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A B S T R A C T

Medical healthcare centers are envisioned as a promising paradigm to handle the massive volume of data
for COVID-19 patients using artificial intelligence (AI). Traditionally, AI techniques require centralized data
collection and training models within a single organization. This practice can be considered a weakness
as it leads to several privacy and security concerns related to raw data communication. To overcome this
weakness and secure raw data communication, we propose a blockchain-based federated learning framework
that provides a solution for collaborative data training. The proposed framework enables the coordination of
multiple hospitals to train and share encrypted federated models while preserving data privacy. Blockchain
ledger technology provides decentralization of federated learning models without relying on a central server.
Moreover, the proposed homomorphic encryption scheme encrypts and decrypts the gradients of the model
to preserve privacy. More precisely, the proposed framework: (i) train the local model by a novel capsule
network for segmentation and classification of COVID-19 images, (ii) furthermore, we use the homomorphic
encryption scheme to secure the local model that encrypts and decrypts the gradients, (iii) finally, the model
is shared over a decentralized platform through the proposed blockchain-based federated learning algorithm.
The integration of blockchain and federated learning leads to a new paradigm for medical image data sharing
over the decentralized network. To validate our proposed model, we conducted comprehensive experiments
and the results demonstrate the superior performance of the proposed scheme.
1. Introduction

The drastic spread of the novel coronavirus (COVID-19) around the
globe caused a large number of deaths within a year. The COVID-19
virus causes acute respiratory disease, which directly infects the human
lungs, resulting in intensive breathing difficulties. Due to its highly
contagious nature, COVID-19 detection remains among the highest-
priority tasks. Currently, various artificial intelligence (AI) techniques
are being explored to discover better solutions for detection (Kumar
et al., 2021a,b; Deng et al., 2021; Khan et al., 2020). Last year,
a significant portion of the research focused on CT scan-based de-
tection, which has proven to be a more reliable source. However,
these techniques often require a large amount of data from a single
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source (hospital or research center) to train the classification model to
predict more accurately. In contrast, data from a single source lacks
the variance in feature distribution. The less variation in the data,
the greater the sampling error and model loss, which consequently,
affects the diagnosis performance. The data variation problem can be
solved if many hospitals can share data. However, data confidentiality
and privacy concerns confine hospitals from sharing the data to train
the model. Due to this issue, traditional learning (where only local
data is considered) may not generalize properly and perform well in
real-world situations. In contrast, transfer learning enables sharing the
model weights instead of sharing the actual data. Transfer learning
exploits a general pre-trained model and fine-tunes the pre-trained
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model parameters (weights) (Das et al., 2020; Pathak et al., 2020). The
sensitivity of a local model depends on the quality of the pre-trained
model. For example, a hospital in a rural area probably has insufficient
data to train the model. However, the hospital can collaborate with
another hospital while considering the same goal without sharing the
actual data. However, transfer learning still confines the base model
to increase robustness while taking advantage of local data from the
hospital. For this reason, hospitals are still unable to fully benefit from
AI-based medical analysis.

A possible solution to overcome the data privacy issue is federated
learning. Federated learning is capable of collaboratively training a
common model without physically exchanging the actual data. The
collaborative model training solves the problem of data variance and
enables the evolution of the model over time for all hospitals. i.e., the
model can be updated for the latest mutation samples, etc. Generally,
federated learning is a collaborative learning framework that allows
multiple collaborators to train their local model and share the learned
weights for the aggregation process. This aggregation process helps
in realizing a robust model that is up to date regarding the latest
mutations and samples. Such procedure of gaining knowledge is in the
form of a consensus model without moving the actual patients’ data
beyond the firewalls of the parent data centers (hospitals or research
centers). To this point, the learning process occurs locally at each par-
ticipating institution, and only the model parameters are shared using
a federated server for global model aggregation. Originally, federated
learning was developed for different domains i.e., distributed learning,
edge devices, and mobile computing. Due to its vast scope of appli-
cations, it has gained considerable research attention for healthcare
applications (Blanquer et al., 2020; Yang et al., 2021; Thwal et al.,
2021; Malekzadeh et al., 2021; Li et al., 2020; Baheti et al., 2020;
Brisimi et al., 2018).

Recent research has proven that the models trained by federated
learning can achieve comparable levels of performance to the ones
trained with centrally hosted medical data center (Can and Ersoy, 2021;
Dinh et al., 2021; Cheng et al., 2020; Yang et al., 2020). However,
there exist some privacy and security concerns with federated learn-
ing (Shokri and Shmatikov, 2015) where gradients of local models
related to users can be shared without compromising the security and
privacy of the data. To this end, previous methodologies are easily
accessible to passive attackers, thus making them vulnerable (Dai et al.,
2019; Tang et al., 2018) to attacks.

To tackle the security and scalability issues, the blockchain provides
a ledger technology that enables model decentralization i.e., without
involving any central server. In particular, blockchain provides the fa-
cility to collect the data model securely from various points or locations
(i.e., Japan, China, Pakistan, USA, and UK) to train the global model.
Recent research focuses on federated learning through the use of a
central server topology (Blanquer et al., 2020; Yang et al., 2021; Thwal
et al., 2021; Malekzadeh et al., 2021; Li et al., 2020; Baheti et al., 2020;
Brisimi et al., 2018; Can and Ersoy, 2021). However, none of these
studies explored decentralized blockchain-based federated learning for
global model aggregation for medical image analysis. Nevertheless,
Kumar et al. (2021a) proposed the blockchain-based federated learning-
based image detection technique but they did not secure the gradients.
Therefore, there is still a gap between secure federated learning (with-
out the dependency of a central server) to provide secure model sharing
and trust issues for data providers (e.g., hospitals).

Given the current situation, the model needs to be updated con-
tinuously to deal with new types of COVID-virus mutations while
considering the previously discussed problems. In this paper, we pro-
pose a framework that integrates privacy-preserving federated learning
over the decentralized blockchain. For federated learning, we designed
a novel capsule network for local hospital training that utilizes image
segments for classifying COVID-19 images. Our segmentation network
aims to extract nodules from the patients’ chest CT scan images. For
2

Table 1
Summary of the mathematical notations.

