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Abstract 

Background:  The role of the Endocannabinoids (ECs) in insulin resistance, and their association with visceral obesity 
and metabolic profile have been studied extensively. Since the association between ECs and metabolic factors in 
Gestational Diabetes Mellitus (GDM) are not clear, we aimed to evaluate the levels of N-Arachidonoylethanolamide 
(AEA) and 2-Arachidonoylglycerol (2-AG) and their association with C-reactive protein (CRP), glycemic indices, blood 
pressure, and anthropometric indices in pregnant women with GDM.

Methods:  The present case–control study was conducted among 96 singleton pregnant women aged 18–40 years, 
including 48 healthy pregnant women (control group) and 48 women with a positive diagnosis of GDM (case group). 
Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for GDM were checked according to endocannabinoids and 
anthropometric indices using Multivariable Logistic Regression.

Results:  AEA was significantly associated with increased risk of GDM in models 1, 2 and 3 (OR = 1.22, 95% CI: 1.06–
1.41; OR = 1.54, 95% CI: 1.19–1.97; OR = 1.46, 95% CI:1.11–1.91). A positive but no significant association was found for 
AEA in model 4 (OR = 1.38,95% CI: 0.99–1.92). Similar to AEA, 2-AG was also positively associated with the likelihood of 
GDM in Models 1, 2, and 3 but the association attenuated to null in model 4 (OR = 1.25; 95% CI: 0.94- 1.65).

Conclusions:  Our findings showed that levels of ECs were significantly higher in pregnant women with GDM com-
pared to healthy ones. Also, ECs levels were associated with the likelihood of GDM, independent of BMI and weight 
gain.
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Introduction
Gestational Diabetes Mellitus (GDM) is the state of the 
glucose tolerance impairment which is diagnosed during 
the second and third trimesters of pregnancy. GDM is a 
growing health problem worldwide and is one of the most 
common complications of pregnancy. Approximately 

14% of the pregnancies are affected by GDM throughout 
the world yearly [1, 2]. The prevalence of GDM is esti-
mated to be around 11.5% in Asia [3] and its prevalence 
varies widely from 1.3% to 18.6% in Iran [4]. Obesity, his-
tory of GDM, and family history of diabetes are consid-
ered as the major risk factors of GDM [5, 6]. Pregnant 
women with GDM are more likely to develop cesarean 
section, preeclampsia, and hypertension. Moreover, these 
women have a significantly higher risk of developing 
type 2 diabetes mellitus (T2DM), metabolic syndrome, 
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cardiovascular diseases, and depression in later years of 
their life [7, 8].

Endocannabinoids (ECs) are known as endogenous 
lipid mediators and are ligands of specific G protein-cou-
pled receptors. Unlike neurotransmitters which are usu-
ally stored in vesicles before release, endocannabinoids 
are synthesized from membrane phospholipid fatty acids 
based on demand and act as autocrine or paracrine medi-
ators. 2-Arachidonoylglycerol (2-AG) and Anandamide 
or N-arachidonoylethanolamine (AEA), are derivatives of 
arachidonic acid, and are the most studied endocannabi-
noids [9, 10]. Endocannabinoids, their synthesizing and 
metabolizing enzymes, and their receptors constitute the 
endocannabinoid system (ECS). It has been revealed that 
the overactivation of cannabinoid receptors type 1 (CB1) 
has a significant role in lipogenesis, hepatic steatosis, 
obesity, and insulin resistance [11–13]. The CB1 recep-
tor is found in CNS and in peripheral organs which con-
trol metabolism and activates anabolic pathways in favor 
of energy storage [14]. The proposed role of the ECS in 
diabetes pathogenesis has been documented by increased 
concentrations of ECs in diabetic patients. According 
to Matias et al., the circulation levels of 2-AG and AEA 
were higher in T2DM patients compared to healthy vol-
unteers [15]. Although the pancreatic β-cell dysfunction 
and insulin resistance are the main metabolic alterations 
in GDM [16], there is still no agreement in GDM patho-
physiology. Therefore, complete understanding of the 
pathophysiology of GDM might help to develop preven-
tion and treatment methods.

Given the putative role of the ECs in insulin resistance, 
and since the association between ECs and metabolic fac-
tors in GDM are not clear, we aimed to evaluate the levels 
of 2-AG and AEA and their association with C-reactive 
protein (CRP), glycemic indices, blood pressure, and 
anthropometric indices in pregnant women with GDM.

