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ABSTRACT
Bone mass loss contributes to the risk of bone fracture in the elderly. Many factors including age,
obesity, estrogen and diet, are associated with bone mass loss. Mice studies suggested that the
gut microbiome might affect the bone mass by regulating the immune system. However, there
has been little evidence from human studies. Bone loss increases after menopause. Therefore, we
have recruited 361 Chinese post-menopausal women to collect their fecal samples and metadata
to conduct a metagenome-wide association study (MWAS) to investigate the influence of the
gut microbiome on bone health. Gut microbiome sequencing data were produced using the
BGISEQ-500 sequencer. Bone mineral density (BMD) was calculated using a Hologic dual energy
X-ray machine, and body mass index (BMI) and age were also recorded. This collected data allows
exploration of the gut microbial diversity and their links to bone mass loss as well as to microbial
markers for bone mineral density. In addition, these data are potentially useful in studying the
role that the gut microbiota might play in bone mass loss and in exploring the process of bone
mass loss.

Subjects Genetics and Genomics, Metagenomics, Medical Microbiology, Molecular Infection Biology

CONTEXT
Bone mass loss is a process where calcium and phosphate from the bones is reabsorbed
into the rest of the body instead of being retained in the bones, making our them weaker [1].
It is a severe and common condition among the elderly, especially during menopause, when
estrogen loss occurs and bone mass decreases, thus increasing the risk of bone fracture,
which can result in acute pain and even death [2]. Recently a new concept,
“osteoimmunology”, has revealed tight interactions between the immune system and bone
metabolism [3]. Interestingly, it has been widely recognized that the gut microbiota could
influence host health by interacting with the host immune system [4]. But most related
research [4, 5] has been carried out using mice and 16S sequencing, which is of poor
taxonomic resolution, low sensitivity, and contains no functional related information [6].
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Figure 1. Protocol collection for sequencing and analysing female bone mass loss from the microbiota [7]. https:
//www.protocols.io/widgets/doi?uri=dx.doi.org/10.17504/protocols.io.bq9kmz4w

Shotgun sequencing is of high enough resolution to explore the relationship between the
gut microbiome and bone loss at both the species and functional levels. In our study, we
enrolled 361 postmenopausal women who did not use antibiotics in the one month prior to
the study and came from different communities in Shenzhen. Their stool samples and
multiple metadata related to bone loss were collected for a metagenome-wide association
study (MWAS).

METHODS
A protocol collection including methods for DNA sequencing, QC, and bioinformatics is
available via protocols.io (Figure 1) [7].

Sampling strategy
Samples were collected from May 20 to September 17, 2017 at the medical center of
Shenzhen People’s Hospital (Shenzhen, China). According to records, none of the volunteers
used antibiotics within one month prior to the study. Fecal samples from each of the 361
post-menopausal women were collected and immediately frozen at −80 °C for storage
(sTab 1 [8]). The samples were then transported on dry ice to BGI-Shenzhen, total DNA
extraction, detection [9], and sequencing using the BGISEQ platform (BGISEQ,
RRID:SCR_017979), which were conducted according to previously published protocols [10,
11]. The raw reads that had 50% low-quality bases (quality ≤ 20) or more than five
ambiguous bases were excluded. The remaining reads were mapped to the human genome
(hg19) by SOAP v2.22 (-m 100 -x 600 -v 7 -p 6 -l 30 -r 1 -M 4 -c 0.95) to remove the human DNA
(sTab 3 [8]). The high-quality non-human reads were defined as cleaned reads following
previous methods [12, 13].

Ethics approval and consent to participate
This study was approved by the Institutional Review Board on Bioethics and Biosafety at
Shenzhen People’s Hospital (LL-KY-2019506) and BGI (BGI-IRB 19126). In addition, all the
volunteers were fully informed of the significance and scientific value of the project, and
they voluntarily agreed to sign informed consent forms for scientific use of the metadata.
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Moreover, the informed consent included using information on phenotype. The sample
names were also anonymized.

