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e |brutinib suppresses
CLL cell CTLA4
expression in vitro
and in vivo.

» CTLA4 expression on
CLL is regulated by
non-BTKs that differ
from T-cell CTLA4
regulation.

Cytotoxic T lymphocyte antigen 4 (CTLA4) is a major immune checkpoint and target for
cancer immunotherapy. Although originally discovered and primarily studied on T cells,
its role on other cell types has also been recognized in recent years. Here we describe an
unexpected interaction between ibrutinib (a targeted inhibitor of Bruton tyrosine kinase
[BTK]) and CTLA4 expression on malignant chronic lymphocytic leukemia (CLL) cells.
Although BTK itself does play a role in CTLA4 expression in CLL, we demonstrate that
ibrutinib’s main suppressive effect on CTLA4 protein expression and trafficking occurs
through non-BTK targets influenced by this drug. This suppression is not seen in T cells,
indicating a different mechanism of CTLA4 regulation in CLL vs T cells. Appreciating this
distinct mechanism and the beneficial non-BTK effects of ibrutinib may contribute to
understanding the immune benefits of ibrutinib treatment and lead to therapeutic
approaches to improve immune function in patients with CLL by suppressing CTLA4
expression.

Introduction

Chronic lymphocytic leukemia (CLL) is the most prevalent lymphoid malignancy in the United States. It
causes significant morbidity and mortality, largely through its suppressive effects on the immune system.
Treatments have progressed significantly in recent years, but for most patients, CLL is incurable.
Throughout the entire disease course of CLL, there is a high risk of morbidity and mortality owing to
immune suppression and its associated complications, including infections, which are one of the most
common causes of death in patients with CLL."? This risk begins in patients with monoclonal B-cell lym-
phocytosis (a precursor to CLL), increases during the “watch-and-wait” period before patients require
treatment, and is often exacerbated by CLL-directed therapies.'®* In addition to infection, patients with
CLL are at a high risk of secondary malignancies, and CLL is associated with decreased survival from
these cancers.>® These increased risks are largely attributed to ineffective immune surveillance.

The T-cell dysfunction seen in patients with CLL is one of the most apparent complications of this dis-
ease. Patients with CLL have changes in both T-cell numbers and function, including decreased CD4/
CD8 ratio, Th2 bias, high regulatory T-cell number, a shift from naive toward memory subsets, and an
increased expression of inhibitory receptors and exhaustion markers, including PD-1, CTLA4, BTLA,
LAGS, CD160, and CD244.°"* These correlate with decreased T-cell functional activity, including prolif-
eration, formation of the immunological synapse, and cytotoxicity.'® Despite this profound dysfunction,
T-cell-mediated immunotherapy is a promising strategy for CLL treatment. Leukemia-reactive T cells can
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be detected in most patients, and successes with allogeneic stem
cell transplant indicate that an effective anti—leukemia immune
response is possible.'®'®

Cytotoxic T lymphocyte antigen 4 (CTLA4) is an immune checkpoint
molecule that is an established target for stimulating anti—cancer
immune responses. CTLA4 has most commonly been associated
with activated T cells, where it functions to suppress the costimula-
tory signal from CD80 and CD86. Although less studied in other
contexts, CTLA4 expression has been detected on various other
cell types, including normal B cells, monocytes, dendritic cells, and
various tumor-derived cell lines and tumor cells."”?* Notably,
CTLA4 expression on tumor cells has been associated with poor
prognosis in breast, nasopharyngeal, and esophageal carcino-
mas.?>2” However, its expression patterns and functions are poorly
understood in non-T-cell contexts on both normal and tumor cells.