Methods and materials
Participants
This case–control study was carried out among 96 preg-
nant women (carrying only one baby) aged 18–40 years, 
including 48 healthy pregnant women (control group) 
and 48 women with a positive diagnosis of GDM (case 
group). The study participants were selected by ran-
dom sampling from the government Obstetrics and 
Gynecology Clinics in Ardabil city, Iran(From Septem-
ber 2021 to December 2021).. The sample size was esti-
mated based on the AEA level in T2DM patients attained 
from the study by Van Eyk et al. using the following for-
mula: N = [ (z1-α/2)2 × sd2]/d2 (α = 0.05, sd = 0.41, and 
d = 0.1312) and 39 subjects were calculated for each 
group [17]. Finally, regarding the 20% withdrawal rate, 
48 subjects were determined for each group. The GDM 

screening was done between the 24th and 28th weeks of 
the gestation using a 100 g Oral Glucose Tolerance Test 
(OGTT). Pregnant women who met the American Dia-
betes Association (ADA) criteria such as fasting ≥ 95 mg/
dl, 1-h ≥ 180 mg/dl, 2-h ≥ 155 mg/dl, were diagnosed as 
having GDM (any two values equal or above-established 
thresholds) [18, 19]. Controls were the pregnant women 
whose OGTT results were in the normal range at the 
24th and 28th weeks of gestation. A history of gestational 
diabetes or diabetes (prepregnancy), having other disor-
ders (such as cardiovascular, liver, and renal disorders), 
adherence to specific diets, multiple pregnancies, and 
unwillingness to participate in the study, were exclusion 
criteria. The participants were fully informed about the 
study’s protocol and they were requested to sign the writ-
ten informed consent. This study was approved by the 
Ethics Committee of the Khalkhal University of Medical 
Science (IR.KHALUMS.REC. 1398.006).

Measurements
Demographic and physical activity data were acquired 
through a questionnaire. To assess the participants’ phys-
ical activity levels, the short form of the International 
Physical Activity Questionnaire (IPAQ) was applied [20, 
21]. The participants’ food intake was obtained using 
24-h recall questionnaires (2 weekdays and 1 week-
end day) through the interview with trained dietitians. 
Macronutrient intakes and total energy intake were then 
computed using Nutritionist IV software (the Hearst 
Corporation, San Bruno, CA) as modified for Iranian 
foods.

Body weight was measured using a Seca scale with an 
accuracy of 100 gr. Stature was evaluated in standing 
position without shoes using a Seca stadiometer with an 
accuracy of 0.5  cm. Then, body mass index (BMI) was 
computed as the body weight (kg) divided by the square 
of height (m2). The systolic blood pressure (SBP) and dias-
tolic blood pressure (DBP) were determined by a mercury 
sphygmomanometer (Samsung, Japan) after 5  min rest-
ing on a chair in the right arm. For biochemical analyses, 
5 cc blood samples were collected from each participant 
after 10–12 h fasting. To measure the plasma 2-AG and 
AEA, the blood in EDTA-coated tubes was centrifuged at 
1500 g at 4 °C for 15 min and was then stored at -80 °C. 
ELISA kits (ZellBio, GmbH, Veltinerweg, Germany) 
were applied to evaluate the plasma levels of 2-AG and 
AEA. Fasting blood glucose (FBS) was evaluated by the 
enzymatic method with kits from Pars-Azmoon (Teh-
ran, Iran) with a sensitivity of 5  mg/dL and an internal 
measurement degree of 1.28. CRP levels were assessed by 
the human CRP ELISA kit from Pars-Azmoon (Tehran, 
Iran) with a sensitivity of 2  mg/L. An automated high-
performance liquid chromatography (HPLC) exchange 
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ion method (DS5 England) was used to measure HbA1C. 
Ion-exchange HPLC separates hemoglobin species 
based on charge differences between HbA1c and other 
hemoglobins [22]. The chemiluminescent immunoassay 
method was applied to assess the insulin levels (LIAI-
SON analyzer (310,360) Diasorin S.P.A, Vercelli, Italy). 
In this assay, a monoclonal antibody is coated on the sur-
face of the test plate and another antibody labeled with 
CL is used as the indicator. In the presence of insulin, the 
reacted complex produces chemiluminescence and its 
intensity is correlated with the insulin concentration [23]. 
Then, Homeostasis Model Assessment—Insulin Resist-
ance (HOMA-IR) was computed using the following 

formula: Fasting Glucose(mg/dl) × Fasting Insulin (μu/
ml)/405.