Notation Description

𝑊𝑖(𝑎) Local model weights
𝑚𝑖(𝑡) Local model learned by devices
𝐶𝑊 The cumulative weight of transactions
𝑊 Weights of the model
𝑃𝑥,𝑦 The transition probability of transactions
𝜆 The 0 and 1 selection state
ZN Plaintext space

𝐀
$

⟶ Z𝜅×𝜏𝑝 Matrix
𝑔 Gradients vector for the model
𝑝𝑘∕𝑠𝑘 Public/private key
⊗ Product between two ciphertexts

every locally trained model, gradients are encrypted using a homomor-
phic encryption technique to preserve the privacy of each hospital. In
this encryption technique, hospitals are assigned the same secret key
for reducing the communication overhead of high-dimensional data
in neural networks. In this way, the client or user side encryption
knowledge, which guarantees user privacy using blockchain, ensures
the data’s reliability. The task of aggregation and learning the global
model is carried out over the blockchain. We use the Direct Acyclic
Graph (DAG) to improve the blockchains’ computation efficiency. The
following are the main contributions of this paper:

1. We propose a blockchain-based federated-learning framework
that enables collaborative data training and decentralization of
federated learning models without the involvement of a central
server.

2. We utilized a homomorphic encryption scheme for encrypting
the weights of the locally trained model which ensures the
privacy of the hospital data.

3. We designed a blockchain-based federated learning algorithm to
build data models and share the data models instead of actual
data. The algorithm aggregates the local model weights to realize
the global model.

4. For local model training, we propose a Capsule Network for
segmenting pneumonia infection regions and automatically clas-
sifying the COVID-19 chest CT images.

5. The proposed framework is continuously updated to deal with
new mutations of COVID-virus and quickly exchange the most
recent information with hospitals around the world.

2. Preliminaries

This section presents a brief introduction to deep learning, feder-
ated learning, homomorphic encryption, and blockchain-based feder-
ated learning followed by the system model. The main mathematical
notations used in this article are listed in Table 1.

2.1. Deep learning

Usually, deep learning extracts features using deeper convolutional
networks to extract features. Further, deep learning models utilize
feedforward and backpropagation algorithms to train the model using
the obtained features. A general deep learning model with a feed-
forward neural network is shown in Fig. 1. The feedforward function
can be defined as 𝑓 (𝑥,𝑤) = 𝑦, where 𝑥 shows the input vector and 𝑤
represents the parameter vector. The 𝐷 = (𝑥𝑖, 𝑦𝑖); 𝑖 ∈ 𝐼 is the training
ataset for the each instance of (𝑥𝑖, 𝑦𝑖). Moreover 𝑙 is the loss function,
hereas the training dataset 𝐷 on loss function defined as 𝐿(𝐷,𝑤)

= 1
|𝐷|

∑

(𝐱𝑖 ,𝐲𝑖)∈𝐷 𝑙
(

𝐲𝑖, 𝑓
(

𝐱𝑖,𝐰
))

. However, the backpropagation phase
utilizes methods such as stochastic gradient descent (SGD) for updating
the parameters.
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Fig. 1. Overview of general deep learning model.

𝐰𝑡+1 ← 𝐰𝑡 − 𝜂∇𝐰𝐿
(

𝐷𝑡,𝐰𝑡
)

(1)

Where 𝜂 is the learning rate of the hyperparameter and 𝑤𝑡 is defined
as a vector of 𝑖𝑡ℎ iteration. Moreover, 𝐷𝑡 is the training dataset. Eq. (1)
shows the standard training procedure to train the data for a hospital
or user.

2.2. Swin UNetR segmentation

For the segmentation part, we utilized a Swin UNet Transformer net-
work i.e., (Swin UNetR) (Hatamizadeh et al., 2022). This network helps
in the segmentation of lung CT scans. The Swin UNetR encoder extracts
with 5 different resolutions using shifted windows while employing a
self-attention mechanism. Further, the output is connected to a decoder
based on FCNN for each resolution using skip connections.

First, we give an overview of the encoder and later we summarize
the decoder. The main architecture of Swin UNetR is illustrated in
Fig. 4 (Local Model Feature Learning section). Swin UNetR takes an
input of  ∈ R𝐻×𝑊 ×𝐷×𝑆 with a patch resolution of

(

𝐻 ′,𝑊 ′, 𝐷′)

having dimensions of 𝐻 ′ × 𝑊 ′ × 𝐷′ × 𝑆. The first partition layer has
a dimension of

[

𝐻
𝐻 ′

]

×
[

𝑊
𝑊 ′

]

×
⌈

𝐷
𝐷′

⌉

which projects the input sequence
to an embedding space with dimension 𝐶. Non-overlapping windows
are utilized for the self-attention mechanism which is created at the
partition stage. The windows of size 𝑀 × 𝑀 × 𝑀 evenly partitions
the input into regions of size

⌈

𝐻 ′

𝑀

]

×
[

𝑊 ′

𝑀

]

×
[

𝐷′

𝑀

]

for a transformer
encoder layer 𝑙. For the next layer i.e., 𝑙 + 1, the window is shifted by
(⌊

𝑀
2

⌋

,
⌊

𝑀
2

⌋

,
⌊

𝑀
2

⌋)

voxels. The subsequent layers can be represented
as:
𝑧̂𝑙 = W−MSA

(

LN
(

𝑧𝑙−1
))

+ 𝑧𝑙−1

𝑧𝑙 = MLP
(

LN
(

𝑧̂𝑙
))

+ 𝑧̂𝑙

𝑧̂𝑙+1 = SW −MSA
(

LN
(

𝑧𝑙
))

+ 𝑧𝑙

𝑧𝑙+1 = MLP
(

LN
(

𝑧̂𝑙+1
))

+ 𝑧̂𝑙+1

(2)

Where SW-MSA and W-MSA represent the multi-head self-attention
modules. Moreover, 𝑧̂𝑙 represents the output for W-MSA and 𝑧̂𝑙+1 repre-
sents the output of SW-MSA. Furthermore, MLP stands for multi-layer
perceptron while 𝐿𝑁 represents layer normalization. The encoder uti-
lizes a patch size of 2 × 2 × 2 with a dimension of 2×2×2×4. In total,
there are four stages comprising two transformer blocks for each stage.
At the first stage, linear embedding layer creates 𝐻

2 × 𝑊
2 × 𝐷

2 tokens. To
further decrease the feature representation resolution, a patch merging
layer is utilized with a factor of 2 (at the end of each stage). In other
words, a patch merging layer groups and concatenates patches resulting
in a 4𝐶 sized feature embedding. Further, at each stage, the feature size
is reduced by 2𝐶.

