% malignant B cells, 39.5%
TME, and 2.32% endothelial cells (Figure 1B). Within the TME, we
identified 7.70% TREG, 24.3% CD8 T cells, 28.8% macrophages,
and 39.2% CD4 T cells. Similar to previous reports, macrophage
proportions were 3.96% (P 5 .069) higher in non-GCB compared
with GCB cases.41 In tumors with low immune infiltration (Figure
1C-D; supplemental Figure 7) macrophages were the predominant
immune cell type, whereas in cases with greater immune infiltrate,
CD41 cells predominated. This resulted in a significant negative
association between the macrophage and CD41 cell proportions
(Pearson R 5 -0.75, P , .001) across the 33 cases (Figure 1E) as
was similarly reported for solid tumors.12

Association of molecular classification, chemo

responsiveness, and spatial resolved cell

phenotypes in the TME

We next performed subclassification of each major cell component
by including inducible markers and morphological features, which
identified the functional states of tumor and immune subphenotypes
in the TME (Figure 2A). We then identified spatial interactions
between the various subcluster pairs using a distance radius of
15 mm and an a-level of 0.01 to determine attraction/repulsions.
We associated these TME subclusters and their spatial interac-
tions with IPI, the 5 Chapuy genetic subtypes (C1-C5), double
expressor phenotype, and response to chemotherapy to gain
insights into the biological significance of the observed tumor and
immune heterogeneity.

To aid in interpretation, we grouped subclusters with similar
marker expression patterns and assigned putative functional
labels to these groups. We pooled subclusters into functional
groups based on phenotypic similarity observed in hierarchical
clustering and expert review (supplemental Figure 8A; supple-
mental Methods).

Having grouped TME elements into functional groups, we then
looked for associations and spatial interactions that corresponded
with Chapuy molecular subgroups C1-C5, and clinical features
such as IPI and refractory disease (Figure 2A). For example,
baseline TREG (4) abundance had significant positive association
with C3 (BH adjusted P , .01), negative association with C2
(BH q , 0.01), and had significant spatial attraction with inflamma-
tory and noninflammatory tumors (tumor clusters 3, 4, 10; P , .01).

PD-L11endothelial cells (endothelial cluster 4) had significant posi-
tive association with C3 (BH q , 0.01), REF (BH q , 0.05), and
formed spatial neighborhoods with inflammatory tumor (tumor
cluster 10; P , .01) while avoiding noninflammatory tumors (3;
P , .01).

Proliferative endothelial cells (2) had significantly positive association
with C2 (BH q , 0.01) and negative association with double
expressor phenotype (BH q , 0.05) with overall spatial attractions
to noninflammatory tumors (tumor cluster 2,4; P , .01). Inflamma-
tory tumor cluster 6 had a positive association with C2 (BH
q , 0.05) and predominantly homotypic spatial attractions with
inflammatory tumors (tumor cluster 6; P , .01), and noninflamma-
tory tumor (2,4; P , .01), followed by PD-L11M2 MAC (MAC
cluster 2; P , .01).

Among those in C2, the proportions of CD8 T cells were 1.96
(95% confidence interval [CI], 1.11-3.48; P 5 .02) times increased
comparing participants in other mutational signatures, whereas
exhausted/inflammatory CD8 subtypes (cluster 6) had a significantly
positive association with C4 (BH q , 0.05) with spatial colocaliza-
tion with noninflammatory (clusters 2,3; P , .01) and inflammatory
tumors (6; P , .01). Generally, participants with C4 genetic signa-
ture had CD4 T-cell TME proportions increased 2.88 (95% CI,
1.26-6.57; P 5 .012) times that among those in other Chapuy sig-
natures but did not identify any specific CD4 subtype associated
the molecular signatures.

To understand the clinical significance of these clusters, we looked
for associations between markers and response to chemotherapy.
M2-MAC (6) had a significantly positive association with REF (BH
q , 0.05), whereas M1-MAC (3) had a significantly negative asso-
ciation with REF (BH q , 0.05). We failed to observe statistically
significant linear association between macrophage abundances and
Chapuy molecular groups.