Statistical analysis
All statistical analyses were done using IBM SPSS Statis-
tics software version 24 (IBM SPSS Statistics, Armonk, 
USA). The normality of the variables was assessed using 
the Kolmogorov–Smirnov test. The differences in varia-
bles between the study groups were tested using an inde-
pendent sample t-test and Chi-square test for parametric 
variables and categorical variables, respectively. Lin-
ear regression analysis was used in 4 models (Model 1: 
unadjusted, model 2: adjusted for energy, carbohydrate, 

Table 1  The characteristics of the subjects in the control and GDM groups

Abbreviation: GDM Gestational Diabetes Mellitus, BMI Body mass index
a  A high school diploma or high school degree is awarded upon high school graduation. An associate degree is an undergraduate degree awarded after a course of 
post-secondary study lasting two to three years

Values are expressed as means ± SD. *P < 0.05 was considered as significant using Independent t-test for comparison between the two groups. ** P < 0.05 was 
considered as significant using Chi-square test

Variables Control group (n = 48) GDM group (n = 48) P- value

Age (y) 30.16 ± 1.99 30.87 ± 3.39 0.21*

Weight (kg) 69.46 ± 3.56 72.06 ± 5.02 0.004*

Height (cm) 165.68 ± 3.30 165.22 ± 3.24 0.49*

BMI (kg/m2) 25.30 ± 1.18 26.37 ± 1.28  < 0.001*

Weight gain (kg) 8.83 ± 1.32 9.95 ± 1.27  < 0.001*

Week of Pregnancy 26.73 ± 1.36 27.08 ± 1.09 0.16*

Education (N) (%)a

  High school diploma and sub-diploma 9 (69.2) 4 (30.8) 0.47**

  Associate 18 (50) 18 (50)

  Bachelor 14 (43.8) 18 (56.3)

  Master and Ph.D 7 (46.7) 8 (53.3)

Job (N) (%)

  Official 14 (40) 21 (60) 0.22**

  Non-official 19 (61.3) 12 (38.7)

  Housewife 15 (50) 15 (50)

Family history of GDM (N) (%)

  Yes 0 (0) 6 (100) 0.01**

  No 48 (53.3) 42 (46.7)

Family history of type 2 diabetes mellitus (N) (%)

  Yes 6 (31.6) 13 (68.4) 0.07**

  No 42 (54.5) 35 (45.5)

Number of pregnancies (N) (%)

  First 14 (50) 14 (50) 0.87**

  Second 23 (52.3) 21 (47.7)

  Third 11 (45.8) 13 (54.2)

Levels of physical activity (N) (%)

  Moderate 13 (43.3) 17 (56.7) 0.37**

  Heavy 35 (53) 31 (47)

Fetal sex (N) (%)

  Boy 19 (42.2) 26 (57.8) 0.15**

  Girl 29 (56.9) 22 (43.1)
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protein, and fat, model 3: adjusted for energy, carbo-
hydrate, protein, fat, weight gain, and BMI, model 4: 
adjusted for energy, carbohydrate, protein, and fat, 
weight gain, BMI, age, education, job, physical activity 
level, sex of infant, family history of type 2 diabetes and 
gestational diabetes, number of pregnancies, and weeks 
of pregnancy). Also, Odds ratios (95% CI) for gestational 
diabetes was checked using multivariable logistic regres-
sion according to the endocannabinoids (AEA and 2-AG) 
and anthropometric indices (weight, weight gain, and 
BMI) in 4 models as stated above. P < 0.05 was considered 
as statistically significant.

Results
The participants’ characteristics have been presented in 
Table 1. GDM group had significantly higher weight gain 
(P < 0.001), body weight (P = 0.004), and BMI (P < 0.001) 
in comparison with the control group. Moreover, a signif-
icant difference was observed between the study groups 
in terms of the family history of the GDM (P = 0.01). 
Significant differences were observed regarding the bio-
chemical variables and dietary intake, except for protein 
(P = 0.18) and fat (P = 0.19) between the study groups 
(Table  2). The relationship between endocannabinoids 
(AEA and 2-AG) and FBS, HbA1c, insulin, HOMA-IR, 
CRP, SBP, and DBP (dependent variables) in the con-
trol group has shown in Table  3. In all unadjusted and 
adjusted models, a positive significant association was 
observed between the 2-AG and Insulin and HOMA-IR 

(P < 0.05). No significant association was detected 
between AEA and dependent variables (P > 0.05). As 
shown in Table  4, in models 1 and 2, a positive signifi-
cant association was identified between 2-AG and AEA 
with glycemic indices including FBS, HbA1C, insulin 
blood levels, and HOMA-IR (P < 0.05), but these signifi-
cant associations disappeared in models 3 and 4 in GDM 
group. Moreover, in model 4, there was a positive sig-
nificant association between 2-AG and DBP (P = 0.02) 
(Table 4).