The decoder part utilizes the feature representations extracted by
the encoder using skip connections for each resolution. For each stage 𝑖
3

of the encoder and the bottleneck the output is reshaped into 𝐻
2𝑖 ×

𝑊
2𝑖 ×

𝐷
2𝑖

and further a residual block of two 3 × 3 × 3 convolutional layers is
utilized along with normalization. By using this mechanism, the size
of the feature map is increased, by a factor of 2, with the help of
deconvolutional layers. Moreover, the outputs are concatenated with
outputs of the previous stage. Later, another residual block is utilized.
The final segmentation is computed by a 1 × 1 × 1 convolutional layer
with sigmoid activation. Further details about Swin UNetR can be found
in Hatamizadeh et al. (2022).

2.3. Federated learning

Federated learning is a distributed and secure deep learning tech-
nique that enables the training of a shared model while preserving data
privacy. Moreover, federated learning has introduced a mechanism to
collect data from various parties or hospitals without breaching the hos-
pitals’ privacy. The advantage of the federated learning model is that
it reduces the resource workload (i.e., memory and power) of a single
participant and improves the quality of the training model. In other
words, federated learning means learning the model collaboratively and
sharing the trained model with the local machines. Suppose, each user
𝑢 ∈ 𝑈 has its private dataset 𝐷𝑢 ⊆ 𝐷. The equation for the mini-batch
dataset 𝐷𝑡 =

⋃

𝑢∈𝑈 𝐷
𝑡
𝑢 with SGD is given as:

𝐰𝑡+1 ← 𝐰𝑡 − 𝜂
∑

𝑢∈𝑢 ∇𝐰𝐿
(

𝐷𝑡
𝑢,𝐰

𝑡)

|𝑈 |
(3)

Each user shares the local model over the blockchain distributed
ledger for training the global shared model. The users/hospitals upload
the new data, i.e., (gradients or weights) for updating the global model.
Moreover, each user 𝑢 ∈ 𝑈 has its private dataset with data samples for
federated learning as shown in Fig. 2.

𝐹𝑖(𝑤) =
1

|

|

𝐷𝑖
|

|

∑

𝑗∈𝐷𝑖

𝑓𝑗
(

𝑤, 𝑥𝑖, 𝑦𝑖
)

(4)

For multiple devices or hospitals with dataset 𝐷, a global loss (Zhu
and Jin, 2019) function 𝑓𝑗

(

𝑤, 𝑥𝑖, 𝑦𝑖
)

minimizes the loss. To differentiate
between the estimated and real model for each hospital, 𝑓𝑗

(

𝑤, 𝑥𝑖, 𝑦𝑖
)

,
the global model function of the 𝐹 (𝑤) is described as:

𝐹 (𝑤) = 1
|

|

𝑀𝐼
|

|

∑

𝑖∈𝐼
𝑢𝑖 ⋅ 𝐹𝑖(𝑤) =

1
|

|

𝑀𝐼
|

|

∑

𝑖∈𝐼

∑

𝑖∈𝐷𝑖

𝑢𝑖 ⋅
𝑓𝑗

(

𝑤, 𝑥𝑖, 𝑦𝑖
)

|

|

𝐷𝑖
|

|

(5)

where 𝑖 represents a sample from dataset (𝑥𝑖, 𝑦𝑖) of the gallery 𝐼 =
{1, 2,… , 𝑛} (Tran et al., 2019), and 𝑢𝑖 is the number of individual
dataset models. In our proposed training process, we enhanced the
accuracy of the model by iteratively minimizing the loss function of
the global model. The equation of the loss function is given as:

𝑄(𝑤, 𝑡) = argmin
𝑖∈𝐼,𝑡≤𝑇

𝐹 (𝑤) (6)

𝑃𝑟
(

𝑤𝑖 ∈ R𝑑
)

≤ exp(𝜖)𝑃𝑟
(

𝑤′
𝑖 ∈ R𝑑

)

(7)

𝑡
∑

𝑖=1
𝛥𝑡(𝑖) ≤ min

(

𝑇1, 𝑇2,… , 𝑇𝑛
)

(8)

where 𝑃𝑟
(

𝑤𝑖 ∈ R𝑑
)

≤ exp(𝜖)𝑃𝑟
(

𝑤′
𝑖 ∈ R𝑑

)

is the privacy of the users (Lu
et al., 2019) of the parameters of the

(

𝑇1, 𝑇2,… , 𝑇𝑛
)

. Moreover, 𝛥𝑡(𝑖) is
the execution time of the iteration.

2.4. Homomorphic encryption

Homomorphic encryption allows the calculation of encrypted data
(ciphertext) without decryption. The new encrypted data matches the
result of the operation performed on the unencrypted data after de-
cryption. We utilize the BGV (Brakerski et al., 2014) encryption scheme
algorithm, which takes the secret key with large noise and a ciphertext
as inputs. It outputs an unencrypted version of the same data with a
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Fig. 2. Overview of a general federated learning process.

fixed amount of noise. Moreover, it utilized a key-switching procedure
that allows converting a ciphertext encrypted with a secret key. We
refer to the detailed encryption scheme for readers in Brakerski et al.
(2014). Therefore, we utilize homomorphic encryption to encrypt the
gradients (Aono et al., 2017; Bottou, 2010) to share the data over
the blockchain distributed network. The previous research shared the
encrypted gradients to the centralized server (Li et al., 2015, 2014).
They did not consider a distributed blockchain network. It should be
noticed that the blockchain database is cost-effective. For this reason,
we use homomorphic encryption to encrypt the model and train the
local model which further helps in aggregating the global model.

