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The effects of synonymous single nucleotide variants (sSNVs) are often neglected because

they do not alter protein primary structure. Nevertheless, there is growing evidence that

synonymous variations may affect messenger RNA (mRNA) expression and protein

conformation and activity, which may lead to protein deficiency and disease

manifestations. Because there are .21 million possible sSNVs affecting the human

genome, it is not feasible to experimentally validate the effect of each sSNV. Here, we

report a comprehensive series of in silico analyses assessing sSNV impact on a specific

gene. ADAMTS13 was chosen as a model for its large size, many previously reported

sSNVs, and associated coagulopathy thrombotic thrombocytopenic purpura. Using

various prediction tools of biomolecular characteristics, we evaluated all ADAMTS13

sSNVs registered in the National Center for Biotechnology Information database of single

nucleotide polymorphisms, including 357 neutral sSNVs and 19 sSNVs identified in

patients with thrombotic thrombocytopenic purpura. We showed that some sSNVs

change mRNA-folding energy/stability, disrupt mRNA splicing, disturb microRNA-binding

sites, and alter synonymous codon or codon pair usage. Our findings highlight the

importance of considering sSNVs when assessing the complex effects of ADAMTS13

alleles, and our approach provides a generalizable framework to characterize sSNV

impact in other genes and diseases.

Introduction

Although commonly assumed to be silent, synonymous single nucleotide variants (sSNVs) can cause
protein deficiency or dysfunction severe enough to lead to disease1-3 through various mechanisms. Syn-
onymous variants may alter constitutive splice sites or activate cryptic splice sites, which can result in
unstable messenger RNA (mRNA) or defective protein.2 Synonymous changes may affect thermody-
namic stability and secondary structure of mRNA or codon usage frequency, resulting in altered transla-
tional kinetics and cotranslational folding of a protein.2,4 Recent studies suggest that intermittent
ribosome stalling at key mRNA regulatory sites can affect protein abundance, folding, and even post-
translational modifications, and the placement of certain stable structural elements within the mRNA
sequence is not random.2,5-7 Moreover, synonymous variants can disturb microRNA (miRNA)-binding
sites in the coding sequence, which can lead to developmental defects and disease.8
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Key Points

� ADAMTS13 sSNVs
affect mRNA
thermodynamic stabil-
ity and may disturb
mRNA-splicing sites.

� Synonymous
variations may affect
ADAMTS13 function
and contribute to
large variability in
protein expression
levels in healthy
individuals.
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Synonymous variants can affect cytosine-guanine dinucleotide
(CpG) sites, guanine-cytosine (GC) content, and codon usage
biases, which may change the rate of translation due to ribosomal
pausing.9 Several studies found that ribosomal pauses relate to
cotranslational folding of protein domains, which in turn determines
the final protein conformation. Ultimately, by affecting gene regula-
tory signature, mRNA structure, and pre-mRNA processing, sSNVs
can influence protein characteristics, including expression, function,
and immunogenicity.10-12

ADAMTS13 (MIM:604134) controls the hemostatic function of von
Willebrand factor (VWF; MIM: 613160) by splitting highly adhesive,
ultra-large VWF multimers into smaller forms.13 VWF is critical to
the initial stage of thrombosis by tethering platelets to the endothe-
lium at sites of vascular injury.14 Regulation of VWF by ADAMTS13
prevents the spontaneous formation of platelet thrombi. Deficiency
of ADAMTS13 increases VWF thrombogenic potential and may
lead to microvascular thrombosis such as thrombotic thrombocyto-
penic purpura (TTP)15,16 or congenital TTP, also known as Upshaw-
Schulman syndrome (USS).17 ADAMTS13 plays a crucial role in
pediatric stroke pathogenesis,18 and lower levels of ADAMTS13
have been associated with increased risks of coronary heart dis-
eases and myocardial infarction.19 Recently, clinical studies have
shown the development of acquired TTP followed by COVID-19
infection and a strong association between low ADAMTS13 plasma
levels and increased mortality in patients with COVID-19.20

The ADAMTS13 gene is located on chromosome 9 and is �37 kb
long containing 29 exons. ADAMTS13 mRNA is �4 kb long and
encodes 1427 amino acids.21,22 This multidomain protein com-
prises a signal peptide, propeptide, metalloprotease, disintegrin-like
domain, first thrombospondin type 1 repeat (TSP1), Cysteine-rich,
and spacer domains. The distal C-terminus includes 7 additional
TSP repeats and two CUB (C1r/C1s, urinary epidermal growth fac-
tor, bone morphogenetic protein) domains, that are unique for
ADAMTS13.23 The metalloprotease domain of ADAMTS13 modu-
lates ADAMTS13 protein activity via cooperative binding to one
Zn21 ion and three Ca21 ions.24,25