Our group and others have previously demonstrated that CLL tumor
cells express CTLA4.2%2° CTLA4 is intracellular in resting CLL cells
but is brought to the leukemic cell surface after interaction with a
CLL-reactive activated T cell.?® It subsequently functions to remove
CD80 and CD86 from the same or neighboring cells through trans-
endocytosis, thereby decreasing T-cell activation through loss of the
costimulatory signal.?® Furthermore, tumor-specific CTLA4 blockade
can slow disease progression in a murine CLL model.?° Nonspecific
CTLA4 blockade (affecting both CLL and T cells) can enhance
in vitro cytotoxicity using a bispecific antibody.*® Other work has
demonstrated that CLL CTLA4 is a key regulator of CLL cell prolif-
eration and survival in vitro.3'"®® CTLA4 expression on CLL cells
correlates with disease progression and is increased in lymph nodes
(where CLL proliferates and interacts with T cells).?®3* In B-cell lym-
phoma, CTLA4 has also been ascribed multiple functions, including
CD86 internalization and proliferative and immunoregulatory signal-
ing, with CTLA4 blockade/silencing slowing tumor growth in vivo.?®

Ibrutinib is a small molecule irreversible inhibitor of Bruton tyrosine
kinase (BTK) that has become a preferred first-line treatment for
CLL based on positive phase 3 studies comparing it with chemoim-
munotherapy.®®® We and others have demonstrated that ibrutinib
inhibits CLL proliferation, diminishes bulk disease, and improves
immune function in patients with CLL.3”® It is unknown how much
of this effect is attributable to direct effects on CLL cells vs BTK
inhibition in other cells or ITK inhibition in T cells (driving them
toward T-helper cell 1 polarization).®”-*® This immune normalization
and proliferation block are seen even in patients with persistent leu-
kemic burden, indicating that the immune/proliferative benefits
involve mechanisms beyond the direct reduction of leukemic burden.
Previous data demonstrated a decrease in CTLA4 expression on
T cells in patients treated with ibrutinib or acalabrutinib (another irre-
versible BTK inhibitor), but the CLL cell CTLA4 expression was not
measured.?” Another recent paper demonstrated a decrease in
CTLA4 messenger RNA (mRNA) and intracellular CTLA4 expres-
sion in ibrutinib- or acalabrutinib-treated CLL cells.®°

Here, we expand our understanding of CTLA4 regulation in CLL
and demonstrate that ibrutinib treatment directly suppresses CTLA4
expression on CLL cells while indirectly modulating T-cell CTLA4
expression. We furthermore demonstrate that interferon-y (IFN-vy,
which may also stimulate CLL during a T-cell response) induces
CTLA4 mRNA expression, which is likewise inhibited by ibrutinib.
Our data provide a key signal toward understanding the regulation
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of CTLA4 in non-T cells as well as the beneficial immune effects of
this important drug.

Methods
Patients and samples

Patient samples were collected after written informed consent from
an institutional review board—approved protocol. CLL cells were iso-
lated using RosetteSep Human B Cell Enrichment Cocktail, follow-
ing the manufacturer's recommended protocol. Normal donor
samples were isolated from buffy coats (Versiti Blood Center of
Ohio or American Red Cross) or whole blood collected from healthy
volunteers after written informed consent. T cells were isolated from
healthy donors using RosetteSep Human T Cell Enrichment Cock-
tail, RosetteSep Human CD4" T Cell Enrichment Cocktail, or
RosetteSep Human CD8" T Cell Enrichment Cocktail, following the
manufacturer's recommended protocol. CLL and T-cell purity was
confirmed using flow cytometry.

Cell culture

All cells (including primary T cells and CLL cells) were cultured in
RPMI-1640 media with 10% fetal bovine serum, 2 mM L-glutamine,
56 U/mL penicillin, and 56 ug/mL streptomycin (all from Gibco).
Cells were maintained at 37°C in a 5% CO, incubator.