Before tensor encryption, we define 𝑍 as the unencrypted matrix
data of the mini-batch dataset having a size of 𝑆 ∗ 𝑇 , and a private key
matrix 𝑝ℎ𝑖 with the size of 𝑆 ∗ 𝑆 represented as:

⎡

⎢

⎢

⎢

⎢

⎣

𝜙11 𝜙12 ⋯ 𝜙1𝑆
𝜙21 𝜙22 ⋯ 𝜙2𝑆
⋮ ⋮ ⋮ ⋮
𝜙𝑆1 𝜙𝑆2 ⋯ 𝜙𝑆𝑆

⎤

⎥

⎥

⎥

⎥

⎦

(9)

This key is only accessible to the users/participants who share the
mini-batch dataset.
⎡

⎢

⎢

⎢

⎢

⎣

Z(1)
Z(2)
⋮

Z(𝑆)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜙11 𝜙12 ⋯ 𝜙1𝑆
𝜙21 𝜙22 ⋯ 𝜙2𝑆
⋮ ⋮ ⋮ ⋮
𝜙𝑆1 𝜙𝑆𝑆2 ⋯ 𝜙𝑆𝑆

⎤

⎥

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

𝑍(1)
𝑍(2)
⋮

𝑍(𝑁)

⎤

⎥

⎥

⎥

⎥

⎦

(10)

where 𝑍(𝑖) shows the vector data of the 𝑖𝑡ℎ node of the blockchain
ledger. The ⊗ operator shows the product between two ciphertexts
given by:

Z(𝑖) = 𝜙𝑖1𝑍(1) + 𝜙𝑖2𝑍(2) +⋯ + 𝜙𝑖𝑁𝑍(𝑆) (11)

Fig. 3 shows the homomorphic encryption function with the linear
transformation of a matrix. In this way, the linear transformation
maintains a low-rank functionality. The function 𝜙𝑖𝑗 ∈ [0, 1), and
∑

𝑗=1 𝜓𝑖,𝑗 = 1 shows the homomorphic encryption with private key.

2.5. Blockchain-enabled federated learning

Training a better AI model for the industry requires collecting data
from multiple sources without leaking the privacy and authentication
4

of the users. Therefore, we use federated learning with the blockchain
Fig. 3. Graphical representation of homomorphic encryption.

distributed ledger to update the global AI model. The blockchain col-
lects the data model from different nodes and aggregates the local and
global models. The smart contract then uploads the weights and up-
dates the models. The proposed architecture integrates blockchain with
federated learning for full decentralization and enhanced security. Also,
decentralization provides higher accuracy of the model and enables the
poisoning-attack-proof.

Some issues are not resolved for federated learning, i.e., insufficient
incentives, poisoning attacks, etc. Therefore, some authors (Lu et al.,
2020b; Qu et al., 2020) design the blockchain with federated learning.
Similarly, Pokhrel and Choi (2020) designed a technique to protect
privacy. The major issue with the previous papers was that they did not
include the encryption technique with the blockchain model gradient
sharing. Therefore, this paper uses the directed acyclic graph with
the Proof-of-Work (PoW) consensus algorithm for the aggregation of
gradients. Additionally, this work is fully decentralized and trains an
accurate model without leaking the privacy of the user.

3. Secure data sharing

This section provides an introduction to the high-level architecture
of the system and technical details in Fig. 4. Our proposed scheme con-
sists of multiple users sharing the data securely using federated learning
with blockchain. The proposed architecture has multiple phases.

Local model:

1. Input COVID-19 images to train the model.
2. Learn the local model and calculate the local gradients.
3. Encrypt the gradients of the local model.

Send the weights to the blockchain network for aggregation
model:

1. Aggregate all user weights ciphertext i.e., 1u 𝑊𝑖(𝑎) ←
1

∑

𝑖∈𝑡 |𝑖|
∑

𝑖∈𝑡
|

|

𝑖
|

|

𝑊𝑖(𝑎)

Broadcast the weights:

1. Update the deep learning model based on global weights.
2. Upload the local model updates.

3.1. Local model training

In this section, we provide the details regarding training the lo-
cal model for the detection of COVID-19. The main model is di-
vided into three parts: (i) Segmentation Network (ii) Classification
(iv)Probabilistic Grad-CAM Saliency Map Visualization.

3.1.1. Segmentation process
We obtained the ground-truth lung masks and extracted lung region

using a learning method (Liao et al., 2019; LaLonde and Bagci, 2018).
We removed the unnecessary or failed data manually, and the remain-
ing segmentation data is taken as ground-truth masks. The 3D Lung
mask also serves as input together with the whole image for training
and testing data. The training objective is to adopt the capsule network
segmentation. Where 𝑟 is the routing coefficient, 𝑏 shows the
𝑡𝓁𝑖 ∣𝑥𝑦 𝑡𝓁𝑖 ∣𝑥𝑦
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Fig. 4. Architecture of blockchain-based secure data sharing using homomorphic scheme. Step 1: training and segmentation of CT scans using capsule network, Step 2: Encrypt
the gradients using the homomorphic scheme. Step 3: use a blockchain-based federated learning model for training the global model.
𝑢

pixel of images, 𝑠 and 𝑦 shows the ground truth label. The segmentation
is represented as follows:

𝑟𝑡𝓁𝑖 ∣𝑥𝑦
=

exp
(

𝑏𝑡𝓁𝑖 ∣𝑥𝑦
)

∑

𝑘 exp
(

𝑏𝑡𝓁𝑖 𝑘
) (12)

To determine the final output of the segmentation using the non-
linear squashing function, we have:

𝐯𝑥𝑦 =
‖

‖

‖

𝒑𝑥𝑦
‖

‖

‖

2

1 + ‖

‖

‖

𝒑𝑥𝑦
‖

‖

‖

2

𝒑𝑥𝑦
‖

‖

‖

𝒑𝑥𝑦
‖

‖

‖

(13)

where 𝐯𝑥𝑦 is the output of the segmented image with the spatial location
(𝑥, 𝑦) and 𝒑𝑥𝑦 is the final input.

3.1.2. Classification
We designed a Capsule Network due to the nature of its inverse

graph, which helps to detect medical images and achieve high per-
formance. Therefore, the capsule network is capable of predicting
the instantiating parameters for any medical image or object. The
estimated probability of an object is represented via the length of a
vector. However, the Capsule Network technique provides augmented
transformations (i.e., rotation, stretching, skewed, thickness, etc.) to
improve the performance on a smaller amount of data. The possible
probability of the length of the vector is between 1 and 0 using the
squashing function of the capsule network. Each layer is connected to
the previous layer, and the previous layer is the output of the next layer.
Capsule Network does not use a dot product to make the prediction and
improve the accuracy. Instead of using dot products, they used the path
in a hierarchy or a dynamic routing mechanism to find multiple objects
in an image, so they could recognize them. The Capsule Network
contains four layers: (i) convolution layers, (ii) primary capsule, (iii)
5

DigitCaps (second capsule), and (iv) fully connected layers. Each layer
of the network is composed of multiple capsules in terms of convolution
layers (i.e., Conv1 and Conv2); Relu (rectified linear unit) is adopted
for activating the convolution layers. As an outcome, each capsule
(i.e., Conv1 and Conv2) generates different feature maps. Similarly, the
second layer of DigitCaps presents the output layer of the capsule. The
loss is calculated after the digits cap. Finally, the fully connected layer
is used to reconstruct the images. 𝑊𝑖,𝑗 are a pair of weighted matrices.
A pose vector𝑈𝑖 is rotated and translated by the weighted matrix to a
vector 𝑢̂𝑖|𝑗 for each component. The instantiation parameters of capsules
at higher levels are predicted by the transformation matrix at the same
capsule level.