Taxonomic and functional abundance calculation
The cleaned data were used for the annotation and profile acquisition of taxons using
MetaPhlan2 (MetaPhlAn, v2.0, RRID:SCR_004915, code: metaphlan2.py input.fastq
–input_type fastq –nproc 10 > profiled_metagenome.txt) [14]. We removed the species
present in less than 10% of the samples for later analysis. For functional abundance
calculation, the putative amino acid sequences were first translated from the gene
catalogues [15] and aligned against the proteins/domains in the KEGG databases (release
79.0, with animal and plant genes removed) using BLASTP (v2.2.26, code: blastall -p balstp
-m 8 -e 0.01 -a 6 -b 100 -K 1 -F T -m 8 -d database -o output -i input). Each protein was
assigned to the KO group by the highest scoring annotated hit(s) containing at least one HSP
scoring >60 bits. The relative abundance profile of KOs was determined by summing the
relative abundance of genes from each KO [14, 16]. The KO abundance was used as the
input file to calculate the profile of gut metabolic modules (GMMs, evaluating gut metabolic
potential and anaerobic fermentation capacity). The code is shown as below: java -jar
GMM/omixer-rpm-1.1.jar -d gmm_input.txt -i $OUTPUT_DIR/normalization.pr -s average -o
$OUTPUT_DIR/ [17].

Two-stage least squares regression analysis [18]
Stage 1: In the first step, we fit the relationship between the taxonomic abundance or
metabolic module abundance and the age and BMI to a linear regression and saved the
prediction value. Details of the taxonomic abundance are in the “Taxonomic abundance
calculation” section (sTab 3 [8]). Details of the metabolic module abundance are in the “Gut
metabolic modules analysis” section (sTab 4 [8]). This step was used to adjust for the effects
of age and BMI to the contribution of BMD by taxonomic abundance or metabolic module
abundance.

Stage 2: Five-fold cross-validation was performed ten times on a random forest
regression model (Y: the BMD T score; X: the prediction value from the stage 1). The error
curves from ten trials of five-fold cross-validation were averaged. We chose the model that
minimized the sum of the test error and its standard deviation in the averaged curve.

Alpha-diversity and count
The within-sample diversity was calculated via the Shannon index (sTab 4 [8]), as described
previously [6]. A genes was considered present if more than one read mapped to it.

DATA VALIDATION AND QUALITY CONTROL
The metagenomic shotgun sequencing of 361 samples was performed, obtaining an average
of 7.7 gigabases (Gb) clean data per sample (sTab 3 [8]). To explore the utility of this data,
the life and clinical index (sTab 1–2 [8]) to the T-score in our cohort was assessed and
significant factors such as age and body mass index (BMI) to the microbiome were excluded,
and the alterations of the gut microbiome along with the T-score were evaluated. Finally, a
stable regression model was built at the species and module levels for the cohort. The
T-score of the BMD in the lumbar spine was used to represent the bone mass.
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STATISTICAL ANALYSES
Generally, statistical significance was set to 0.05 and only patients with complete data were
analyzed.

REPRODUCIBLE RESEARCH
Others could reproduce the reported analysis from clean reads by the declared software
and parameters [7, 8].

RESULTS
The BMD was calculated from data obtained using a Hologic dual energy X-ray machine at
Shenzhen people’s Hospital (sTab 1 [8]). We used the T-score of BMD in the lumbar spine to
represent the bone mass [19]. A sample’s T-score is a relative measure of the sample’s BMD
compared to the reference population of young, healthy individuals with the same gender.
The T-score is classified as normal (T-score of −1 or above), low (T-score of −1 to −2.5) or
osteoporosis (T-score < −2.5).