Refractory participants showed significantly increased PD-L1, PD-L2,
ICOS, VISTA, and pSTAT3 compared with responder participants
(t test P , .05; supplemental Figure 8B). Additionally, highly suppres-
sive TREG phenotype showed significantly increased pSTAT3 intensity
(BH q , 0.03) in refractory subjects but decreased Ki67 (BH q ,

.03) compared with responders (Figure 2B). Participants with increas-
ing pSTAT3 expression on highly suppressive TREG observed signifi-
cantly shorter time to the event of death (log hazards rate 5.38 [95%
CI, 0.65-10.10]; P 5 .026), whereas an increase of Ki67 intensity on
highly suppressive TREG showed a protective trend (Figure 2C).

Spatial analyses reveal differences in tumor

topology between GCB and non-GCB

We next quantified the level of spatial clustering across each case,
using the Clark-Evans aggregation index, a measure of spatial

Figure 2 (continued) and REF subjects (logFC 5 10.9, BH q 5 0.033). Proliferative endothelial cells (2) had increased abundance in C2 (logFC 5 20.9, BH

q 5 5.1e-03) and inflammatory tumor (6) (logFC 5 22.7, BH q 5 0.024). Exhausted/inflammatory CD8 (6) had increased abundance (logFC 5 29.4, BH q 5 0.024).

The expression intensity for each sample was standardized into a Z-scores, and the subsequent phenotype cluster expression profiles are depicted. (B) The volcano

representation of the multivariate linear model identified pSTAT3 as statistically significantly overexpressed on highly suppressive TREG comparing refractory to responders

(BH q 5 0.0295), similarly Ki67 on the same phenotype was underexpressed (BH q 5 0.0295). The shapes of these 2 markers correspond to the adjusted significance

legend (BH q , 0.05) used in cluster abundance hypothesis testing. (C) The multivariate Cox proportional hazards model indicates the x-axis as the log hazards estimate,

and the y-axis are the Treg family included in the model (95% CI). For each patient, the relative case proportions for a given phenotype, and the average pSTAT3/Ki67

expression (Z-score) corresponding to the given phenotype, were fit into the Cox hazards model using these patient level features.
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organization.42,43 Here, we used the standardized Clark-Evans index to
compare the B cells in reactive lymph nodes (RLN) to the malignant B
cells by Chapuy molecular clusters or cell of origin by Hans criteria
(Figure 3). Compared with the highly organized B cells in a reactive

lymph node, none of the 5 Chapuy molecular clusters showed a signif-
icant difference in spatial organization, although coordinate signatures
in C1 had increased spatial regularity (Tukey P 5 .06) and in C2 had
increased spatial irregularity (Tukey P 5 .06). When compared with
GC and non-GC defined by Hans criteria, we observed that non-GC
tumors demonstrated less spatial organization when comparted to GC
(Tukey P 5 .058), and significantly less compared with RLN (Tukey
P 5 .03) (Figure 3).

Tumor topology

Having observed spatial heterogeneity among tumor cells, we aimed
to further establish distinct tumor-centric areas to investigate the
spatial relationship with immune phenotypes. To better quantify the
single-cell topology of DLBCL, we developed an algorithm for tumor
cell-TME distance classification that subclusters a population based
on distances to neighboring cell types (Figure 4A). We tested it
using synthetic images and B cells in normal lymph nodes (supple-
mental Figures 9 and 10) and then applied it to the tumor cells in
DLBCL. Using this approach, we identified 9 spatial clusters, or
tumor neighborhoods, based on tumor distance to the TME (Figure
4B). The rarest topology was class “a”, or “tumor_a” (0.93% preva-
lent), whereas tumor_f (21.1%), tumor_d (15.3%), and tumor_c
(15.2%) were the most common (Figure 4C-D). From visual inspec-
tion, it was clear that some tumor cells were dispersed among
immune cells such as tumor_b and tumor_e (Figure 4C, inset 1),
whereas other tumor cells formed tight layered clusters such as
tumor_d, tumor_f, and tumor_i (Figure 4C, inset 2).