𝑢̂𝑗𝑖 = 𝑤𝑖,𝑗 ⋅ 𝑢𝑖
⎡

⎢

⎢

⎢

⎢

⎣

𝑢̂𝑗𝑖 (1)
⋮
⋮

𝑢̂𝑗𝑖 (16)

⎤

⎥

⎥

⎥

⎥

⎦16×1

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤𝑖,𝑗 (1) ⋯ 𝑤𝑖,𝑗 (8)
⋮ ⋱ ⋮
⋮ ⋮

𝑤𝑖,𝑗 (120) ⋯ 𝑤𝑖,𝑗 (128)

⎤

⎥

⎥

⎥

⎥

⎦16×8

⋅
⎡

⎢

⎢

⎣

𝑢𝑖(1)
⋮

𝑢𝑖(8)

⎤

⎥

⎥

⎦

(14)

In contrast, the prediction vector is defined as follows:

̂𝑖|𝑗 = 𝑊𝑖,𝑗𝑢𝑖 (15)

Predictions from each lower-level capsule are combined to form the
next higher level capsule (𝑠𝑗) the total sum of predictions layers is 𝑐𝑖,𝑗
represented as a coefficient of 𝑐𝑖,𝑗 with coupling defined as:

𝑆𝑗 =
∑

𝑖
𝑐𝑖,𝑗 𝑢̂𝑖|𝑗 (16)

Here, 𝑐𝑖,𝑗 is a routing softmax function defined as:

𝑐𝑖,𝑗 =
𝑒𝑏𝑖𝑗

∑

𝑘 𝑒𝑏𝑖𝑘
(17)

As shown in Fig. 4, the parameter 𝑐𝑖,𝑗 , a squashing function is
applied for scaling the output probabilities in the range of 0 and 1 and
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can be defined as:

𝑎 =
‖𝑎‖2

1 + ‖𝑎‖2
𝑎
‖𝑎‖

(18)

For additional information, refer to the original study in Sabour
t al. (2017).

.1.3. CAM map visualization
By visualizing COVID-19 slices, we find the interpretability of the

roposed capsule network. The most widely used method is GRAD-
AM (Selvaraju et al., 2017). The GRAD-CAM map takes input as an

mage using the following equation:

𝑐 (𝑥) = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

(

𝜎

(

∑

𝑀
𝛼𝑐𝑀𝑓

𝑀 (𝑥)

))

∈ 𝐼 (19)

Upsampling the input image 𝑚 × 𝑛 with the feature vector 𝑢 × 𝑣
produces a 𝜎 that is defined as the ReLU layer. However, the probability
is determined by:
[

𝑙𝑐𝑝𝑟𝑜𝑏(𝑥)
]

𝑖
= 1
𝑀𝑖

[ 𝑀
∑

𝑀=1
𝑟𝑐
(

𝑥𝑀
)

𝑀
(

𝑙𝑐
(

𝑥𝑀
))

]

𝑖

(20)

where 𝐾 is the slice of the each image 𝑥 pixel, 𝒍𝑐
(

𝒙𝑀
)

computed the
GRAD-CAM by using Eq. (19) with respect to frequency of the image.
𝑀 is computed after the softmax layer of the capsule network. Eq. (20)
shows the average probability of each pixel of the class for the global
saliency map.

3.2. Architecture of gradients encryption & decryption

The data provider 𝑃 , which holds the private medical images 𝐼 ,
rains the local model and encrypts the local model vector. Then send it
o the blockchain network 𝐵. The blockchain federated learning model
ggregates the encrypted vector using the global federated learning
odel. Moreover, the gradient encryption & decryption techniques for

ecure weight sharing were proposed by ElGamal (1985) based on the
ing-LWE scheme. Suppose 𝛷𝑛(𝑋) is the reducible polynomial function
he degree of the polynomial function 𝜙(𝑛), 𝑅𝑝 = 𝑅∕𝑝𝑅 and 𝑅 =
[𝑋]∕

(

𝛷𝑛(𝑋)
)

is the polynomial ring. The samples (𝑎, 𝑏 = 𝑠⋅𝑎+𝑒) of the
ing-LWE, where 𝑠, 𝑒 indicates the Gaussian distribution. We utilized

he (Hao et al., 2019) homomorphic scheme for the blockchain ledger.
We define a ciphertext and plaintext space. Ring

𝑝 = (Z∕𝑞Z)[𝑋]∕
(

𝛷𝑛(𝑋)
)

defined as plaintext with the modulus 𝑞.
imilarity, 𝑅𝑝1 =

(

Z∕𝑝1Z
)

∣ 𝑋
⌉

∕
(

𝛷𝑛(𝑋)
)

defined as internal ciphertext
BGV and 𝑅′

𝑝1
=
(

Z∕𝑝1Z
)

[𝑋]∕
(

𝛷𝑛′ (𝑋)
)

defined as external ciphertext.
owever, the 𝜙(𝑛) = 2𝑙𝜙(𝑛) with the 𝑙 = ⌈log 𝑝1⌉ and 𝑝1 = 𝑝 ⋅ 𝑝0 for
rimes 𝑝, 𝑝0.

Then, we describe some widely used sampling subroutines for better
eadability represented as follows:

1. (𝑛): is represented as a vector space of 𝑛 numbers ranging
from {−1, 0, 1} with the probabilities of each element being
𝑃𝑟−1 =

1
4 , 𝑃 𝑟0 =

1
2 , 𝑃 𝑟1 =

1
4

2. 𝐺𝑀(𝑛, 𝜎): The 𝑛 integers are represented as a vector space, with
the Gaussian distribution 𝜎 and the standard deviation mean 0.

3.  (𝑛, 𝑝): The 𝑛 numbers from a randomly uniform distribution
modulo 𝑝 are represented as a vector space.