CLL-T-cell coculture

Anti-CD3 (10 wg/mL; eBioscience, clone OKT3) in phosphate-
buffered saline was adsorbed onto a plate surface for 4+ hours,
and then the solution was removed. CLL and T cells were added at
a 1:1 ratio, and media were supplemented with 1 pg/mL anti-CD28
(eBioscience, clone CD28.2). Where applicable, drug treatments
consisted of 1 puM treatment for 1 hour before washing with
fresh media and coculture. IFN-y stimulation consisted of 100
IU/mL IFN-y (Peprotech). CTLA4 was measured after 48 hours by
flow cytometry when CTLA4 peaks in both CLL and primary
B cells."”°

Flow cytometry

Samples were stained for surface markers (CTLA4, Live/Dead) in
phosphate-buffered saline + 10% fetal bovine serum for 20 minutes
on ice, permeabilized using BD Cytofix/Cytoperm solution on ice for
20 minutes, and then stained for intracellular markers (CTLA4,
CD19, CD3) in BD Perm/Wash buffer on ice for 30 minutes. Sam-
ples were run on a Beckman Coulter Gallios, collecting at least
10000 events of interest, and analyzed using Kaluza software.
CTLA4 positivity was determined vs isotype control. The following
antibodies were used: CTLA4-PE (BD, clone BNI3), CTLA4-APC
(BD, clone BNI3), mouse lgG2a,k isotype control-PE (BD, clone
G155-178), mouse IgG2a,k isotype control-APC (BD, clone G155-
178), CD19-PerCP-Cy5.5 (Biolegend, clone HIB19), CD3-AF700
(BD, clone UCHT1), and Live/Dead Fixable Violet (Invitrogen).
CLL cells were gated as live/CD197/CD3™ and then analyzed for
CTLA4-PE (surface) and CTLA4-APC (intracellular). Intracellular
staining of CD19 and CD3 provided better gating separation of
B- vs T-cell populations after activation in coculture.

qPCR

RNA was isolated from CLL cells using TRIzol extraction (Ambion
15596018) following the manufacturer's recommended protocol.
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Complementary DNA (cDNA) was produced from 2 pg RNA
using 1 pL random hexamers (Invitrogen 100026484), incubating
at 65°C for 5 minutes, and then adding 1 pL deoxyribose nucleo-
tide triphosphate mix (Invitrogen 18427-013), 4 pL 5X first-strand
buffer (Invitrogen Y02321), 2 uL dithiothreitol (Invitrogen Y00147),
1 pL M-MLV reverse transcriptase (Invitrogen 28025-021), and
1 plL ribonuclease inhibitor (Invitrogen 100000840). cDNA was
generated on a thermocycler at 37°C for 5 minutes, 25°C for 10
minutes, 37°C for 50 minutes, and then 70°C for 15 minutes.
Quantitative polymerase chain reaction (QPCR) was run using 1 pL
cDNA, 10 pL Tagman Fast Advanced Master Mix, and 1 pL Gene
Expression Primer (from Applied Biosystems: glyceraldehyde-3-
phosphate dehydrogenase [GAPDH] #4352665, TBP #4325803,
185 rRNA  #4318839; from Tagman: total CTLA4
#Hs03044418_m1, soluble CTLA4 #Hs03044419_m1,
membrane-bound CTLA4 #Hs01011591_m1). The plate was run
for 2 minutes at 95°C followed by 40 cycles of 95°C for 1 second
and 60°C for 20 seconds. Results were quantified using the AACt
method vs control genes and expressed as fold change vs the unsti-
mulated condition.

Soluble CTLA4 ELISA

Plasma was obtained from whole blood of healthy donors, patients
with CLL, or patients with acute myeloid leukemia (AML) by centrifu-
gation. Soluble CTLA4 was measured using LEGEND MAX Human
Soluble CTLA-4 enzyme-linked immunosorbent assay (ELISA) Kit
(Biolegend), following the manufacturer's recommended protocol.