Among human ADAMTS13 variants listed in a database of single
nucleotide polymorphisms (dbSNP), �200 disease-causative SNVs
have been identified in patients with TTP,26-28 all of which were
non-synonymous and detected as haplotypes. Other SNVs may
result in reduced plasma ADAMTS13 activity29,30 and disrupted
ADAMTS13–VWF interactions by changing untranslated regions
(UTRs), splice regulatory regions, or the coding sequence. In addi-
tion, various truncated forms of ADAMTS13 are detectable in
plasma, and several alternatively spliced mRNA variants have been
characterized.31-37

Three genome-wide association studies (GWAS) revealed high
heritability of ADAMTS13 levels (59.1%) and identified hundreds
of non-synonymous and synonymous SNVs at the ADAMTS13
locus that collectively explained �20.0% of large ADAMTS13-level
variation in healthy individuals.30,38,39 Of 376 sSNVs registered in
the National Center for Biotechnology Information dbSNP data-
base, 357 sSNVs have been identified in healthy individuals, and
19 sSNVs have been identified in patients with USS40 (supple-
mental Table 1). The impact of USS-associated sSNVs in the con-
text of deleterious co-occurring mutations is currently unknown.
Such sSNVs may have an additive negative impact, or they may
help to enhance ADAMTS13 expression. For instance, the USS

synonymous variant c.354G.A (rs28571612) yielded higher extra-
cellular and intracellular ADAMTS13 expression levels and higher
specific activity according to in vitro measurements.10,41

Due to limited data from GWAS and few experimental validations,
the impact of specific sSNVs on ADAMTS13 function remains diffi-
cult to interpret. Nevertheless, prior studies show that variants in the
ADAMTS13 gene resulting in deficient ADAMTS13 activity may dis-
turb VWF activity and lead to coagulopathies such as USS.15

Understanding the factors that contribute to ADAMTS13 expression
and disturb normal protein activity could help reduce diagnostic
errors, prevent TTP development, and improve treatment.

Considering the substantial number of observed synonymous var-
iants, comprehensive experimental verification is difficult to perform.
Use of computational predictors and modeling can reveal sSNVs
that are most likely to affect protein function and disease.3 This
approach can help focus experimental studies on a smaller subset
of synonymous variants most likely to have a detectable impact on
protein characteristics.

To better understand the contributions sSNVs may make to protein
biogenesis using ADAMTS13 as a model, we performed compre-
hensive in silico analysis of all known ADAMT13 sSNVs. Our results
highlight sSNVs that may alter mRNA splicing, change mRNA-
folding energy, disturb miRNA-binding sites, and affect synonymous
codon usage. This in silico analysis provides a generalizable
approach to characterize the effects of sSNVs influencing other
genes and diseases.

Methods

ADAMTS13 sSNV selection

The ADAMT13 variants were obtained from the National Center for
Biotechnology Information dbSNP database (https://www.ncbi.nlm.
nih.gov/SNP/snp_ref.cgi?locusId=11093; GRCh38.p7). All SNVs
from ADAMTS13 were filtered to include only synonymous variants
in the open reading frame. Of .1000 SNVs, all 376 sSNVs were
selected for further evaluation and compared with the wild-type
(WT) ADAMTS13 (NM_139025). All sSNVs obtained from the
dbSNP (supplemental Excel Worksheet 1) include 357 neutral var-
iants and 19 sSNVs that were identified in patients with USS (USS
variants). Although the USS variants are labeled as “being-likely” to
cause the disease, this has not yet been confirmed. To our knowl-
edge, there are no confirmed disease-associated ADAMTS13
sSNVs.

In silico studies of ADAMTS13 sSNVs

Determination of mRNA-folding energy, stability, and structure were
performed by using mFold,42 NUPACK,43 kineFold,44 remuRNA,45

and RNAFold.46 Splicing impact of ADAMTS13 sSNVs was evalu-
ated by using MaxEntScan (MES),47 NNsplice,48 SpliceSiteFinder-
like,49 and GeneSplicer.50

Evaluation of miRNA-binding sites within the coding region of
ADAMTS13 sSNVs was performed by using miRDB,51,52 Paccmit-
CDS,53,54 and TargetScan.55 Relative synonymous codon usage
(RSCU) and relative synonyms bicodon usage (RSBCU) were cal-
culated as previously described.43,56 Codon pair score without natu-
ral log (CPS),57 rare codon (RC) enrichment,58 and codon
adaptation index (W)56 were computed as previously described. RC
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clustering for ADAMTS13 sSNVs was computed by using
%MinMax.59 Protein folding energy was estimated by using a
coarse-grained cotranslational folding energy model.58

Complete descriptions of the in silico methods are given in the sup-
plemental Methods, and data produced are provided in Excel Work-
sheets 1 to 3.