The 9 tumor spatial clusters were tested for association with
COO and after adjusting for IPI. Tumor_e (odds 5 4.47 [1.49-22.23],
P 5 .026), was significantly positively associated with non-GCB (sup-
plemental Figure 15A). Next, fitting multiple logistic regression models
of Chapuy cluster onto tumor topology case proportions accounting
for IPI and COO, the odds of C4 and C3 DLBCL subtype increased
3.33 (95% CI, 1.43-13.99; P 5 .025) and 2.45 (95% CI, 1.15-7.23;
P 5 .046) times for an increase in tumor_e proportions, respectively.
Tumor_i was associated with a 2.76 (95% CI, 1.31-8.85; P 5 .029)
fold increase in C2 DLBCL subtype. Upon omitting COO from the
logistic models, tumor_e and tumor_i remained associated with C4
(odds 5 2.71; 95% CI, 1.32-7.44; P 5 .018), and C2 (odds 5 2.14;
95% CI, 1.14-5.85; P 5 .0496), respectively. Tumor_e was marginally
associated with C3 after dropping COO (odds 5 1.97; 95% CI,
1.01-4.78; P 5 .074). Tumor_c and tumor_d did not observe an asso-
ciation with genetic subtypes.

We next grouped the 9 tumor spatial clusters into 3 zones, inspired
by the geological structure of the earth: dispersed (tumor_b,
tumor_a, tumor_e, and tumor_g), crust/mantle (tumor_c, tumor_h,
tumor_f, and tumor_i), and core (tumor_d) We then plotted the
number of significant spatial attractions or repulsions (P , .01)
between each tumor spatial cluster and the major immune clusters
(Figure 4E; supplemental Figure 11A).36 CD8 cells were enriched
in the crust and dispersed regions and depleted in the core and
mantle regions while macrophages were most enriched in the tran-
sition (crust) regions. CD4 cells were found in the immune rich
areas with CD8 cells or in the immune desert regions but were
depleted in regions with high macrophages.

We then examined the depletion or enrichment of specific immune
phenotypes in each region (Figure 4F; supplemental Figure 11B).
The dispersed tumor regions were heterogeneous and enriched for
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Figure 3. Spatial clustering reveals differences in tumor topology that

associate with COO and TME abundance. (A-C) The spatial distribution

corresponding to B cells were examined in reactive lymph nodes, and in NGCB/GCB

tumor environments (A, B, and C, respectively). By visual examination, heterogeneous

spatial arrangements of tumor differed by COO classification (GCB/NGCB). The Clark-

Evans aggregation index quantifies the level of spatial regularity (index . 1), or clustering

(index , 1), and was applied to the B-cell topology classes in reactive lymph node

(RLN) and DLBCL (GCB and NGCB). (D) The Clark-Evans index was standardized and

compared against the RLN. This indicated the B-cell topology classes in non-GCB

cases were significantly more irregularly clustered compared with RLN (Tukey P 5 .03),

whereas GCB had spatial regularity similar to RLN (Tukey P 5 .47). There was marginal

difference comparing GCB with NGCB (Tukey P 5 .058). This indicates that the spatial

distribution of the malignant B cells in GCB tumors more closely resembles the B-cell

architecture of normal follicles, whereas malignant B cells in non-GCB tumors were more

dispersed. A further multivariate linear model identified that NGCB tumors were

significantly more clustered compared with GCB cases after adjusting for each Chapuy

molecular signature (C1-C5), and IPI (P 5 .034, estimate 5 20.1974; 95% CI, -0.374

to -0.012). Representative ROIs of highest spatially organized RLN (left, Clark-Evans