Immunoblot analysis

CLL cell lysates were analyzed using standard sodium dodecyl
sulfate—polyacrylamide gel electrophoresis methodology, probed
with primary antibodies and horseradish peroxidase (HRP) —conju-
gated secondary antibodies, and visualized with Super Signal West
Pico substrate (Thermo) and a Bio-Rad ChemiDoc system. The fol-
lowing antibodies were used: anti-BLK (Cell Signaling Technology
3262), anti-phospho-BLK (Invitrogen PA5-64566), anti-GAPDH
(Millipore MAB374), anti-mouse HRP (Bio-Rad 1706516), and anti-
rabbit HRP (Cell Signaling Technology 7074).

Statistics

Flow cytometry data were analyzed using Kaluza 2.1. Densitometry
analysis was conducted using AlphaView. Data were exported to
GraphPad Prism for plotting. Statistical analyses were completed
using mixed effects models, analysis of variance (ANOVA), and
paired t tests using SAS (SAS, Inc, Cary, NC) at the Center for Bio-
statistics at the OSU Comprehensive Cancer Center.

Results

Nonactivated CLL cells from peripheral blood express little to no
CTLA4 on the cell surface. Therefore, we used coculture with acti-
vated T cells to induce CTLA4 surface expression on CLL cells.?®
To measure the effects of ibrutinib on this expression, we treated
CLL cells with 1 M ibrutinib or acalabrutinib for 1 hour before
washing them with fresh media and adding them to coculture. Aca-
labrutinib is a more selective, irreversible BTK inhibitor, whereas
ibrutinib also inhibits several additional kinases irreversibly.*® CTLA4
expression was measured by flow cytometry after 48 hours. As
shown in Figure 1A, ibrutinib treatment suppressed surface and
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intracellular CTLA4 expression in CLL cells. In contrast, acalabruti-
nib has no effect on CTLA4 expression in these cells. We addition-
ally measured CTLA4 mRNA expression in unstimulated CLL cells,
finding that either ibrutinib or acalabrutinib treatment could inhibit
this expression (Figure 1B). Collectively, these data suggest that
CTLA4 surface protein (and therefore CTLA4 function) is regulated
by non-BTK “alternative-target” effects of ibrutinib, whereas tran-
scription is at least partly BTK signaling-dependent.

We then decided to measure the effects of ibrutinib on T-cell
CTLA4 expression in vitro, to see if this treatment similarly inhibits
T-cell CTLA4 expression. This additionally allowed us to see if the
decreased T-cell CTLA4 expression seen in ibrutinib-treated
patients is caused by a direct effect of the drug on T cells. We pre-
treated T cells from healthy donors for 1 hour with 1 M ibrutinib
and then stimulated them with plate-adsorbed anti-CD3 and soluble
anti-CD28. Forty-eight hours later, CTLA4 expression on T cells
was measured by flow cytometry. In contrast to its in vivo effects on
T cells and direct in vitro suppression on CLL cells, in vitro ibrutinib
treatment failed to suppress T-cell expression of CTLA4 (Figure 1C).
This indicates that the T-cell CTLA4 modulation seen in treated
patients is due to indirect effects and points to different regulatory
mechanisms in normal T cells vs CLL cells.

To test the in vivo relevance of ibrutinib’s inhibition of leukemic
CTLA4 suppression, we used primary CLL leukemia samples from
untreated vs ibrutinib-treated patients. Comparing patient samples
obtained before treatment vs after 5 months on ibrutinib, we demon-
strate that CTLA4 expression on activated CLL cells is suppressed
following in vivo treatment (Figure 1D). We followed this with a simi-
lar analysis of patients before vs after acalabrutinib treatment, finding
that in accordance with its lack of in vitro efficacy, acalabrutinib
treatment in vivo did not decrease CTLA4 surface expression by
CLL cells, although the pretreatment CTLA4 expression of these
samples was already quite low (Figure 1E).