Results

Synonymous mutation patterns in ADAMTS13

A total of 376 naturally occurring sSNVs of ADAMTS13, including
357 from a healthy population and 19 from patients with USS, were
identified in the dbSNP; they affect almost 9% of nucleotides in the
mRNA of ADAMTS13 and .26% of codons. Most sSNVs have
been identified in exon 25. Many sSNVs have been found within the
metalloprotease domain and C-terminal region of ADAMTS13, in
exons 24 to 29, which encode the TSP7-8 and CUB1-2 domains
(Figure 2A).

The distribution of base changes across the sSNVs of ADAMTS13
shows that the most frequently occurring base changes were C.T
and G.A, agreeing with prior studies reporting synonymous base
pair change frequencies.60,61 Of 19 USS variants, 11 were identi-
fied within the TSP2-8 and CUB1 domains. Accounting for exon
length, sSNVs most frequently affected exons 1, 5, 8, and 25
(�11% sSNV per exon length) that encoded signal peptide, metal-
loprotease, and T8 domains, respectively (Figure 2B). In contrast,

sSNVs were rarely found in exons 2 to 4, 9, and 23 encoding the
propeptide, metalloprotease, disintegrin-like, and T6 domains,
respectively (�6% sSNV per exon length). The most frequent types
of ADAMTS13 sSNVs, C.T and G.A (Figure 2C), lower GC
content.

Most identified ADAMTS13 sSNVs are very rare, with a frequency
,0.001.62,63 The 12 most frequently occurring sSNVs are listed in
Table 1. Interestingly, 6 of these variants were identified in patients
with USS. The frequencies of all 376 sSNVs are included in supple-
mental Excel Worksheet 1.

sSNVs may affect RNA-folding energy and

secondary structure

We next evaluated RNA-folding energy of ADAMTS13 sSNVs.
Such changes may affect antigen and activity levels of the protein.
Experimental measurement of mRNA structure remains a challenge,
especially to a degree of sensitivity that could detect structural dif-
ferences resulting from single nucleotide changes.64 However, algo-
rithms such as mFold,42 kineFold,44 remuRNA,45 or NUPAC43 can
evaluate the stability of mRNA fragments by calculating Gibbs free
energy (DG) of possible secondary structures.1

Using these 4 algorithms, we calculated DDG (DGvariant2DGwildtype)
for all ADAMTS13 sSNVs (Figure 3A; supplemental Figure 1A).
According to at least one algorithm, 67 sSNVs caused significantly
altered folding energy compared with WT (P , .05) (Figure 3B-C).
(The supplemental Methods provides a description of P value
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computation, and supplemental Excel Worksheet 1 provides the
P values). Although the sSNVs generally resulted in increased DG
and were predicted to cause structural instability, we found some
sSNVs, particularly in exons 1, 6, 14, and 19, which caused signifi-
cant decreases in DG and thus more stable mRNA structures
(Figure 3B). Others have proposed that thermodynamically stable
mRNA secondary structures should have a selective advantage.65

The synonymous variant c.999G.A results in the highest positive
DDG by mFold and remuRNA and consistently positive DDG by the
other 2 tools. Variants c.1521G.A and c.2385G.A displayed sig-
nificantly positive DDG by mFold and kineFold. The lowest negative
DDG predicted by mFold was found in variant c.2067C.A. This
variant had significantly negative DDG predicted by kineFold and
remuRNA and was the only sSNV with significantly negative DG
calculated by 3 tools. Variant c.1462C.A displayed the lowest
negative DDG calculated by NUPAC and significantly negative
DDG calculated by kineFold. Finally, the variant c.4041C.T within
exon 28 was predicted to significantly decrease stability according
to mFold and kineFold (Figure 3C). None of the 19 USS variants
(supplemental Figure 1B) and 2 of the 12 high-frequency variants
(supplemental Figure 1C) yielded significant DDG.

We next predicted full-length mRNA secondary structure of highly
frequent variants (Table 1) and from variants resulting in most posi-
tive (c.999G.A) and most negative (c.1462C.A) DDG by RNA-
fold. DG and the optimal mRNA secondary structure of either sSNV
differ from those of WT ADAMTS13 mRNA (Figure 3D; supplemen-
tal Figure 2; supplemental Table 2).

We observed moderate correlations between DDG for the 4 algo-
rithms used, with the strongest correlation between mFold and
remuRNA, whereas kineFold exhibited the weakest correlations
among all 4 (Figure 3E). Although few variants were predicted to
significantly affect DDG by multiple algorithms, the direction of the
impact (increase or decrease) was generally consistent across the
different algorithms (Figure 3C).

In summary, numerous sSNVs may affect ADAMTS13 mRNA ther-
modynamic stability, and these alterations in mRNA secondary

structure may have strong effects on gene function and play an
important role in disease onset and progression.7,66

Most ADAMTS13 sSNVs negatively affect CpG sites

and decrease GC content

We next examined ADAMTS13 sSNVs for their impact on GC con-
tent and CpG sites.