Odds ratios (95% CI) for gestational diabetes according 
to endocannabinoid levels (AEA and 2-AG) and anthro-
pometric indices (weight, weight gain, and BMI) were 
illustrated in Table  5. AEA was significantly associated 
with an increased risk of GDM in model 1 and model 2 
(adjusted for energy, carbohydrate, protein, and fat) and 
model 3 (adjusted for energy, carbohydrate, protein, and 
fat, weight gain, and BMI) (OR = 1.22, 95% CI: 1.06–1.41; 
OR = 1.54, 95% CI: 1.19–1.97; OR = 1.46, 95% CI:1.11–
1.91). A positive but not significant association was found 
for AEA in model 4 (OR = 1.38,95% CI: 0.99–1.92). Simi-
lar to AEA, 2-AG was also positively associated with the 
likelihood of GDM in models 1, 2, and 3 but the associa-
tion attenuated to null in model 4 (adjusted for energy, 
carbohydrate, protein, fat, weight gain, BMI, age, educa-
tion, job, level of physical activity, sex of infant, gesta-
tional diabetes, family history of type 2 diabetes, number 
of pregnancies and weeks of pregnancy) (OR = 1.25; 95% 
CI: 0.94- 1.65). Weight gain was associated with increased 
risk of GDM before and after adjustment for confound-
ers (OR = 1.93, 95% CI: 1.35–2.74; OR = 2.07, 95% CI: 
1.28–3.33; OR = 1.87, 95% CI: 1.13–3.12; OR = 3.24, 95% 
CI: 1.55–6.8).

Discussion
For the first time, our findings demonstrated that blood 
levels of ECs were significantly higher in pregnant 
women with GDM compared to the control group. Also, 
ECs levels were associated with the likelihood of GDM 
independent of BMI and weight gain. Plasma levels of 
2-AG were also significantly associated with insulin levels 
and HOMA-IR in the control group. In fact, some com-
ponents of ECS, in particular NAPE-PLD (N-acyl-phos-
phatidylethanolamine [NAPE]-selective phospholipase 
D), fatty acid amide hydrolase (FAAH), and CB receptors 
might also be modulated during the oocyte transpor-
tation from the ovary to the implantation site. In other 
words, it has been widely suggested that the endogenous 
levels of AEA are finely and tightly regulated from the 
very beginning of pregnancy and any dysregulation of 
this parameter severely compromise the pregnancy out-
come [24].

Table 2  The biochemical parameters and dietary intake of the 
subjects in the control and GDM groups

Abbreviation: GDM Gestational Diabetes Mellitus, FBG Fasting blood sugar, 
HbA1C Glycosylated hemoglobin, HOMA-IR Hemostatic model assessment-
insulin resistance, CRP C-reactive protein, SBP Systolic blood pressure, DBP 
Diastolic blood pressure, AEA Anandamide, 2-AG 2-Arachidonoylglycerol

Values are expressed as means ± SD. P < 0.05 was considered as significant using 
Independent t-test for comparison between the two groups

Variables Control group GDM group P- value

FBS (mg/dL) 80.29 ± 1.94 107.83 ± 11.77  < 0.001

HbA1c (%) 4.57 ± 0.46 5.80 ± 0.52  < 0.001

Insulin (μIU/mL) 4.50 ± 1.65 10.63 ± 2.89  < 0.001

HOMA-IR (mmol/L × μIU/
mL)

0.89 ± 0.33 2.86 ± 0.97  < 0.001

CRP (mg/L) 4.65 ± 0.99 5.37 ± 0.91  < 0.001

SBP (mmHg) 115.72 ± 3.89 118.87 ± 3.61  < 0.001

DBP (mmHg) 70.08 ± 2.23 71.83 ± 2.27  < 0.001

AEA (ng/ml) 6.12 ± 1.56 9.05 ± 3.66  < 0.001

2-AG (ng/ml) 8.86 ± 2.43 10.76 ± 3.53 0.003

Energy (kcal) 2274.57 ± 238.51 2508.07 ± 166.66  < 0.001

Carbohydrate (gr) 325.49 ± 44.04 367.00 ± 37.75  < 0.001

Protein (gr) 75.71 ± 17.56 80.82 ± 19.59 0.18

Fat (gr) 75.81 ± 13.25 80.13 ± 18.57 0.19
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Previous studies also found increased circulating lev-
els of AEA and 2-AG in obese women [10, 25–27], obese 
men [28], patients with nonalcoholic fatty liver disease 
(NAFLD) [29], hyperglycemia, and T2DM patients [15].

Osei-Hyiaman et  al. showed elevated blood concen-
trations of AEA and 2-AG in women with obesity [25]. 
In the present study, the blood levels of AEA and 2-AG 
were higher than those reported by cote et al. [28]. It is 
suggested that elevated endocannabinoid concentrations 

may be secondary to marked downregulation of FAAH 
gene expression in adipose tissue of obese women [25]. 
Furthermore, Sipe et  al., suggested that dysregulation/
upregulation of the ECS in obesity may be related to 
genetic predisposition such as the FAAH 385 A/A mis-
sense polymorphism [30].

