Skip to main content
. 2022 Oct 18;7(43):38686–38699. doi: 10.1021/acsomega.2c04211

Table 1. Major CO2 Reduction Products and Their Respective Titania Photocatalysts.

Various TiO2 catalyst Photoreactor condition Product and yield (μmol g–1h–1) Key Parameters for improved performance ref
TiO2 anatase particles 8 W Hg lamp CH4: 3.9 Optimal particle size (14 nm) resultant the highest yield (66)
CH3OH: 0.5
H2: 58.3
CO: 0.5
TiO2 pellets UV irradiation CH4: 6.2   (67)
H2: 3
TiO2 (anatase, rutile, brookite) 90 mW/cm2 solar simulator CH4: 3.16 The yield takes the order brookite > anatase > rutile; the enhancement was ascribed to the formation of oxygen vacancies and Ti3+ on the surface of brookite (47)
CO: 2.8
TiO2 UV irradiation CH4: 4.11   (68)
CO: 0.14
C2H6: 0.1
TiO2 pellets (80% anatase) Three UVC lamps CH4: 4.16 Three UV lamps at 253.7 (nm) (69)
TiO2 pellets UVC lamp CH4: 0.25   (70)
H2: 0.16
Ultrathin TiO2 flakes 300 W Hg lamp CHOO: 1.9 Ultralarge surface area (71)
Anatase TiO2 by coexposed {001} and {101} facets 300 W simulated solar Xenon arc lamp CH4: 1.35 Anatase TiO2 single crystals worked as heterojunction between the existences of facets (72)
Anatase TiO2 nanosheets with exposed 95% facet 300 W xenon arc lamp CH4: 6 Exposing a higher percentage of active facets of the TiO2 photocatalyst (73)
Mesoporous TiO2 nanofibers 300 W xenon arc lamp with UV–vis light irradiation CH4: 19.55 Solvothermal treatment enhanced the charge separation and the released adsorption sites (74)
Hollow anatase TiO2 300 W xenon arc lamp CH4: 1.7   (75)
Bicrystalline TiO2 (anatase– brookite) 150 W solar simulator CO: 2.1 The interfaces between anatase and brookite nanocrystals enhanced the charge transfer and electron–hole separation (76)
CH4: 0.05
Cubic anatase TiO2 300 W xenon lamp CH4: 4.56 High crystallinity and the band position of coexposed facets {100} and {001} are more negative (77)
CH3OH: 1.48
TiO2 nanosheets with exposed {001} facet Two 18 W Hg lamps CH4: 0.204 High-energy exposed {001} facets facilitate the charge separation and lower recombination rate of the carriers (78)
CO: 0.106
CH3OH: 0.18
CH2O: 0.063
H2: 0.105
TiO2 nanoparticles 500 W high-pressure xenon lamp CH3OH: 0.48   (79)
Photosensitized TiO2 nanotubes 500 W xenon lamp CH3OH: 131.1 Nanotubes with high specific surface area and high-intensity light source (80)
CH4: 0.96
H2: 17.2
TiO2 (P25) 500 W xenon lamp CH3OH: 32.2    
CH4: 0.62
H2: 7.4
Anatase TiO2prepared by optimizing the hydrothermal recrystallization process 300 W xenon lamp CH4: 48   This Work