Result 1. A mild gut microbiome dysbiosis has been seen for bone
mass loss
To explore alterations of the gut microbiome along with the change in the T-score, the
change in different taxonomy levels was analyzed. Diversity at gene (p = 4.53 × 10−9,
adjusted R2 = 0.0904, linear regression, Figure 2b, sTab 4 [8]), species (p = 1.17 × 10−15,
adjusted R2 = 0.162, linear regression, Figure 2d, sTab 4 [8]), and genus (p = 7.98 × 10−14,
adjusted R2 = 0.144, linear regression, Figure 3b, sTab 4 [8]) levels increased with the T-score
and was probably caused by an increase of pathogenic microcells in the gut. In addition, the
count data also showed an increase in the T-score at the gene (p = 0.0114, adjusted R2

= 0.0152, linear regression, sFigure 2a), species (p = 2.33 × 10−5, adjusted R2 = 0.0465, linear
regression, Figure 2c, sTab 5 [8]), and genus (p = 7.73 × 10−10, adjusted R2 = 0.0992, linear
regression, Figure 3a, sTab 6 [8]) levels. To further characterize the changes, the top 20 most
abundant species were chosen (Figure 1c). The data demonstrated that the B. stercoris, E.
coli, B. uniformis, B. coprocola, B. fragilis , E. rectale, and E. eligens were significantly
negatively associated with the T-score, while data for B. vulgatus, B. massiliensis, B. caccae
andMegamonas unclassified displayed an obvious positive correlation with the T-score
(Figure 3c). In addition, in the top 15 abundant genera, the Eubacterium, Escherichia,
Subdoligranulum, Klebsiella, Clostridium and Blautia were significantly negatively
correlated with the T-score (Figure 4, sTab 6 [8]). Among these genera, Eubacterium and
Escherichia are normal microorganisms of the gut and can cause infection under
opportunistic conditions. Positively correlated genera included the Prevotella,
Parabacteroides, Megamonas and Akkermansia (Figure 3). For the top 10 enriched phyla, the
Bacteroidetes, Verrucomicrobia, Fusobacteria, Euryarchaeota and Ascomycota were
positively correlated with the BMD T-score (Figure 5, sTab 7 [8]), while the Proteobaccteria,
Actinobacteria, Synergistetes and Chlorobi were negatively correlated (Figure 5).

Result 2. Species linked to BMD
To select the species with strong correlations using the T-scores, we used the two-stage least
square method [18] to regress the species to the T-score (details are shown in the Methods
section). The model showed a high R-squared value (>0.99, sTab 3a [8], Figure 6a), and 18
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Figure 2. Slight increase in gut microbial diversity. (a,b) Count and Shannon index at the gene and species level
of the two cohorts (liner regression).

species were selected. These species were ranked by their importance (Figure 6b). The
Spearman’s rank correlation was used to evaluate the relationship between the selected
species and the clinical indexes (Figure 6c). From these findings, it was easy to see that
some T-score negatively correlated species, including Streptococcus parasanguinis,
Clostridium perfringens, Haemophilus sputorum, Enterobacter aerogenes, Actinobacillus
unclassified, and Chlorobium phaeobacteroides were negatively connected with triglyceride
(TG) levels, but were positively correlated with β-Crosslaps (CROSSL) and high-density
lipoprotein (HDL). Meanwhile, some T-score positively correlated species, such as Roseburia
intestinalis, a butyrate-producing bacterium, could influence the human immune
system [20]. Enterobacter cloacae and Sutterella wadsworthensis were positively correlated
to TG but were negatively to CROSSL and HDL.

Result 3. Functional modules indicating bone mass loss
To find the functional modules highly correlated with the T-score, the two-stage least square
method was used [18]. Thirteen modules with the R-squared values higher than 0.99
(sTab 3a [8], Figure 7a) were obtained by the model and plotted in rank by their importance
(Figure 7). In addition, the negatively correlated functional modules, like lactate
consumption, sucrose degradation, and tryptophan degradation were positively associated
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Figure 3. Slight increase in gut microbial richness. (a,b) Richness and alpha-diversity (Shannon index) at the
genus level of the two cohorts (liner regression). (c) The top 15 species. (The Spearman’s correlation, “+” for p
< 0.05; “*” for p < 0.01).
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Figure 4. Means of the top 15 most abundant genera. The Spearman’s correlation, “*” for p < 0.01.

with HDL and CROSSL, but negatively correlated with TG. In contrast, the BMD positively
correlated functional modules, such as pectin degradation, trehalose degradation, arginine
degradation (which can prevent bone mass loss and bone collagen breakdown in rat
model [21]), mucin degradation, and rhamnose degradation were positively associated with
TG, but negatively correlated with HDL and CROSSL. More detailed information on these
functional modules can be found in Figure 8.