On the other hand, Abdulnour et al., for the first time, 
showed that circulating levels of the 2-AG are higher 
in insulin-resistant obese individuals compared to 

Table 3  The relationship between endocannabinoids (AEA and 2-AG) with FBS, HbA1c, insulin, HOMA-IR, CRP, SBP, and DBP 
(dependent variables) in the control group

Abbreviation: GDM Gestational Diabetes Mellitus, FBG Fasting blood sugar, HbA1C Glycosylated hemoglobin, HOMA-IR Hemostatic model assessment-insulin 
resistance, CRP C-reactive protein, SBP Systolic blood pressure, DBP Diastolic blood pressure, AEA Anandamide, 2-AG 2-Arachidonoylglycerol
a  B coefficient; regression slope
*  P < 0.05 statistically significant by linear regression. Model 1: unadjusted, model 2: adjusted for energy, carbohydrate, protein, and fat, model 3: adjusted for energy, 
carbohydrate, protein, and fat, weight gain, and BMI, model 4: adjusted for energy, carbohydrate, protein, and fat, weight gain, BMI, age, education, job, level of 
physical activity, sex of infant, family history of type 2 diabetes and gestational diabetes, number of pregnancies and weeks of pregnancy

Variable in the model (AEA) Ba R square (95% CI) P-value* Variable in model (2-AG) Ba R square (95% CI) P-value*

Model 1 Model 1

FBS (mg/dL) 0.09 0.006 (-0.26- 0.46) 0.59 FBG (mg/dL) 0.02 0.001 (-0.21–0.26) 0.84

HbA1c (%) 0.03 0.01 (-0.05- 0.12) 0.41 HbA1c (%) -0.01 0.004 (-0.06- 0.04) 0.68

Insulin (μIU/mL) 0.25 0.5 (-0.05- 0.55) 0.10 Insulin (μIU/mL) 0.34 0.25 (0.17- 0.52)  < 0.001

HOMA-IR (mmol/L × μIU/mL) 0.05 0.05 (-0.01- 0.11) 0.09 HOMA-IR (mmol/L × μIU/mL) 0.06 0.25 (0.03- 0.10)  < 0.001

CRP (mg/L) -0.07 0.01 (-0.26- 0.10) 0.39 CRP (mg/L) 0.07 0.03 (-0.04–0.19) 0.20

SBP (mmHg) 0.29 0.01 (-0.44- 1.02) 0.42 SBP (mmHg) 0.40 0.06 (-0.06–0.86) 0.08

DBP (mmHg) 0.11 0.006 (-0.31- 0.53) 0.59 DBP (mmHg) 0.11 0.01 (-0.15- 0.38) 0.38

Model 2 Model 2

FBS (mg/dL) 0.08 0.06 (-0.29–0.46) 0.64 FBG (mg/dL) 0.005 0.06 (-0.24- 0.25) 0.96

HbA1c (%) 0.04 0.05 (-0.04–0.13) 0.34 HbA1c (%) -0.004 0.03 (-0.06- 0.05) 0.90

Insulin (μIU/mL) 0.16 0.24 (-0.12–0.46) 0.25 Insulin (μIU/mL) 0.28 0.37 (0.10- 0.46) 0.002

HOMA-IR (mmol/L × μIU/mL) 0.03 0.24 (-0.02- 0.09) 0.24 HOMA-IR (mmol/L × μIU/mL) 0.05 0.37 (0.02–0.09) 0.002

CRP (mg/L) -0.08 0.06 (-0.28- 0.10) 0.37 CRP (mg/L) 0.08 0.08 (-0.03- 0.21) 0.16

SBP (mmHg) 0.25 0.16 (-0.46- 0.98) 0.47 SBP (mmHg) 0.37 0.20 (-0.09–0.83) 0.11

DBP (mmHg) 0.15 0.09 (-0.27- 0.58) 0.47 DBP (mmHg) 0.19 0.12 (-0.09- 0.47) 0.17

Model 3 Model 3

FBS (mg/dL) 0.04 0.14 (-0.32–0.42) 0.79 FBG (mg/dL) -0.001 0.14 (-0.24- 0.24) 0.99

HbA1c (%) 0.03 0.09 (-0.05–0.13) 0.42 HbA1c (%) -0.002 0.07 (-0.06- 0.06) 0.95

Insulin (μIU/mL) 0.17 0.28 (-0.12- 0.46) 0.24 Insulin (μIU/mL) 0.27 0.40 (0.09- 0.45) 0.003

HOMA-IR (mmol/L × μIU/mL) -0.03 0.28 (-0.02- 0.09) 0.27 HOMA-IR (mmol/L × μIU/mL) 0.05 0.39 (0.01- 0.09) 0.004

CRP (mg/L) -0.06 0.18 (-0.24- 0.12) 0.52 CRP (mg/L) 0.08 0.21 (-0.03- 0.20) 0.17

SBP (mmHg) 0.19 0.23 (-0.51- 0.91) 0.57 SBP (mmHg) 0.35 0.27 (-0.10- 0.81)