Index 5 1.16), most organized GCB case (middle, Clark-Evans Index 5 1.29), and least

spatially organized in NGCB (right, Clark-Evans Index 5 0.54).
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Figure 4. Spatial clustering reveals differences in tumor topology that associate with COO and TME abundance. (A) Neighborhood analysis of cells describes

the local arrangement of the TME within the tumor area. The metric is calculated for each cell by locating the 5 nearest cells belonging to the immune TME, locating the

centroid of those nearest neighbors, and measuring the distance from the centroid to the original cell. A smaller distance metric indicates that a cell is embedded within the

immune TME; a longer distance denotes exclusion of tumor cells from immune cells. (B) The tumor neighborhoods were constructed relative to their distance to the TME,

which can identify themes of immune activity or nonactivity within distinct tumor-centric regions. The histogram showing the ordered average distance from each tumor
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Figure 4 (continued) topology class to its nearest immune cells. Tumor topology classes were ordered by their distance/proximity to the TME (microns). Tumor_d (average

centroid distance to immune [dist] 5 47.9 mm) was defined as the “core” based on its furthest distance to immune cells. Tumor_f (dist 5 30.9 mm), followed by tumor_i

(dist 5 24.1 m) were next nearest clusters to immune cells and were labeled as the “mantle.” Tumor_c (dist 5 18.9 mm) and tumor_h (dist 5 18.9 mm) represented the

boundary to the immune interface and subsequently labeled as “crust” because they were adjacent to both the TME and the mantle regions. Tumor_g (dist 5 13.8 mm),

tumor_e (dist 5 13.7 mm), tumor_a (dist 5 13.2 mm), and tumor_b (dist 5 12.2 mm) had the shortest distance to nearest to TME but formed unorganized clusters and were

labeled as “dispersed.” The x-axis denotes the topology cluster, and the y-axis denotes the average centroid distance to the TME (microns). (C) Intratumor spatial

heterogeneity is depicted in a representative annotated image from case 26. The first inset shows tumor classes that are more intermixed with the immune cells. The second

inset shows tumor spatial arrangement structures similar to the geological topography, with tumor_d situated at the “core,” tumor_f at the inner “mantle,” tumor_i at the outer

“mantle,” and tumor_c at the “crust” of tumor clusters. (D) Nine classes of tumor topology were identified and were well distributed across cases, ordered from immune-cold

to immune-hot. The y-axis denotes case proportion (%), and x-axis denote the cases. All cases were included that had less than 79% immune cell sample proportion

present; case 20 was excluded in this analysis because it had approximately 97.5% immune cells with very sparse tumor cells present indicating that this topological model

describes cases with at most 79% TME proportion. (E) Within the tumor-centric zones, the total significant attractions/repulsions (P , .01) of each major cell component

(CD4/CD8/MAC/TREG) were summed in each tumor topology. The x-axis denotes the topological regions ordered by distance to the TME from closest (tumor_b) to furthest

(tumor_d). The y-axis denotes the total sum of the significant signed interactions (P , .01). Positive values indicate attraction, whereas negative values indicate significant

repulsions. The CD4 were enriched within tumor core and dispersed regions but depleted in the mantle neighborhoods, whereas CD8 were depleted in the core and mantle

regions but enriched in the crust and dispersed regions. Macrophages were found in the dispersed and crust regions but decreased in the mantle and core areas. The total

signed interactions of each TME compartment significantly differed across tumor topologies (ANOVA P 5 1.14e-02, F 5 1.71, DF 5 32) indicated significant heterogeneity

of TME interaction across each topological zone. The line graph summarizes the trends of the observed spatial estimates depicted, with 95% CIs in Supplemental Figure

11A,F. Within each tumor-centric neighborhood, the total case proportion per subphenotype with significant neighborhood interaction (radius of interaction 5 15 micron,