3.2.1. Setup
Suppose 𝑁 ∈ 𝑁 is the number of devices, and 𝐾 is the security

arameter; for more details, internal encryption is defined as:

1. 𝐷𝑟𝑎𝑤𝑎̃← 
(

𝜙(𝑛), 𝑝1
)

and 𝑠̃, 𝛾̃ ← 𝑀(𝜙(𝑛), 𝜎̃).
2. Compute 𝑏 = 𝑎 ⋅ 𝑠̃ + 𝑞 ⋅ 𝛾̃
3. Output 𝑝𝑘 = (𝑎, 𝑏) ∈ 𝑅𝑝1 ×𝑅𝑝1 as public key and 𝑆𝐾𝐶2 = 𝑠̃ ∈ 𝑅𝑝1

as part of secret key for the distributed ledger blockchain.
4. Output 𝑠𝑘𝑖 = 𝑠𝑖 ∈ 𝑅′

𝑝1
as secret key for participant 𝑖 and 𝑆𝐾𝐶1 =

−
∑

𝑖 𝑠𝑖 ∈ 𝑅′
𝑝1

as another part of secret key for the distributed
ledger blockchain.
6

3.2.2. Gradients encryption
The following mappings are used during the encryption phase to

connect the vector 𝑍𝑛 and the ring 𝑅 encryption phases:

1. 𝑀𝑎𝑝𝑅→𝑍𝑛 ∶ A coefficient representation of an input ring ele-
ments of 𝑛 entities.

2. 𝑀𝑎𝑝Z𝑛 → 𝑅∶ A matrix over the same ring as the vector contain-
ing the coefficients representations of the vector

3.2.3. The architecture of gradients encryption decryption for external
ciphertext

1. Set 𝐯𝑖 =𝑀𝑎𝑝
(

𝑐𝑖,0 ∥ 𝑐𝑖,1
)

∈ Z2𝜙(𝑛)
𝑝1

2. Invoke Algorithm 1 to sample 𝐞𝑖 ∈ Z2𝜙(𝑛)𝑙
𝑝1 subject to the distribu-

tion 𝛬⟂
𝐯𝑖
(𝐆), where 𝐞𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒

(

𝑣𝑖1 , 𝜎
)

.........𝑠𝑎𝑚𝑝𝑙𝑒
(

𝑣𝑖2𝜙(𝑛), 𝜎
)

3. Set 𝑒𝑖 =
(

𝑀𝑎𝑝
𝑍𝜙(𝑛′

)

→𝑅′
𝑛!

(

𝐞𝑖
)

)

4. Compute 𝑐𝑖 = 𝑎 ⋅ 𝑠𝑖 + 𝑒𝑖 ∈ 𝑅𝑝1
5. Send final ciphertext 𝑐𝑖 to the blockchain network.
6. Aggregate all the ciphertexts 𝑐 = ∑

𝑖 𝑐𝑖 = 𝑎 ⋅
∑

𝑖 𝑠𝑖+
∑

𝑖 𝑒𝑖 ∈ 𝑅′
𝑝𝑖

in
the blockchain network

7. Compute the sum of errors terms $𝑒 = 𝑐+𝑎 ⋅𝑆𝐾𝐶1 =
∑

𝑖 𝑒𝑖 ∈ 𝑅′
𝑝1

,
where 𝑆𝐾𝐶1 = −

∑

𝑖 𝑠𝑖.
8. Set 𝐞 =𝑀𝑎𝑝𝑅′

𝑝1→Z𝜙(𝑛′) (𝑒)

3.2.4. The architecture of gradients encryption decryption for internal ci-
phertext

1. Set 𝑔𝑑𝑡𝑖 =𝑀𝑎𝑝
𝐙𝜙(𝑛)→𝑅

(

𝐠𝐝𝑡𝑖
)

𝑞

∈ 𝑅𝑞 .

2. Draw 𝑒0, 𝑒1 ← (𝜙(𝑛), 𝜎) and 𝑣 ← (𝜙(𝑛)).
3. Compute 𝑐𝑖,0 = 𝑏̃ ⋅ 𝑣̃+ 𝑞 ⋅ 𝑒0 + 𝑔𝑑𝑡𝑖 and 𝑐𝑖,1 = 𝑎 ⋅ 𝑣+ 𝑞 𝑒1 for modulus

𝑝1.
4. Output internal ciphertext 𝑐𝑖 =

(

𝑐𝑖,0, 𝑐𝑖,1
)

∈ 𝑅𝑝1 × 𝑅𝑝1
5. Recover the sum of RBGV ciphertext by computing 𝐯 =

∑

𝑖 𝐯𝑖 =
𝐆 ⋅ 𝐞 mod 𝑝1 ∈ Z2𝜙(𝑛)

𝑝1

6. Split the vector 𝐯 =
(

𝐜0, 𝐜1
)

∈ Z𝜙(𝑛)𝑝1 × Z𝜙(𝑛)𝑝1 .
7. Set 𝑐0 = 𝑀𝑎𝑝Z𝜙(𝑛)→𝑅𝑝1

(

𝐜0
)

∈ 𝑅𝑝1 and 𝑐 = 𝑀𝑎𝑝𝐙𝜙(𝑛)→𝑅𝑝1
(

𝐜1
)

∈
𝑅𝑝1

8. Invoke algorithm Scale (
(

𝑐𝑜, 𝑐1
)

, 𝑝1, 𝑝0 ) to switch modulus and
produce the scaled ciphertext 𝑐𝑜, 𝑐1 modulo 𝑝0

9. Decrypt the ciphertext and produce the sum of plaintext by
𝑔𝑑𝑡 =

∑

𝑖∈[𝑁] 𝑔𝑑
𝑡
𝑖 = 𝑐𝑜 − 𝑆𝐾𝐶2 ⋅ 𝑐1 mod 𝑞 ∈ 𝑅𝑞

10. Set𝑔𝑑𝑡 =𝑀𝑎𝑝𝑅𝑞→𝐙𝜙(𝑛)
(

𝑔𝑑𝑡
)

.
11. Broadcast the global gradients gd𝑡

3.3. Consensus in permissioned blockchain federated learning

The main goal of this section is to exaggerate the global model
with the blockchain DAG mechanism. The local DAG is responsible for
synchronous global training via federated learning. Consequently, the
storage capability of the model by using DAG is improved. Based on
the federated learning and permissioned blockchain, the following steps
are taken to adjust the decentralized model for aggregation. Firstly,
we select the users’ nodes and then perform local training and encrypt
the weights. Then, we aggregate the weights in the global model. The
consensus (i.e., POW) for data sharing is high cost. To address the
problem, we proposed a hybrid DAG-based scheme that is provided
in Algorithm 2. We combine the update weight process of federated
learning with the quality verification process using the blockchain DAG.
Algorithm 12 shows the global aggregation of the model gradients for

federated learning.
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Algorithm 1: Global Federated Learning aggregation algorithm.
𝜃𝑡−1global ← global model;
{