The majority of ADAMTS13 sSNVs reduce GC content (Figure 4A),
especially in exons 4, 12, 16, 21, and 24. Of the 376 ADAMTS13
sSNVs, 144 affected CpG sites (Figure 4B). Only 55 sSNVs
increased GC content, and 31 sSNVs resulted in a creation of new
CpG sites (Figure 4C). The sSNV 33T.G may create a new CpG
site in exon 1, potentially affecting the DNA methylation state. Previ-
ous studies have shown that CpG sites are frequently methyl-
ated9,67 and that methylation in the first exon suppresses gene
expression,68 suggesting that this variant may influence ADAMTS13
expression.

As indicators of structural stability, observations of moderate correla-
tions between DG and GC content of both WT and variant sequen-
ces were not surprising. However, weak correlations were observed
between DDG and DGC content (Figure 4D).

sSNVs may affect pre-mRNA splicing and

miRNA-binding sites

We next examined the possible impact of sSNVs on splicing and
miRNA regulation of ADAMTS13 (Figure 2A-B; supplemental Excel
Worksheets 2-3), which are 2 common mechanisms by which
sSNVs can affect protein structure.2,6 We identified 7 variants
predicted to affect constitutive splice donor or acceptor sites
(Figure 5A), which might result in exon skipping or intron retention.
In addition, 36 variants were identified that may activate cryptic
splice sites, and although these cryptic sites are not associated with
previously characterized ADAMTS13 splice isoforms, they may still
limit expression of constitutive ADAMTS13 transcript. Seven var-
iants were predicted to affect special cryptic sites, which are associ-
ated with alternative splice products of ADAMTS13 (NM_139026

Table 1. Summary of most frequently occurring synonymous variants of ADAMTS13

sSNV ID Exon Domain AA # AA USS variant Frequency Source

1716G.A rs3124768 15 S 572 T 0.488347 HapMap

420T.C rs3118667 5 M 140 A 0.45704 ALFA

4221C.A rs1055432 29 CUB2 1407 T 0.316033 ALFA

354G.A rs28571612 4 M 118 P Y 0.078803 ALFA

3108G.A rs34934621 24 T7 1036 S Y 0.047011 ALFA

2508T.C rs36221472 20 T4 836 D Y 0.006502 ALFA

357C.T rs147563206 4 M 119 S 0.002774 ALFA

546C.T rs148849381 6 M 182 D 0.002196 1000Genomes

3150G.A rs36222579 24 T7 1050 V 0.001962 ALFA

1551G.C rs148472763 13 C 517 G Y 0.001879 ALFA

936C.T rs36219562 8 D 312 R Y 0.001074 ALFA

2217C.T rs144178018 18 T2/T3 739 L Y 0.001074 ALFA

Briefly summarizes 12 sSNVs of ADAMTS13 with relatively high frequency (.0.001) according to the Allele Frequency Aggregator project (ALFA), the HapMap Project (HapMap), or
the 1000 Genomes Project (1000Genomes). A complete description of other sSNV frequencies is provided in supplemental Excel Worksheet 1. AA, amino acid; C, cysteine-rich; D,
disintegrin-like; M, metalloproteinase; S, spacer.
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and NM_139027). Five of these variants weakened special cryptic
sites, potentially resulting in decreased production of alternative
transcripts. The c.909C.T variant was predicted to strengthen the
special exon 8 acceptor site, potentially decreasing primary tran-
script expression in favor of the NM_139026 transcript. The
c.918C.T variant was predicted to strengthen (NNsplice) and
weaken (MES) the special exon 8 acceptor site, making it difficult
to predict this variant’s impact. Variants predicted to affect splicing
were found in 15 different exons and influence positions that
encode several protein domains, including metalloprotease domain
(10 sSNVs), disintegrin-like domain (15 sSNVs), Cysteine-rich
domain (2 sSNVs), spacer domain (5 sSNVs), and TSP repeats
(10 sSNVs) (Figure 5A; supplemental Table 3).

To further validate predictions of splice impact, we used additional
tools (SpliceSiteFinder-like and GeneSplicer) for variants predicted
to affect splicing by MES or NNsplice. For variants predicted to
affect constitutive splice sites, limited agreement was found

between the tools used (Figure 5C). However, we found 5 variants
predicted to affect cryptic splice sites with complete agreement
between 4 splicing tools and 4 additional variants with agreement
between 3 splicing tools (Figure 5D).

Because ADAMTS13 sSNVs may affect miRNA-binding sites
and cause translational suppression or protein degradation,69 we
next examined variants for their likelihood to affect miRNA-
ADAMTS13 binding based on Paccmit-CDS, TargetScan, and
miRDB. We found 9 variants predicted to affect miRNA-binding
sites by all 3 tools (Figure 5B). These 9 variants resulted in gain of
binding sites for 10 different miRNA species and loss of binding
sites for 4 miRNA species.