DBP (mmHg) 0.13 0.21 (-0.28- 0.54) 0.53 DBP (mmHg) 0.22 0.25 (-0.04- 0.49) 0.10

Model 4 Model 4

FBS (mg/dL) 0.04 0.42 (-0.35- 0.43) 0.83 FBG (mg/dL) -0.10 0.43 (-0.35- 0.14) 0.39

HbA1c (%) 0.009 0.33 (-0.09- 0.11) 0.86 HbA1c (%) -0.005 0.33 (-0.07- 0.05) 0.86

Insulin (μIU/mL) 0.19 0.50 (-0.12- 0.50) 0.22 Insulin (μIU/mL) 0.26 0.59 (0.08- 0.44) 0.006

HOMA-IR (mmol/L × μIU/mL) 0.03 0.51 (-0.02- 0.09) 0.22 HOMO-IR (mmol/L × μIU/mL) 0.05 0.60 (0.01- 0.08) 0.006

CRP (mg/L) 0.01 0.36 (-0.19- 0.23) 0.86 CRP (mg/L) 0.08 0.39 (-0.04- 0.21) 0.21

SBP (mmHg) 0.49 0.47 (-0.26- 1.24) 0.19 SBP (mmHg) 0.33 0.47 (-0.14- 0.81) 0.16

DBP (mmHg) 0.19 0.36 (-0.27–0.67) 0.40 DBP (mmHg) 0.24 0.40 (-0.04–0.54) 0.09
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insulin-sensitive obese postmenopausal women [9]. It has 
been previously indicated that an increase in 2-AG lev-
els is associated with insulin resistance in adipose tissue. 
Overactivation of CB1 receptor by elevated 2-AG local 
tissue levels is proposed to decrease glucose uptake in 
skeletal muscle, raise abdominal adiposity and free fatty 
acid flow from adipose tissue to the liver developing the 
risk of insulin resistance [31, 32]. Also, CB1 receptor 
overactivation can prevent the translocation of glucose 
transporter type 4 (GLUT4), and has an adverse impact 

on genes controlling the insulin sensitivity in skeletal 
muscles [33, 34]. Additionally, upregulation of the ECS 
can lead to beta-cell loss via stimulation of the Nlrp3-
ASC inflammasome in infiltrating macrophages [35].

In agreement with our findings, some studies have also 
reported 2-AG as the most efficacious endocannabinoid 
relating to dyslipidemia, visceral adiposity, and insu-
lin resistance [9, 36]. In a study by Cote et al., the blood 
concentration of 2-AG, but not AEA, had a positive sig-
nificant relation with waist circumference, BMI, insulin 

Table 4  The relationship between endocannabinoids (AEA and 2-AG) with FBG, HbA1c, insulin, HOMO-IR, CRP, SBP, and DBP 
(dependent variables) in the GDM group

Abbreviation: GDM Gestational Diabetes Mellitus, FBS Fasting blood sugar, HbA1C Glycosylated hemoglobin, HOMA-IR Hemostatic model assessment-insulin resistance, 
CRP C-reactive protein, SBP Systolic blood pressure, DBP Diastolic blood pressure, AEA Anandamide, 2-AG 2-Arachidonoylglycerol
a  B coefficient; regression slope
*  P < 0.05 statistically significant by linear regression. Model 1: unadjusted, model 2: adjusted for energy, carbohydrate, protein, and fat, model 3: adjusted for energy, 
carbohydrate, protein, and fat, weight gain, and BMI, model 4: adjusted for energy, carbohydrate, protein, and fat, weight gain, BMI, age, education, job, level of 
physical activity, sex of infant, family history of type 2 diabetes and gestational diabetes, number of pregnancies and weeks of pregnancy

Variable in model (AEA) Ba R square (95% CI) P-value* Variable in model (2-AG) Ba R square (95% CI) P-value*

Model 1 Model 1

FBS (mg/dL) 1.27 0.15 (0.4- 2.15) 0.005 FBS (mg/dL) 1.59 0.23 (0.72- 2.46) 0.001

HbA1c (%) 0.04 0.12 (0.01- 0.08) 0.01 HbA1c (%) 0.06 0.18 (0.02- 0.10) 0.003

Insulin (μIU/mL) 0.22 0.08 (0.003- 0.45) 0.04 Insulin (μIU/mL) 0.46 0.31 (0.25- 0.66)  < 0.001

HOMA-IR (mmol/L × μIU/mL) 0.09 0.12 (0.01- 0.16) 0.01 HOMA-IR (mmol/L × μIU/mL) 0.16 0.36 (0.10- 0.23)  < 0.001

CRP (mg/L) 0.03 0.02 (-0.03- 0.11) 0.30 CRP (mg/L) 0.03 0.01 (-0.04- 0.10) 0.41

SBP (mmHg) 0.04 0.002 (-0.24- 0.33) 0.76 SBP (mmHg) 0.10 0.009 (-0.20- 0.40) 0.51