𝐺𝑡
𝐼(𝑗)

}𝑚

𝑗=1
← legal gradient vectors;

𝑔𝑡𝑔𝑙𝑜𝑏𝑎𝑙 ← 0;
𝑙 ← 0;
for k=1,2,..m do

if 𝐺𝑡
𝐼(𝑘) ≠⟂ then
Compute 𝐺𝑡

global ← 𝐺𝑡
global + 𝛼𝐼(𝑘)𝑙𝑙(𝑘)𝐺

𝑡
𝐼(𝑘);

Compute ← 𝑙 + 𝛼𝐼(𝑘)𝑙𝐼(𝑘)
end
Compute 𝐺𝑡

𝑔𝑙𝑜𝑏𝑎𝑙 ←
1
𝐼
𝐺𝑡
𝑔𝑙𝑜𝑏𝑎𝑙 ;

Update 𝜃𝑡global ← 𝜃𝑡−1global − 𝜂𝐺global
end

Fig. 5. Communication graph.

3.3.1. The local directed acyclic graph (DAG)
The local DAG structure is used individually for each user. In each

iteration, 𝑡 represents federated learning, and permissioned blockchain
nodes are selected to verify the aggregation of model 𝑢𝑎. For local
weight aggregation of deep learning models, weights 𝑢𝑖 ∈ 𝑢𝑃 are
transferred to the updated model 𝑚𝑖(𝑡) to the nearby users. Fig. 5
shows the communication graph for the neighboring node. The model
accuracy of weights 𝑊 (𝑚𝑖(𝑡)) is calculated as:

𝑊
(

𝑚𝑖(𝑡)
)

=
|

|

𝑑𝑖|| + 𝜌 ⋅
∑

𝑗 𝑑𝑚𝑗
∑𝑁
𝑖=1

|

|

𝑑𝑖|| +
∑

𝑗 𝑑𝑚𝑗
⋅ 𝑠𝑖 ⋅ 𝐴𝑐𝑐

(

𝑚𝑖(𝑡)
)

(21)

where 𝑖 is the local training and |

|

𝑑𝑖|| is the dataset size of the model,
∑

𝐣 𝐝𝐦𝐣
represents the accumulated dataset size of the deep learning

local model. 𝑆𝑖 execute the each user training slots and 𝐴𝑐𝑐
(

𝑚𝑖(𝑡)
)

shows the accuracy of the each trained model. To verify the reliability
of the transaction weights, we calculate weight transaction 𝐶𝑊 (𝑚𝑖(𝑡))
as:

𝐶𝑊
(

𝑚𝑖(𝑡)
)

= 𝑊
(

𝑚𝑖(𝑡)
)

+ 1
𝑀

𝑀
∑

𝑗=1
𝛥𝐴𝑐𝑐𝑗 ⋅𝑊 (𝑗) (22)

where 𝛥𝐴𝑐𝑐𝑗 = 𝐴𝑐𝑐𝑗
(

𝑚𝑖(𝑡)
)

−𝑊
(

𝑚𝑖(𝑡)
)

,𝑊 (𝑗) are the weight of the each
transaction j, where 𝑚𝑖(𝑡). 𝐴𝑐𝑐𝑗 verifies the accuracy of the 𝑚𝑖(𝑗).

3.3.2. Add the transaction into the blockchain DAG
To add the transaction to the blockchain DAG and to update the

deep learning model first requires validating the local models’ two
transaction accuracy. Then attach all the hashes and generate a new
block. The new block (new transaction) updates the blockchain DAG
which can broadcast the nodes in the local model blockchain DAG. The
Markov-chain Monte Carlo prototype is used to check the probability
of every step. The equation of Markov-chain Monte Carlo is defined as:

𝐸[𝑓 (𝑥)] ≈ 1
𝑚

𝑚
∑

𝑖=1
𝑓
(

𝑥𝑖
)

( )

(23)
7

𝑥0, 𝑥1,… , 𝑥𝑚 ∼𝑀𝐶(𝑝)
3.3.3. Confirmation and consensus
The transactions are confirmed or validated based on the cumulative

weights. This article utilized the weighted walk method based on cred-
ibility, which can validate the transaction by selecting the unverified
transactions. When a new transaction is generated, two walkers will be
added to the blockchain DAG to select the transaction. More transaction
has been passed for verification to achieve a high cumulative weight for
verification.

𝑃𝑥𝑦 =
𝑒𝐶𝑊 (𝑦)−𝐶𝑊 (𝑥)

∑

𝑧∶𝑧→𝑥 𝑒𝐶𝑊 (𝑧)−𝐶𝑊 (𝑥)
(24)

where 𝑃𝑥𝑦 is the transition probability towards the unverified transac-
tion of 𝑥 and 𝑦. 𝑧 is the neighboring node of a transaction belonging
to 𝑥, and 𝑦 ∈ {𝑧 ∶ 𝑧 → 𝑥}. In this approach, the PoW is faster than a
traditional PoW because of the reduction in complexity.
Algorithm 2: Federated Learning Empowered with Blockchain
Network
𝐷1 ←

{

𝑀1, 𝑚2,… , 𝑣𝑁
}

dataset ;
𝑚0 ← Initialize global weights with the permissioned blockchain BC and

DAG ;
𝑟0 ← select the users to 𝑀𝑃 ⊂ 𝑀𝐼 by the node selection

{

𝑟1, 𝑟2,… , 𝑟𝑁
}

;
for e ∈ [𝑒𝑝𝑖𝑠𝑜𝑑𝑒] do

Select the leader 𝑟0 ;
for t ∈ [𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡] do

for 𝐷𝑖 dataset ∈𝑀𝑝 do
𝑚𝑖 matrix global model 𝑀𝑡−1 from permissioned blockchain

BC ;
𝑚𝑖 = local training 𝑤𝑖(𝑡) = 𝑤(𝑡) − 𝜂 ⋅ ∇𝐹𝑖

(

𝑤𝑡−1
)