P , .01) was computed. The x-axis denotes interactions for each tumor topology such that “a”/“b”/“e”/“g” were summarized into as “dispersed” topology, the “c”/“h”/“I”/“f”

were summarized into as “mantle/crust” topology, and tumor “d” as the “core.” The y-axis denotes the case proportion of statistically significant interactions from the tumor

topology (reference) to the TME phenotype (P , .01) and corresponding 95% CI. Supplemental Figure 11B depicts the TREG subtypes. There was a statistically significant

association between the total CD4/CD8/macrophage/TREG spatial interactions per the mantle/core and crust/dispersed regions (P 5 .019, x2 5 9.3, df 5 3). CD8 T cells

and macrophages were 0.33 (95% CI, 0.15-0.61; P 5 .001) and 0.44 (95% CI, 0.19-0.91; P 5 .037) times as likely to form neighborhoods in the core/mantle compared

with the crust/dispersed regions. (G) The tumor core had the fewest significant interactions with the immune phenotypes (radius of interaction 5 15 microns). Averaging the

number of significant attractions between the CD4 family level phenotypes and the tumor core (P , .01), there is a significant association with corresponding CD4

phenotype average CXCR3 (Z-score) expression level (P 5 .00198, adjusted R2 5 0.9941, CXR3 estimate 5 2.94; 95% CI, 2.37-3.50). The x-axis denotes the average

CXCR3 (Z-score) expression corresponding to CD4 family phenotypes. The y-axis denotes the average number of significant interactions between the CD4 family and the

tumor core (P , .01). Both the reference CD4 interaction with the tumor core, and the reference tumor core interaction with the CD4 phenotype directions of spatial

interactions were averaged.
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terminally exhausted CD8, active/proliferating CD8, and M1-MAC,
suggesting a robust immune response. The tumor crust/mantle
region was dominated by macrophages with some CD8 and
depleted for activated/early exhausted CD4 cells. The most striking
finding from the spatial analysis was a correspondence between
CD4 cells’ CXCR3 coexpression, and the average number of signifi-
cant spatial attractions with the tumor core (P 5 2e-03, R2 5 0.99;
Figure 4G). This suggests that CXCR3 plays a role in granting CD4
cells entry into otherwise restricted tumor sites and suggests a pos-
sible target for enhancing immune cell penetration into the tumor
core regions.

Cross-cohort analysis shows differences in

proportion and functional states of immune cell

subsets between DLBCL and Hodgkin lymphoma

PD-1/PD-L1 immune checkpoint inhibitors have demonstrated very
poor response rates (,10%) in relapsed DLBCL; however, they
achieve close to 90% response rates in Hodgkin lymphoma, a
related aggressive lymphoma also of B-cell origin.24,44 Therefore,
we hypothesized that comparing the TME between reactive lymph
nodes, Hodgkin lymphoma, and DLBCL might reveal the basis for
the difference in clinical responses to checkpoint inhibitors. We
previously reported our analysis of the TME in 5 reactive lymph
nodes and 22 cases of Hodgkin lymphoma using a 36 marker IMC
panel, of which 21 markers overlapped with the IMC DLBCL panel
(supplemental Figure 12A).29 We integrated the TME analysis from
both diseases after subsetting each experiment to include only
CD4, CD8, MAC, and TREG cells, and identified the joint TME phe-
notypes (Figure 5A).

After integrating both experiments, we tested for the presence of
batch effects and found the data to be well integrated (Figure 5A;
supplemental Figures 12-14).38,45

Comparing the TME phenotype proportions among DLBCL, Hodg-
kin lymphoma, and RLN, macrophages were significantly enriched
(BH q , 1e-03) in DLBCL compared with Hodgkin lymphoma,
whereas TREG were depleted in DLBCL (BH q,3.2e-04)
(Figure 5B). However, when we examined the expression of PD-L1,
PD-1 and TIM-3 on key immune groups we observed that PDL-1

was highest in macrophages from HL (BH q , 1e-05), whereas
PD-1 was the highest TREG cells in DLBCL (BH q , 1e-04) (Figure
5C). Finally, expression of the TIM-3, a checkpoint molecule of inter-
est in PD-1/PD-L1-resistant tumors, was highest in CD4 and CD8
T cells in DLBCL (BH q , 1e-05).