Although activated T cells have previously been demonstrated to
stimulate CLL CTLA4 expression, the specific T-cell subset mediat-
ing this effect has not yet been elucidated. To understand this, we
isolated total T cells, CD4" helper T cells, and CD8" cytotoxic T
cells from the same healthy donors and compared their ability to
stimulate CTLA4 expression on CLL cells. We demonstrate that
CD4" T cells stimulate significantly greater CTLA4 surface expres-
sion on CLL cells than total T cells or CD8™ T cells alone, suggest-
ing that CD4™ T cells are the primary cell type stimulating CTLA4
expression on CLL cells (Figure 2). Intracellular CTLA4 expression
did not vary by the type of T cells used, although intracellular
CTLA4 expression by CLL cells is not reliant on stimulation
(Figure 2).

Soluble CTLA4 is an alternative isoform of CTLA4 that is secreted
rather than bound to the cell membrane. It is produced by alternative
splicing that removes the transmembrane domain (exon 3) and pro-
duces a frameshift in exon 4.4'*2 Although this form of CTLA4 is
less understood than membrane-bound CTLA4, it is elevated in vari-
ous inflammatory conditions and malignancies, such as acute
lymphoblastic leukemia, myelodysplastic syndrome, and AML, and
has been implicated to be immunosuppressive.***” We decided to
test if this alternative isoform is expressed by CLL cells in addition
to the full-length version of CTLA4. Interestingly, the alternatively
spliced soluble CTLA4 transcript is detectable in CLL cells at similar
threshold cycle to the full-length transcript, indicating that this
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Figure 1. Ibrutinib suppresses CLL-expressed CTLA4. (A) CLL cells were treated with 1 uM ibrutinib or acalabrutinib for 1 hour before washing and coculture with activated
T cells. CTLA4 expression on CLL cells was measured 48 hours later by surface and intracellular flow cytometry (n = 10 ibrutinib, 7-8 acalabrutinib). (B) CLL cells were treated with
1 wM ibrutinib or acalabrutinib for 1 hour before washing. CTLA4 mRNA levels were measured 48 hours later by gPCR (n = 18 ibrutinib, 14 acalabrutinib). (C) T cells were treated
with 1 wM ibrutinib or acalabrutinib for 1 hour before washing and stimulation with 10 wg/mL anti-CD3 adsorbed onto the plate surface and 1 wg/mL anti-CD28. CTLA4 expression

was measured by surface and intracellular flow cytometry after 48 hours of stimulation (n = 5). (D) Matched primary CLL leukemia samples were obtained from patients before

treatment and after 5 months of ibrutinib treatment. CLL cells were cocultured with allogeneic activated T cells. CTLA4 expression was measured after 48 hours using surface and

intracellular flow cytometry (n = 5). (E) Matched primary CLL leukemia samples were obtained from patients before treatment and after 5 months of acalabrutinib treatment. CLL cells

were cocultured with allogeneic activated T cells. CTLA4 expression was measured after 48 hours using surface and intracellular flow cytometry (n = 3). Graphs show mean +

standard error of the mean. *P < .05 by mixed effect modeling (A-C) or paired ttest (D-E). ns, not significant.

transcript is also expressed in CLL cells (Figure 3A). This transcript
is suppressed by ibrutinib or acalabrutinib, similar to the total
CTLA4 transcript (Figure 3B). However, soluble CTLA4 isoform
protein was not detectable in CLL patient plasma by ELISA
(Figure 3C). In this experiment, soluble CTLA4 was detectable
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(=89 pg/mL) in O of 4 healthy donors, 1 of 16 CLL patients, and 3
of 4 AML patient samples. The lack of detectability in serum of this
soluble isoform in the large majority of patients with CLL (94%) sug-
gests it may not contribute significantly to CLL-induced T-cell
dysfunction.
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Figure 2. CLL CTLA4 expression is primarily stimulated by CD4 T cells. CLL cells were cocultured with activated total T cells, CD4™ T cells, or CD8" T cells. CTLA4
expression on CLL cells was measured 48 hours later by surface and intracellular flow cytometry and compared by ANOVA (n = 7 surface, 5 total CTLA4). *P < .05 by ANOVA;