Because TargetScan and miRDB are tools primarily used to assess
miRNA binding in 39UTR, we expected to see some disagreement
between these tools and Paccmit-CDS, which was specifically
developed to assess miRNA binding to mRNA-coding regions. We
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found substantially higher overlap between TargetScan and other
algorithms when using extended seed (nucleotides 2-8 of the
miRNA) rather than nucleotides 1 to 7 as seed sequences (Table 2;
supplemental Table 4; supplemental Figure 3); thus, the TargetScan
values resulted from using bp 2 to 8 (Figure 5E; Table 2).

Paccmit-CDS predicted gain/loss of 3408 miRNA-binding sites
resulting from sSNVs. Of these 3408 affected miRNA-binding sites,
14 were predicted by TargetScan and miRDB (Figure 5B; Table 2),
and 186 were predicted by TargetScan (Figure 5E). From these
predicted miRNAs, miR-221-5p and miR-1248 were shown to be
expressed in liver cells,70,71 where ADAMTS13 is predominantly
expressed.72 Further confirming its relevance to the liver, miR-221
displayed upregulation in liver fibrosis73 and promoted human hepa-
tocellular carcinoma migration.74

Some sSNVs significantly affect the codon usage bias

We next evaluated how sSNVs could change ADAMTS13 synony-
mous codon preference. Here, P values ,.05 were considered
significant.

A total of 83 sSNVs exhibited significantly different codon usage or
codon pair usage based on RSCU and RSBCU values, respectively
(Figure 6A; supplemental Figure 4). From this group, 22 sSNVs
displayed significantly different codon adaptation index (DW)
(Figure 6B). ADAMTS13 sSNVs commonly inserted RCs (supplemen-
tal Table 5), which are expected to decrease translation rate. Among
them, variants c.360G.A, c.451C.T, c.1125G.A, c.1557G.A,

c.2754G.A, c.3501G.A, c.3810C.A, and c.4185G.A led to
decreases in codon usage metrics. Only 7 synonymous variants signifi-
cantly increased indices of codon usage (supplemental Figure 4).

We also calculated changes in CPS for sSNVs of ADAMTS13 to
measure the impact of codon pair usage while controlling for
codon usage. Forty-one sSNVs exhibited significantly different
CPS values (Figure 6C). Three sSNVs (c.138G.T, c.225 T.C,
and c.1989G.A) exhibited the largest decrease in CPS values.
Only two sSNVs (c.738A.G and c.2703A.G) resulted in
increased CPS for both affected codon pairs, although the increase
was only significant for the 59 codon pair. As expected, DRSCU
showed a strong linear correlation with D%MinMax (supplemental
Figure 5A), and we found a stronger correlation between CPS and
RSBCU for 39 codon pair than 59 codon pair (supplemental Figure
5B-C). Next, we computed rare and common codon clustering for
ADAMTS13 sSNVs using %MinMax.75 Of these, 31 variants re-
sulted in significantly decreased %MinMax, and 5 resulted in signifi-
cantly increased %MinMax (Figure 6D). Variants that decrease
%MinMax imply the insertion of RCs, which can reduce local trans-
lation rate75; variants that increase %MinMax imply the loss of RCs,
which may be necessary for proper cotranslational folding.76

In addition, we investigated RC enrichment at positions of
ADAMTS13 sSNVs and identified several loci with significant RC
enrichment (supplemental Figure 6). RCs may inhibit translational ini-
tiation or slow translation elongation, which in turn can promote
mRNA degradation and even affect protein folding.77 The highest
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increase in RC values were observed at positions 1551, 2439,
2448, and 3684 in exons 13, 20, 20, and 26, respectively. Synony-
mous variations in these positions may affect ADAMTS13 transla-
tional rate and disturb protein folding.

When comparing variants that significantly affect RSCU,
RSBCU, W, and %MinMax, we identified 10 sSNVs located in
multiple different exons (Figure 6E) that significantly affect all
parameters. We found 3 of these variants also significantly
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affected RC but we found no sSNVs that also significantly affect
CPS (supplemental Figure 7).

sSNVs may affect mRNA regions encoding the

ADAMTS13 active site and metal-binding domains

and its protein structure

Next, we investigated the regions essential for ADAMTS13 func-
tionality to assess their vulnerability to sSNVs. Detailed crystal
structure evaluation of ADAMT13 proximal domain MDTCS25 com-
pared with identified sSNV positions revealed 13 sSNVs affecting
loci critical for metal binding and protein activity (Figure 7A-C;
Table 3). C.564C.T affected a codon directly involved in Ca21

binding (Figure 7B). Another variant, c.1980G.A, is localized
within the loop 660-672 that is essential in interaction with
VWF78,79 and/or CUB domains relevant to “closed” ADAMTS13
conformation (Figure 7C).80

Nevertheless, 4 of these 13 sSNVs were predicted to affect mRNA
splicing: c.546C.T, c.552G.A, c.567C.T, and c.834G.T (Fig-
ure 5A). Two were predicted to affect miRNA-binding sites:
c.1833C.T and c.1980G.A (Table 2). Two variants significantly
affected mRNA folding energy (supplemental Figure 8A).