TREG have been implicated in resistance to checkpoint inhibitors;
therefore, we focused additional analysis on the TREG compart-
ment.46 Proliferative and ICOS1 TREG populations were enriched in
Hodgkin lymphoma (P , .001), whereas CCR41 and PD-11 popu-
lations were enriched in DLBCL (P , .001) (Figure 5D). To under-
stand if the CCR41PD11 TREG in DLBCL could be exerting an
immunosuppressive effect on CD4 and CD8 cells, we performed a
spatial analysis and observed increased interaction with PD-11 CD8
(BH q 5 0.012) and PD-11 CD4 (BH q 5 0.03), whereas in Hodg-
kin lymphoma and RLN, these interactions were not present (BH
q . 0.5) (Figure 5D-E; supplemental Figure 15D). In summary,
these results present striking differences in the expression of PD-1
and PDL-1 molecules on immune cells in the TME of DLBCL and
Hodgkin lymphoma and suggest a possible mechanism of ICI resis-
tance observed in DLBCL.

Discussion

This multiplexed single-cell study of the tumor immune architecture
in DLBCL is the first to integrate the intratumor heterogeneity of
B-cell lymphoma architecture and identify immune phenotypes that
correlate with COO, tumor mutation-defined clusters, and response
to therapy. B-cell lymphoma has a previously unrecognized structure
with areas of higher/lower immune density with specific functional
phenotypes (Figure 6). Recent large-scale efforts to characterize the
immune microenvironment in DLBCL demonstrate that the TME
contains additional prognostic and predictive information beyond
cell of origin or genetic subtypes.47-49 These studies differ in that
they relied heavily on deconvolution of bulk transcriptomic data com-
pared with the single-cell spatial proteomics data. Important future
efforts harmonizing approaches between omics into a consensus
framework are needed.

Spatial classification of tumor-infiltrating lymphocytes in solid tumors
is well established; however, this is the first report to systematically

Figure 5 (continued) Cross-cohort analysis shows differences in proportion and functional states of immune subphenotypes between DLBCL and Hodgkin

lymphoma (HL). (A) After batch normalization, the PCA visually confirms the immune subphenotypes identified are well distributed across the 2 cohorts, indicating no

cohort bias. Visual inspection confirmed using k-nearest neighbor quantitative batch effect test (kBET) (see supplemental Figure 12). (B) TME compartment proportions (%)

relative to each cohort (DLBCL/HL/RLN) are denoted on the y-axis, and the x-axis denotes major phenotypes. Comparing differences with RLN, macrophages were

increased 21.3% (95% CI, 12.4-30.2; BH q , 1e-03) in DLBCL compared with differences between HL and RLN. Comparing TREG relative differences between RLN,

DLBCL showed a 9.1% (95% CI, -13.6 to -4.7; q 5 3.2e-04) less enriched abundance compared with differences between HL and RLN. (C) Analyses of cell-state protein

expression (Z-score) on each immune subset across the 2 cohorts show differences in functional states of immune subsets in DLBCL compared with HL. PD-L1 expression

on macrophages is significantly lower in DLBCL compared with HL (logFC5 -0.08, q , 1e-05), whereas PD-1 expression is higher on TREG (logFC 5 0.23, q , 1e-04) in

DLBCL compared with HL. TIM-3 expression is significantly higher in CD8 T cells comparing DLBCL to HL (logFC 5 0.57, q , 1e-05), and significantly higher in CD4 T

cells compared DLBCL with HL (logFC 5 0.31, q , 1e-05). (D) For each experiment, global expression gating identified CCR41, ICOS1, Ki671, PD11 separately for each

cohort, and relative proportions among 1TREG cells are depicted. The grids on the radar denote the cohort proportion (%) among TREG phenotypes positive for a

corresponding phenotype. Significant differences comparing TREG case relative proportions (P , .05) are denoted with an asterisk. There were significant higher case

relative proportions of CCR41PD-11 TREG (6.087%; 95% CI, 2.56-9.62; P , .001) in DLBCL compared with HL, and significantly higher PD-11 TREG relative proportions