**P < .01 by ANOVA

IFN-y release from T cells has been shown to upregulate immune
checkpoints such as PD-L1 on tumor cells.*® Therefore, we tested
the effects of IFN-y on CLL CTLA4 expression in vitro. We found
that IFN-y did significantly increase CTLA4 mRNA expression in
CLL cells, which was prevented by ibrutinib or acalabrutinib treat-
ment (Figure 4A). Although IFN-y stimulation did somewhat increase
CTLA4 surface expression and total CTLA4 protein, its effect was
modest in comparison with coculture stimulation (Figure 4B). This
indicates that IFN-y contributes to the early stages of CTLA4
expression (transcription/translation), but that optimal translocation
of CTLA4 protein to the leukemia cell surface is induced by other
stimuli from T cells.

Finally, we conducted a preliminary analysis of the kinase responsi-
ble for CTLA4 regulation in CLL cells. CLL cells only express 4 kin-
ases with a cysteine in the correct position for irreversible ibrutinib
binding: BTK, TEC, BLK, and JAK3.*° Of these, our experiments
with acalabrutinib demonstrate that BTK does not serve this role,
and prior papers have demonstrated that TEC and JAK3 do not
phosphorylate CTLA4.#9°° Therefore, we tested the effects of ibruti-
nib on B-lymphocyte kinase (BLK) to see if this may be a potential
target. We found that 1-hour treatment with ibrutinib, but not acalab-
rutinib, did decrease BLK phosphorylation in CLL cells (Figure 5).
This suggests that BLK may be the contributing kinase to CTLA4
membrane localization in CLL cells.

Discussion

Here we demonstrate a new mechanism of immunomodulation by
ibrutinib: decreased CTLA4 on CLL leukemia cells. This effect is
likely to be beneficial given this protein’s established roles in immu-
nomodulation and CLL cell survival and proliferation. By showing
that ibrutinib does not inhibit T-cell CTLA4 expression, we demon-
strate a different regulatory mechanism driving CTLA4 expression in
CLL cells vs T cells where we show that the decrease in T-cell
CTLA4 expression seen during ibrutinib treatment occurs indirectly.
CTLA4 is an established marker of T-cell exhaustion, so the
decreased CTLA4 seen in CLL patients’ T cells may not be a
marker of direct CTLA4 suppression but rather a marker of
improved T-cell function and reversal of the exhausted phenotype
seen in patients with CLL."®%7°' The differential effect of ibrutinib
vs acalabrutinib indicates that the suppression of CTLA4 protein
expression occurs through a non-BTK-dependent mechanism.
Although recent efforts have developed more selective BTK
inhibitors in an effort to decrease medication side effects, our results
indicate that off-target immunomodulatory effects may be an
underappreciated benefit from ibrutinib treatment (although
data suggest that more-selective BTK inhibitors do also have
beneficial effects on immune function).2®®” Increased selectivity for
BTK may instead have the unintended effect of removing the

A CLL CTLA4 mRNA B CLL sCTLA4 mRNA C sCTLA4 ELISA
40 %\ 1.5 1 N
30 E * = ® «4— Exceeds
b A v = oo
@ m ﬁ ° g 5 1.0 1 < 2000 4 quantifiable
§ 20 - A % g ° range
— = =t
< 5 05 = 1000 - —
10 ~ S i
= °
L2 °
0 T T T 0.0 - 0 T
& S & & S
% && N o & €
i

Figure 3. Soluble CTLA4 production by CLL. (A) mRNA of total, soluble, and membrane-bound CTLA4 was measured by qPCR using isoform-specific primers (n = 14
total CTLA4, 14 soluble, 8 membrane-bound). (B) CLL cells were treated with 1 uM ibrutinib or acalabrutinib for 1 hour before washing. sCTLA4 mRNA levels were
measured 4 hours later by gqPCR (n = 4 ibrutinib, 6 acalabrutinib). (C) Plasma was obtained from healthy donors, patients with CLL, and patients with AML by centrifugation
of whole blood, and sCTLA4 levels were measured by ELISA (n = 4 healthy donors, 16 patients with CLL, 4 patients with AML). Graphs show mean *+ standard deviation.