CUB1 domain amino acids Cys1254 and Cys1275 are essential for
proper secretion and proteolytic activity of ADAMTS13,81 suggest-
ing relevance of c.3762C.T and c.3825C.T variants. Furthermore,
16 additional sSNVs were identified in codons encoding cysteine,
whose disulfide bonds stabilize the overall structure of ADAMTS13,
and 42 sSNVs were identified in codons encoding proline, which
introduces rigid turns into the peptide chain and sets a-helix and
b-sheet borders.82 Because proline and cysteine substantially influ-
ence protein structure, we expect more severe consequences from
variants affecting proline or cysteine codons than from variants
affecting other codons. Variants affecting cysteine codons did not
significantly influence mRNA stability or codon usage (supplemen-
tal Figure 8B). Interestingly, based on amino acid frequency in

ADAMTS13, neutral sSNVs affecting cysteine codons were 15%
less frequent than expected (supplemental Table 6).

Proline codons, in addition to those encoding alanine and threonine,
were among the most frequently affected codons by sSNVs of
ADAMTS13 (Figure 7D; supplemental Table 6). Proline codons are
often affected by sSNVs in signal peptide, propeptide, and
disintegrin-like domains (supplemental Figure 9). Several variants
affecting proline codons were predicted to influence other examined
parameters (supplemental Figure 8C). Seven variants may affect
splicing (Figure 6), and 2 may affect miRNA binding (Table 2).

In addition, threonine, alanine, and proline codons were more com-
montly affected by ADAMTS13 sSNVs, whereas tyrosine codons
were less commonly affected by sSNVs than was expected (supple-
mental Table 6; supplemental Figure 9). Synonymous mutation in leu-
cine codons dominate in metalloprotease and CUB domains,
whereas sSNVs in neutral alanine codons were seen most frequently
in thrombospondin domains. USS variants mostly encode leucine
valine and serine codons (Figure 7D; supplemental Figure 9H).

Finally, because changes in translation kinetics may affect cotransla-
tional folding, we calculated ADAMTS13 folding energy of the
nascent protein chain. We identified three variants (c.3150G.A,
c.3177G.A, and c.2338T.C) downstream from areas of large
changes in cotranslational folding energy (Table 4) and which
change RSCU or RSBCU. Together, this implies these variants
have the greatest potential impact on protein secondary structure.

Discussion

Although most identified ADAMTS13 sSNVs are very rare, common
sSNVs mainly coexist as haplotypes, making it very challenging to
find individuals with a single sSNV to evaluate its effect. Conversely,
cost and complexity remain substantial obstacles for comprehensive
characterization of sSNVs affecting protein properties and disease
states in vitro. Our in silico analysis of biomolecular characteristics
of ADAMTS13 reveals a powerful opportunity for high-throughput

Table 2. Synonymous ADAMTS13 variants predicted to affect miRNA-binding sites

sSNV ID Exon Domain AA # AA miRNA Effect

972C.T rs782268976 8 D 324 F miR-8073 Gain

972C.T rs782268976 8 D 324 F miR-221-5p Gain

1473C.T rs140501683 13 C 479 G miR-6511b-3p Gain

1473C.T rs140501683 13 C 479 G miR-6511a-3p Gain

1833C.T rs1373112883 16 S 611 I miR-6783-5p Gain

1923G.A rs977615435 16 S 641 E miR-1236-3p Gain

2268C.T (*) rs781923426 19 T3 756 A miR-4695-5p Loss

2631G.A (*) rs782772606 21 T4/T5 877 G miR-6810-3p Loss

2631G.A rs782772606 21 T4/T5 877 G miR-6801-3p Loss

2643C.T (*) rs1260442569 21 T4/T5 881 P miR-6780b-5p Gain

2643C.T (*) rs1260442569 21 T4/T5 877 G miR-4725-3p Gain

2643C.T (*) rs1260442569 21 T4/T5 877 G miR-6825-5p Loss

3513G.A rs368634068 25 T8/CUB1 1171 P miR-4731-5p Gain

4272G.A rs938453395 29 CUB2 1409 Q miR-1248 Gain

All 3 tools (miRDB, PACCMIT, and TargetScan nucleotides 2-8 seed) predict 9 sSNVs to affect 14 miRNA-binding sites within the coding region of WT ADAMTS13. Asterisks
highlight variants also predicted to affect miRNA binding. AA, amino acid; C, cysteine-rich; D, disintegrin-like; S, spacer.
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screening of sSNVs likely to affect protein properties, even for large
complex genes such as ADAMTS13. By integrating findings from a
variety of in silico tools assessing different characteristics, we can com-
prehensively assess multiple mechanisms by which sSNVs may exert
a biological impact. Results in the current study focus on ADAMTS13
sSNVs, but our approach using in silico tools to assess several differ-
ent biomolecular mechanisms is generalizable to any gene.