(6.85%; 95% CI, 3.76-9.93; P , .001). Alternatively, there were significantly fewer Ki671 T-reg (-28.34%; 95% CI, -33.42 to -23.26%; P , .001) comparing DLBCL with

HL relative proportions (supplemental Figure 15). (E) Spatial interactions between PD11CCR41 TREG and T cells were computed using a radius of interaction of

15 microns (1000 permutations, P , .01), and the relative proportion within each cohort of significant interactions/repulsions (P , .01) between PD11CCR41TREG and

PD11/mid/2 CD8 (left) and CD4 (right) T cells were compared across cohorts using an ANOVA. The y-axis denotes the relative proportion of significant interactions

(P , .01), and significant differences (BH adjusted p values) of proportions comparing DLBCL with HL and RLN are depicted.
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characterize the immune cells in immune rich and poor areas within
DLBCL tumors.50 This high density of cells within lymphoma tissue
makes such a classification challenging and largely impossible by
the techniques of diagnostic pathology.

Within DLBCL, a recent large-scale multiplexed study with a focus
on the role of PD-L1 and PD-1 on CD201 DLBCL cells was per-
formed using immunofluorescence, but that study was limited to 13
markers.41 In that study, Xu-Monette et al identified that PD-11CD8
cells were associated with poorer overall survival. PD-1 expression
on CD4 also showed adverse prognosis on univariate analysis at
low cutoffs, but a paradoxically better prognosis with a high-level
cutoff. These results suggest that there may be subpopulations
within the PD-11CD4 population that have differential effects on
survival. Indeed, in our study we observed that CD4 and CD8 T
cells with PD-1 expression could be further divided into activated
Ki671T cells and terminally exhausted PD-11TIM-31LAG-31 triple-
positive T cells, highlighting the importance of multiplexed analysis.

Although this cohort consists of 91% Hispanic/Asian ethnicity rep-
resenting a unique sample from the typical population in the United
States, our results implicate various TREG populations as areas for
further study. Baseline TREG were differentially expressed between
Chapuy clusters C2 and C3, whereas pSTAT31 TREG were most
strongly associated with refractoriness to chemotherapy. CCR81
TREG have been demonstrated to be “master regulators” of the
immune response.51 Although CCR8 was not included in our panel,
CCR81 TREG are known to depend on STAT3 signaling suggesting
that the pSTAT31 TREG we observed associated with chemo-
refractoriness may be that same CCR81 population.

We observed that tumor core areas, areas that exclude immune
cells, are found in most DLBCL cases and may have important
implications for the clinical failure of ICI therapies and resistance to
cellular therapies such as chimeric antigen receptor (CAR) T cells.
Among the CD4 cells, we observed that CXCR3-high subsets,
although rare, had infiltrating potential in lymphoma, similar to
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Figure 6. The tumor-centric neighborhoods which are defined by their proximity to their nearest immune cell, indicated that dispersed regions had the

closest distances to the TME, and were significantly more likely to neighbor an immune-active phenotype compared with a suppressive/exhausted

phenotype (Fisher exact test P 5 .047) (top). The mantle/crust regions were moderately further from the TME interface and immunosuppressive TME phenotypes were

significantly more likely to neighbor within this district compared with an activate phenotype (Fisher exact P 5 .027). The tumor core neighborhood represented an immune

desert that contained increased CXCR3 expression on CD4 subphenotypes (bottom). The tumor core proportions did not have an association with COO, or any DLBCL

subtype, whereas the mantle (I), and dispersed tumor (E) neighborhoods were significantly positively associated with DLBCL subtypes C2 (P 5 .029), C3 (P 5 .046), and

C4 (P 5 .025), respectively.
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previous reports in other diseases.52-54 Importantly, Xu-Monette et al
reported that upregulation of CXCL9, a ligand for CXCR3, was
found in DLBCL with higher T-cell infiltration, further supporting the
role of CXCR3 in T-cell homing to tumor core regions.41 We
hypothesize that activating CXCR3 or enforcing expression of
CXCR3 on CAR-T might improve immune cell penetration into lym-
phoma core regions. Applications of IMC analysis on treatment
biopsies after CAR-T therapy could be particularly helpful to under-
standing treatment response and failure in this context.