DBP (mmHg) 0.11 0.03 (-0.06- 0.29) 0.20 DBP (mmHg) 0.12 0.04 (-0.05- 0.31) 0.17

Model 2 Model 2

FBS (mg/dL) 1.17 0.25 (0.30–2.04) 0.009 FBS (mg/dL) 1.54 0.33 (0.68- 2.40) 0.001

HbA1c (%) 0.04 0.44 (0.01- 0.07) 0.008 HbA1c (%) 0.05 0.48 (0.02- 0.08) 0.002

Insulin (μIU/mL) 0.24 0.25 (0.02- 0.45) 0.02 Insulin (μIU/mL) 0.45 0.45 (0.26- 0.64)  < 0.001

HOMA-IR (mmol/L × μIU/mL) 0.09 0.27 (0.02- 0.16) 0.01 HOMA-IR (mmol/L × μIU/mL) 0.16 0.49 (0.10- 0.22)  < 0.001

CRP (mg/L) 0.04 0.25 (-0.02- 0.11) 0.18 CRP (mg/L) 0.04 0.24 (-0.03- 0.11) 0.26

SBP (mmHg) 0.09 0.15 (-0.19–0.37) 0.51 SBP (mmHg) 0.12 0.15 (-0.17- 0.41) 0.41

DBP (mmHg) 0.11 0.28 (-0.05- 0.27) 0.17 DBP (mmHg) 0.15 0.30 (-0.01- 0.32) 0.06

Model 3 Model 3

FBS (mg/dL) -0.03 0.44 (-1.05- 0.98) 0. 49 FBS (mg/dL) 0.44 0.45 (-0.64- 1.54) 0.41

HbA1c (%) 0.01 0.49 (-0.02- 0.06) 0.40 HbA1c (%) 0.03 0.51 (-0.01- 0.07) 0.19

Insulin (μIU/mL) -.02 0.40 (-0.28- 0.23) 0.87 Insulin (μIU/mL) 0.32 0.48 (0.06–0.58) 0.01

HOMA-IR (mmol/L × μIU/mL) -0.01 0.48 (-0.09- 0.06) 0.76 HOMA-IR (mmol/L × μIU/mL) 0.10 0.55 (0.01- 0.18) 0.01

CRP (mg/L) 0.02 0.26 (-0.06- 0.11) 0.56 CRP (mg/L) 0.01 0.26 (-0.08- 0.11) 0.78

SBP (mmHg) 0.13 0.15 (-0.24, 0.52) 0.47 SBP (mmHg) 0.20 0.16 (-0.21–0.61) 0.33

DBP (mmHg) 0.10 0.34 (-0.1,0.31) 0.32 DBP (mmHg) 0.18 0.37 (-0.04- 0.40) 0.11

Model 4 Model 4

FBS (mg/dL) -0.39 0.60 (-1.46- 0.67) 0.45 FBS (mg/dL) 0.45 0.60 (-0.75- 1.66) 0.45

HbA1c (%) 0.01 0.57 (-0.03–0.06) 0.53 HbA1c (%) 0.01 0.57 (-0.03- 0.07) 0.51

Insulin (μIU/mL) -0.08 0.61 (-0.34–0.17) 0.50 Insulin (μIU/mL) 0.24 0.64 (-0.03–0.53) 0.08

HOMA-IR (mmol/L × μIU/mL) -0.03 0.64 (-0.12- 0.04) 0.34 HOMA-IR (mmol/L × μIU/mL) 0.08 0.66 (-0.01- 0.17) 0.08

CRP (mg/L) 0.01 0.42 (-0.08- 0.11) 0.74 CRP (mg/L) 0.04 0.43 (-0.06–0.15) 0.41

SBP (mmHg) 0.04 0.47 (-0.33–0.42) 0.80 SBP (mmHg) 0.24 0.49 (-0.17- 0.66) 0.24

DBP (mmHg) 0.04 0.58 (-0.16–0.25) 0.63 DBP (mmHg) 0.25 0.65 (0.03- 0.47) 0.02
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levels, triglyceride, and negative relation with high-density 
lipoprotein -cholesterol (HDL-c) and adiponectin [28].

It has been revealed that 2-AG can act as an insulin 
resistance biomarker in postmenopausal women and 
could be used to discriminate the insulin-sensitive 
obese from insulin-resistant obese phenotypes [9]. In 
hyperglycemic conditions such as obesity, prediabetes, 
and type 2 diabetes the endocannabinoid system is dys-
regulated in β-cells. The overstimulation of CB1 recep-
tors might reinforce the insulin release which leads to 
permanent hyperinsulinemia. This might start a vicious 
circle with further elevation of endocannabinoid lev-
els in β-cells which in turn triggers the adipocyte 

hypertrophy and endocannabinoid hyperactivity in 
adipocytes, and subsequent increase in lipid levels, 
decrease in adiponectin levels [37].