The estimated heritability of ADAMTS13 antigen levels sug-
gests that most of the population variance of plasma
ADAMTS13 is the result of genetic factors,38,39 including
sSNVs. Our findings suggest numerous synonymous variants
that may affect ADAMTS13 properties through multiple mecha-
nisms, including pre-mRNA splicing, miRNA silencing, and
translation kinetics.
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Although there is no single ADAMTS13 sSNV known to be respon-
sible for USS, there are few documented examples in the literature
that associate sSNVs of ADAMTS13 to pathologic states. In addi-
tion to USS variants (supplemental Table 1), other sSNVs has been
identified and clinically evaluated (supplemental Table 7). Most of
the sSNVs identified in patients with TTP have been labeled as hap-
lotype with other synonymous variants that are associated with the
disease,15,30,83-87 and thus it is difficult to evaluate the role of
sSNVs in these individuals.

The genotype analysis of ADAMTS13 in 14 neonates diagnosed with
congenital heart disease (CHD)83 identified 4 patients with throm-
bosis and 10 patients without thrombosis (supplemental Table 8).83

One patient (patient 2) who developed thrombosis at the site of
surgery has ADAMTS13 haplotype with 3 sSNVs (c.420T.C
[rs3118667], 1716G.A [rs372789831], c.2280T.C [rs3124767]),
one not-TTP variant (c.2699C.T, rs685523), and one TPP variant
(c.1370C.T, rs36220240) and was asymptomatic despite the
presence of deleterious mutation previously linked to congenital
TTP (c.1370C.T, rs36220240). Moreover, 10 patients with CHD
exhibited high to normal ADAMTS13 antigen and activity levels
(�50%, which is considered the lower normal range in neonates88)
and have not developed thrombosis, whereas missense mutations
(c.1342C.G [rs2301612, p.G448E], c.1370C.T [rs36220240,
p.P457L], and c.2699C.T [rs685523, p.A900V]) often identified
in patients with TTP29,30,38 were accompanied by sSNV variants.
One CHD patient (patient number 7 without thrombosis) had sin-
gle sSNV: c.2280T.C (rs3124767) in the ADAMTS13 gene and
high ADAMTS13 antigen (63.6%) and activity (43.6%) levels. In
addition, in vivo evaluation of the ADAMTS13 haplotype seen in
patient 2 showed that the deleterious effect seen for the TTP
variant (c.1370C.T, rs36220240, p.P457L) can be rescued by
synonymous variants (supplemental Table 7).89 These studies
suggest that sSNVs identified in neonates may have synergistic
protective effects on ADAMTS13 functions. GWAS of plasma
ADAMTS13 concentrations from healthy donors showed that
individuals with c.420T.C or c.4221C.A variants exhibited
�6% increase in ADAMTS13, whereas in patients with variants
c.1716G.A or c.2280 C.T, the ADAMTS13 level was �5%
lower. These synonymous variants were shown to alter ADAMTS13
expression and activity levels in in vitro studies (supplemental
Tables 7 and 9).10,41 Variant c.420T.C (rs3118667) also exhibited
a 3% increase in ADAMTS13 activity by GWAS39 and has been
significantly associated with pediatric stroke.90 In addition,

Table 3. Variants may affect ADAMTS13 protein binding or active site

sSNV ID Exon # Domain AA # AA Comments

451C.T rs781937618 5 M 151 L One of surface residues in ADAMTS13 subsite pockets
localized in positions essential to accommodate VWF

546C.T (*) rs148849381 6 M 182 D Coordinate metal binding, in Ca-binding loop (180-193)

552G.A (*) rs782652490 6 M 184 E Identified in Ca-binding loop (180-193) that occlude the
active-site cleft

567C.T (*) rs782555111 6 M 189 N Identified in Ca-binding loop (180-193) that occlude the
active-site cleft

762C.T rs1212704138 7 M 254 A Involved in ionic interaction that bridge loops 180-193 and
231-263 that stabilized the metal-binding pocket

768C.G rs1340581969 7 M 256 P Stabilized subsite pocket and essential to accommodate VWF

771C.T rs947504635 7 M 257 R In substrate binding face in distal domain

834G.T (*) rs587671802 8 M 278 R In metalloprotease loop that connect distal domain and
coordinate Ca-binding site

1020C.T rs144498742 9 D 340 D Responsible for a negative charged patch on the surface
essential for electrostatic interaction with VWR