*P < .05 by mixed effect modeling. Ct, threshold cycle.
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Figure 4. IFN-y stimulates CTLA4 mRNA production. (A) CLL cells were treated with 1 wM ibrutinib or acalabrutinib for 1 hour before washing and stimulation with
100 IU/mL IFN-y for 48 hours. Total CTLA4 mRNA was measured by gPCR (n = 10 unstim, 10 IFN-y, 9 IFN-y+ibru, 7 IFN-y-+acal). (B) CLL cells were stimulated with
100 IU/mL IFN-y for 48 hours and then CTLA4 expression was quantified by flow cytometry. The left 2 columns represent paired unstimulated vs IFN-y—stimulated samples

(n = 13), and the right column represents unrelated coculture-stimulated CLL cells (n = 12). Graphs show mean * standard deviation. *P < .05 by mixed effect modeling

(A) or paired t test (B). ns, not significant.

non-BTK benefit of CTLA4 suppression, a protein that both sup-
presses T cells and promotes malignant B-cell growth and
survival.232°

In T cells, CTLA4 trafficking is regulated by its phosphorylation,
which inhibits binding to AP-2 and clathrin-mediated endocytosis.
Our finding that the kinase inhibitor ibrutinib suppresses CTLA4 sur-
face expression in CLL cells suggests that a similar mechanism may
regulate CTLA4 in CLL cells, although the differences in ibrutinib
response between CLL and T cells suggest a different kinase is
involved. Our data demonstrate that ibrutinib treatment decreases
BLK phosphorylation in CLL cells and, especially because the

demonstrated to phosphorylate CTLA4 in T cells, it is plausible to
speculate that Blk may serve a similar role in CLL, although more
research will be needed to test this.*° In T cells, CTLA4 phosphory-
lation also regulates binding to AP-1 and subsequent lysosomal
degradation, which may explain the decreased total CTLA4 protein
seen after ibrutinib treatment of CLL cells.>?

The soluble CTLA4 isoform is a little-understood aspect of CTLA4
biology, and we were surprised to see its expression also in leuke-
mia cells. The discrepancy between active mRNA expression and
absent CTLA4 protein may be related to a lack of translation, pro-
tein degradation, sCTLA4 release from the cell, or other factors, but

related Src-family kinases Fyn, Lyn, and Lck have been overall, this isoform is unlikely to have a significant impact in CLL
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Figure 5. Ibrutinib inhibits BLK phosphorylation. CLL cells were treated with 1 pM ibrutinib or acalabrutinib for 1 hour before lysing, and BLK, phosphorylated BLK,

and GAPDH levels were measured by western blotting. Numbers below each band indicate fold change vs the vehicle control, normalized by GAPDH. Figure shows 2

representative patient samples of 3 studied.
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because of undetectable levels in patient plasma. IFN-y has been
tied to immune evasion in multiple studies of cancer-immune interac-
tions.*® Although IFN-y alone was not sufficient to induce significant
CTLA4 surface expression in CLL cells, its ability to upregulate
CTLA4 mRNA (which was also prevented by ibrutinib treatment)
and total protein may contribute indirectly to CLL immune evasion
and immunosuppression. The requirement of coculture for effective
CTLA4 surface expression implicates membrane receptors, although
it is difficult to speculate on a particular ligand given the numerous
receptors that communicate between B and T cells; this may be a
useful direction for future investigation. Overall, our data point to
beneficial other-target effects of ibrutinib, and further development
of treatments that target this mechanism may lead to beneficial
immunomodulatory effects to trigger anti-leukemia immune
responses in CLL.
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