Given the clinical failure of PD-1/PD-L1 inhibitors in DLBCL, identify-
ing novel immuno-oncology targets for DLBCL remains critically
important. DLBCL checkpoint therapy nonresponsiveness can be
further understood by investigating alternative checkpoint molecules
beyond PD-1/PD-L1 such as TIM-3, LAG3, and/or VISTA. Interest-
ingly, DLBCL had higher levels of PD-1 on T cells compared with
Hodgkin lymphoma, an observation that is consistent with PD-1
being a poor biomarker of checkpoint response. Additionally, the
comparison between DLBCL to Hodgkin lymphoma identified TIM-3
as overexpressed primarily in CD4 and CD8 T cells, which highlights
it as a therapeutic target.55 Furthermore, PD-1 was enriched in TREG
in DLBCL, whereas TIM-3 on TREG was not, which demonstrates
the importance of identifying therapeutic targets that are differentially
enriched on specific CD4/CD8 immune subsets. Given the
observed high level of PD-1 on TREG, anti-PD-1 antibodies may have
led to increased activity of TREG resulting in paradoxical suppression
of immune response after checkpoint therapy and clinical failure.
Finally, PD-L1 expression on macrophages is a known biomarker of
ICI response and we observed the highest levels of PD-L1 on mac-
rophages in Hodgkin lymphoma, consistent with prior reports.56

These observations demonstrate that comparisons of TME between
ICI responsive and nonresponsive subtypes of lymphoma can sug-
gest potential mechanisms of ICI sensitivity and resistance.

To perform cross-comparisons between DLBCL and HL, we inte-
grated IMC data from experiments performed using different anti-
body panels. The increased dynamic range of signal with IMC,
compared with IHC, creates challenges with increased variability in
signal intensity across experiments. Here, using approaches to nor-
malize and standardize the data, we were able to demonstrate
meaningful comparisons between different data sets. There were
limitations to this method, however, and even after data integration
several markers had to be excluded because of poor normalization.
Because additional studies are published using imaging mass
cytometry or other similar high-multiplexed single-cell imaging techni-
ques, methods to measure uncertainty across experimental proce-
dures will need to be developed.

One limitation of this study is our mapping of molecular signatures
to the Chapuy clusters. We characterized our cohort using somatic
copy number alteration into pseudo-molecular signatures that were
largely concordant with genetic subtypes, whereas C2 inference is
limited because of its definition including several structural variants.
Another limitation is related to the examination of small portions of
the tumor area (approximately 1 mm2) and may not have captured
biologically relevant heterogeneity outside the region of interest.
However, within that small area, we discern a high degree of spatial
and functional heterogeneity and describe a complex tissue archi-
tecture of immune response and suppression that corresponds to

clinical features. Optimal sample size will also depend on the spe-
cific tumor type and size of spatial feature of interest. In our data,
7 cases had at least 1 duplicate core on the TMA. Analysis by PCA
suggested that most duplicates clustered together (supplemental
Figure 1C). This is important because on-treatment and progression
biopsies, which are critical to understand the kinetics of immune
response and failure of immune-oncology agents, are often obtained
as core needle biopsies, which are much smaller than the excision
biopsies used in this study.

Finally, the multiplex analysis provided by IMC could help guide the
next generation of combination ICI therapies, including newer
agents targeting CCR4, LAG-3, and TIM-3, or novel cellular thera-
pies and bispecific antibodies currently in development for lym-
phoma. Combining IMC with multi-omics profiling of pretreatment
and on-treatment biopsies will improve our understanding of resis-
tance and clinical failure for ICI and cellular therapies.
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