1833C.T (†) rs1373112883 16 S 611 I Locate within hydrophobic pocket. Part of spacer domain
exosite involved in VWR binding

1860C.T rs751652402 16 S 620 L One of hydrophobic residues cluster on the surface. Part of
spacer domain exosite involved in VWR binding

1923G.A rs977615435 16 S 641 E Charged residue not directed into solvent interface

1980G.A (†) rs1397130583 17 S 660 R Part of spacer exosite, involved in interaction between CUB
essential to fold back into close conformation

Variants listed are ADAMTS13 sSNVs that may affect protein binding or active site. Asterisks highlight sSNVs also predicted to affect mRNA splicing; daggers highlight sSNVs also
predicted to affect miRNA-binding sites. AA, amino acid; D, disintegrin-like; M, metalloproteinase; S, spacer.

Table 4. Folding energy of the nascent protein chain (Fn) for

selected sSNVs

sSNV ID Exon Domain AA # AA Fn

999G.A rs757725461 9 D 333 Q 20.3902

1623A.G rs781937390 14 C 541 V 20.3112

2338T.C rs782298936 19 T3 780 L 25.919

3150G.A rs36222579 24 T7 1050 V 24.1288

3177G.A rs782223782 24 T7 1059 V 24.275

3192T.C rs782633692 24 T7 1064 S 20.1462

3366G.A rs782238280 25 T8 1122 V 20.2646

3714G.C rs931559052 26 CUB1 1238 A 20.3826

4024C.T rs1044871968 28 CUB2 1342 L 20.2598

4026G.T rs1400291999 28 CUB2 1342 L 20.2598

AA, amino acid; C, cysteine-rich; D, disintegrin-like.
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c.4221C.A was significantly more frequent in populations with
major adverse cardiac events, cerebrovascular events,91 and Thai
malaria.92

Overall, although the effect from single sSNVs is not dramatic, coex-
istence of 2 or more variants may have a synergistic effect and
cause significant changes in ADAMTS13 functions.29,89,93 Com-
bined, this evidence suggests that ADAMTS13 sSNVs affect
plasma ADAMTS13 antigen and activity levels, emphasizing their
relevance to cardiovascular disease and coagulopathy.

In our in silico studies, the sSNVs identified in patient samples
(supplemental Table 7) were located within RC-enriched regions
(supplemental Table 9). Significantly high RC enrichment would
suggest a cluster of conserved RCs around the region, thus
amplifying potential impact from changes to more common
codons.94 In addition, validation of RNA minimum free energy of
full-length ADAMTS13 variants that have been identified in
human subjects displayed significant differences in their RNA
secondary structure (compared with WT), which may explain
district antigen and activity level in those variants (supplemental
Figure 2; supplemental Table 2).

To summarize, we have presented a comprehensive in silico over-
view of all reported ADAMST13 sSNVs that may be used as point
of reference to understand the clinical consequences of ADAMTS13
sSNVs. We found numerous sSNVs that affect ADAMTS13 GC
content and CpG sites. Several methods were used to evaluate
codon and codon pair usage changes that may affect translation
rate and cotranslational folding of ADAMTS13. Moreover, our results
show that 67 sSNVs confer significantly different mRNA folding
energy compared with WT. Next, our analysis revealed 46 sSNVs
that may affect ADAMTS13 splicing, including two USS variants,
c.936C.T (rs36219562) and c.1797C.T (rs36221216). Nine
sSNVs were found that can affect the binding sites of 14 miRNAs.
Although the effect of miRNA binding within coding region may not
be as high as in 39UTR, they may still contribute to observed vari-
ance in ADAMTS13 expression.95,96

Calculation of cotranslational folding in the nascent protein chain
identified 3 variants that may substantially affect protein folding. In
addition, we characterized potential effects of these sSNVs on pro-
tein structure, especially with respect to the ADAMTS13-active site.

Our previous evaluation of some ADAMTS13 SNVs found that
even the variants with moderate changes in DG or codon usage
can affect protein properties.10 Although further experimental evalua-
tion is needed to fully validate the role of synonymous variation in
protein function, this study has identified several ADAMTS13
sSNVs that are most likely to affect ADAMTS13 protein properties.

Deficiency or dysfunction of ADAMTS13 can lead to thrombotic
pathologies, including TTP, USS, myocardial infarction, and ische-
mic stroke,18,27,97 and may contribute to COVID-19–associated
coagulopathy.20 As we show here, rare synonymous ADAMTS13
variants may markedly contribute to the natural variation observed
in the healthy population and might explain differential susceptibil-
ity to thrombosis. Most of these ADAMTS13 sSNVs have not
been identified in prior GWAS, often being systematically
excluded. Better understanding of these sSNVs and appreciating
how they contribute to variability in ADAMTS13 abundance and
specific activity highlight the broader importance of considering
sSNVs when assessing potential causes for differential gene
expression, protein abundance, and structure.
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