DISCUSSION
We carried out the first study to explore the alteration of the gut microbiome along with
bone mass loss in 361 post-menopause Chinese urban women with MWAS. Firstly,
taxonomy diversity was observed to increase at various levels, which could have resulted
from growth of some opportunistic pathogens in the gut. In addition, some T-score highly
correlated species and functional modules were also revealed by our study, which might
offer new strategies for better diagnosis and mechanistic understanding of bone mass loss.

For the volunteers, we tried to exclude the influence of gender, region, and antibiotics on
the bacterial flora, as post-menopausal women in Shenzhen who had no history of
antibiotic use within the one month before the study were selected. Furthermore, the
sample size was large enough for us to resolve the change in the gut microbiome along with
bone mass loss. Our data suggest that the gut microbiome is closely related to the process of
bone mass loss in post-menopausal urban women in China. Although the mechanism of
how the gut microbes affect and modulate bone metabolism is not fully understood, our
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Figure 5. Means of the top 10 most abundant genera. The Spearman’s correlation, “+” for p < 0.05; “*” for p < 0.01.

research indicates that gut microbiota may be novel targets for the prevention of bone mass
loss and provide a new avenue for future studies and treatment in this field.

POTENTIAL RE-USE
This is the first dataset where 361 high-quality metagenomics datasets were collected from
elderly Southern Chinese urban women. All the clinical indexes have also been provided in
the table in GigaDB [8]. By initial exploration of these data, we can see a slight correlation
between the gut microbiome and the bone mass loss. Meanwhile, we have also found some
biomarkers related to the bone mass loss at both the species and function levels. For
potential re-use, the clinical details collected here, such as the relationship between
tea-drinking and bone mass or metagenomics, make this dataset valuable for further
analysis. While we were unable to clearly determine any strong signals between the gut
microbiome and bone mass loss with our methods, we hope that others can find novel
insight in this dataset by using different statistical approaches. With the moderate sample
size and detailed information on a number of clinical features, it might be a useful dataset
to combine with and/or compare to other gut microbiome datasets.

DATA AVAILABILITY
The filtered non-human DNA reads have been deposited at EBI (bioproject number
PRJNA530339) and the CNGB CNSA [22] database (accession code CNP0000398). Abundance
and other tabular data and a STORMS (Strengthening The Organizing and Reporting of
Microbiome Studies) checklist is available in the GigaScience GigaDB repository [8].
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Figure 6. Fecal microbial species markers for BMD. (a) The R-squared value during the ten-time cross-validation process (the blue lines show the ten different
process, the red line shows the average of the ten-time cross validation, and the pink line shows the best variables). (b) The lncMSE of the 18 chosen species
markers. (c) The correlation between the markers and the clinical indeces. (Spearman’ correlation, “+” for p < 0.05; “*” for p < 0.01).
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Figure 7. Fecalmicrobialmodulesmarkers for BMD. (a) TheR-squared values during the ten-time cross-validation process (the blue lines show the ten different
process, the red line shows the average of the ten-time cross validation, and the pink line shows the best variables). (b) The lncMSE of the 13 chosen modules
markers. (c) The correlation between the markers and the clinical indeces. (Spearman’ correlation, “+” for p < 0.05; “*” for p < 0.01).
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Figure 8. The heatmap of gut metabolic modules with clinical indeces. Spearman’ correlation, “+” for p < 0.05; “*”
for p < 0.01.
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