Moreover, circulating levels of ECs are associated 
with age, anthropometric and metabolic parameters. 
In a study by Fanelli et  al. age was found to positively 
influence ECs levels in female particpants aged between 
35–52 yrs [38]. Whereas in the present study age range 
of the study population was 25–37 yrs.

Several studies have targeted the ECS to promote 
metabolic health. For example, treatment with rimon-
abant (a CB1 receptor antagonist) induced weight 
loss and improved dysregulations in lipid and glucose 
metabolism in mice fed a high-fat diet and obese indi-
viduals [39–43]. White adipocytes express functional 
CB1 receptors which levels are higher in obese rats and 
their blockade leads to increased levels of adiponectin 
[15, 44].

Additionally, dietary interventions can also reduce the 
ECs levels. Regarding dietary long-chain polyunsatu-
rated fatty acids, they could decrease plasma ECs levels, 
inflammatory mediators, and ectopic fat deposition by 
decreasing the availability of ECs biosynthetic precursors 
[45–47].

However, the effect of weight loss stemmed from 
hypocaloric diets on ECs status is variable. It was shown 
that at least 10% weight loss was needed to affect the 
circulating concentration of 2-AG and AEA [10, 36]. 
Recently, the effects of simultaneous weight loss diet and 
30-g whey protein supplementation for 8 weeks on 2-AG 
and anandamide were observed in obese women [10, 21].

A key strength of the present study was the assess-
ment of ECs levels in women with GDM for the first 
time. However, these findings are limited by the use of 
the ELISA kits in determining of the blood ECs instead of 
HPLC. Also, ECs metabolizing enzymes, Corticotropin-
Releasing Hormone (CRH) levels, and behavioral/psy-
chological status were not evaluated. The ECS is a vital 
neuromodulatory system associated with several psychi-
atric, neurodegenerative, and motor disorders [48].

Conclusions
Our findings showed that blood levels of ECs were signif-
icantly higher in pregnant women with GDM compared 
to the control group for the first time. Also, ECs levels 
were associated with the likelihood of GDM independ-
ent of BMI and weight gain. This research has provided 
additional evidence with respect to the role of ECs in the 
pathogenesis of GDM.
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Table 5  Odds ratios (95% CI) for gestational diabetes according 
to endocannabinoids (AEA and 2-AG) and anthropometric 
indices (weight, weight gain, and BMI)

Abbreviation: AEA Anandamide, 2-AG 2-Arachidonoylglycerol, BMI Body mass 
index
a  B coefficient; regression slope
*  P < 0.05 statistically significant by Multivariable logistic regression. Model 
1: unadjusted, model 2: adjusted for energy, carbohydrate, protein, and fat, 
model 3: adjusted for energy, carbohydrate, protein, and fat, weight gain, and 
BMI, model 4: adjusted for energy, carbohydrate, protein, and fat, weight gain, 
BMI, age, education, job, level of physical activity, sex of infant, family history of 
type 2 diabetes and gestational diabetes, number of pregnancies and weeks of 
pregnancy

Variable Or (CI) Ba *P- value

AEA (ng/ml)

  Model 1 1.22 (1.06–1.41) 0.20 0.004

  Model 2 1.54 (1.19–1.97) 0.43 0.001

  Model 3 1.46 (1.11–1.91) 0.37 0.006

  Model 4 1.38 (0.99–1.92) 0.32 0.05

2-AG (ng/ml)

  Model 1 1.22 (1.06–1.41) 0.20 0.004

  Model 2 1.33 (1.10–1.61) 0.28 0.003

  Model 3 1.23 (1.007–1.50) 0.20 0.04

  Model 4 1.25 (0.94–1.65) 0.22 0.11

Weight (kg)

  Model 1 1.14 (1.04–1.26) 0.13 0.006

  Model 2 1.11 (0.99–1.23) 0.10 0.05

  Model 3 1.05 (0.92–1.20) 0.05 0.40

  Model 4 1.003 (0.85–1.17) 0.003 0.97

Weight gain (kg)

  Model 1 1.93 (1.35- 2.74) 0.65  < 0.001

  Model 2 2.07 (1.28–3.33) 0.72 0.003

  Model 3 1.87 (1.12- 3.12) 0.62 0.01

  Model 4 3.24 (1.55–6.80) 1.17 0.002

BMI (kg/m2)

  Model 1 2.06 (1.38- 3.06) 0.72  < 0.001

  Model 2 1.59 (1.04–2.43) 0.46 0.02

  Model 3 1.54 (0.77- 3.05) 0.43 0.21

  Model 4 2.18 (0.88- 5.42) 0.78 0.09
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