;
𝑚𝑖 = get local models updates DAG;
𝑚𝑖 run the local aggregation model and get the updated local

model 𝑚𝑖𝑡 ;
𝑚𝑖 add the transactions to the DAG ;

end
end

𝑟0 ←(𝑡) =
∑𝑁
𝑖=1 𝐶𝑖𝑤𝑖(𝑡)
∑𝑁
𝑖=1 𝐶𝑖

DAG blockchain updated the model, and

averaging the models into 𝑀(𝑒);
𝑟0 broadcasts model 𝑀(𝑒) to other nodes for verification, and add all

the transactions into the blockchain ledger ; 𝑟0 include the 𝑀(𝑒)
global model form the blockchain ledger;

end

4. Security and performance analysis

4.1. Dataset

We collected the dataset from five different hospitals with various
types of CT scanners. The total number of patients was 170 and 6
different CT scanners from Chengdu city, Sichuan Province, China.
In addition, to validate the proposed method, we combine the open-
source dataset with the collected data. All the patients conformed
to the antibody tests or nucleic acid tests. However, this research
collects the dataset from different sources due to federated learning
and blockchain. One dataset is collected from CC-19 Dataset (https://
github.com/abdkhanstd/COVID-19) which contains 170 patients from
6 hospitals shown in Table 4 and another dataset is downloaded from
Dataverse HARVARD repository1 to validate the model(see Table 2).

4.2. Security analysis

The use of permissioned blockchain distributed technology achieved
a secure mechanism for the various devices. We integrate the consensus
blockchain process with federated learning to address the trust of the
security threats and privacy of the data.

1 https://doi.org/10.7910/DVN/6ACUZJ

https://github.com/abdkhanstd/COVID-19
https://github.com/abdkhanstd/COVID-19
https://github.com/abdkhanstd/COVID-19
https://doi.org/10.7910/DVN/6ACUZJ
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Table 2
Dataset collected from 5 different hospitals A, B, C, D, and E.

Hospital ID A B C C D D E F

CT scanner ID 1 2 3 4 5 6 7 8
CT scanner Brilliance

iCT
Samatom
Definitation
Edge

Brilliance
16P iCT

GE 16-slice
CT scanner

Brilliance
iCT

SAMATOM
scope

Brilliance
iCT

SAMATOM
scope

CT scanner Company Philips Siemens Philips Philips Philips Siemens Philips Siemens
Number of patients 17 3 5 55 50 10 13 20
Number of slices 128 16 16 120 256 64 16 128
Matrix 512*512 512*512 512*512 512*512 512*512 512*512 512*512 512*512
Tube voltage (K vp) 100 140 120 120 120 120 120 120
Collimation (mm) 128*0.6 128*0.625 128*0.625 16*1.25 128*0.625 128*0.6 16*1.2 5 128*0.6
Rotation time (second) 0.35 0.2 0.35 1.0 0.35 0.5 1.0 0.5
Lung window level (HU) −500 −400 −600 −550 −600 −600 −600 −600
Lung window width (HU) 1200 1200 1600 1500 1600 1600 1200 1600
Pitch 1.0 1.0 1.0 1.75 1.0 1.2 0.938 1.2
Slice thickness (mm) 2 2 5 5 5 5 5 5
Slice increment (mm) 2 2 5 5 5 5 5 5
Tube voltage (K vp) 140 120 120 110 120 120 120 120
Infection annotation ROI - level ROI - level Voxel-level Voxel-level Voxel-level Voxel-level Voxel-level Voxel-level
1. Differential Privacy: According to the privacy of users, our
proposed protocol is used to generate indistinguishable random
values. We select the random vector for the generation of the
ciphertext 𝑐𝑖, using the BGV scheme (Brakerski et al., 2014).
Where 𝐾 is an indistinguishable security parameter for the
random values. Then 𝑣𝑖 is transferred from the polynomial 𝑐𝑖 (for
random values).
Pr[𝐹 (𝑥) = 𝑆]
Pr [𝐹 (𝑥′) = 𝑆]

≤ 𝑒𝜖 (25)

A function that satisfies differential privacy is often called a
mechanism. We say that a mechanism 𝐹 satisfies differential
privacy if all neighboring datasets 𝑥 and 𝑥′ have possible outputs
𝑆

2. Data Access: The proposed technique uses federated learning
with blockchain technology. The core idea is to develop the
privacy of the data. The proposed model achieves data privacy
by aggregating the encrypted technique with blockchain, which
grantee the privacy protection of the data.

3. Trust: To aggregate the sum of weights, the blockchain, and the
local model client provide the security as follows :

3.1 Setup: In the first step, the security algorithm generates
the public parameters for the model.

3.2 Encrypt: client specify the parameter (𝑖, 𝑚), where 𝑖 is
the index of the entity and 𝑚 is the plaintext. Finally, it
returns the 𝐸𝑛𝑐(𝑖, 𝑚) value to the model.

3.3 Compromise: The model comprises an 𝑖 entity, then the
aggregate model returns the secret keys 𝑆𝐾𝑐 , this phase
repeat many times.

3.4 Challenge: It is allowed only once throughout the entire
cycle. Generate and send two plain text messages, 𝑚1 and
𝑚2, for every 𝑖 ∈ 𝐾. If bit is equal to zero, compute
𝑐𝑖 = 𝐸𝑛𝑐

(

𝑚𝑖
)

. Otherwise, it will be encrypted in the same
way and sent as 𝑐𝑖.

3.5 Guess: The final output is 1 or 0

4. Removing Centralized Trust: It removes third-party trust and
allows users or hospitals to comment on the network.

5. Secure Data Management: To ensure the model’s reliability,
only the trusted data provider uploads the data to the network.
Also, the cryptography algorithm ensures the security of data.

6. Guarantee Quality Model: To ensure the quality of the model,
the consensus process guarantees the quality of the learned data.

4.3. Performance analysis

To evaluate the proposed methods’ performance, we adopted the
8

federated learning model as a classifier to conduct the experimentation.
We analyze and evaluate our model in terms of accuracy. The deep
learning model contains fully connected convolutional layers where
each of the layers consists of 128 neurons. Two factors affect the accu-
racy and running time of the federated learning model i.e., the number
of hospitals and gradients per hospital. We examined both factors for
different value ranges as shown in Fig. 6 and Fig. 7 respectively. It
shows the execution time and accuracy with a different number of
iterations. Here, the number of iterations indicates the update of param-
eters. We compared the effect with different numbers of gradients per
hospital, and we distributed data over six hospitals. We assume no user
has dropped out to conduct the experimentation in the basic setting. It
can be seen that increasing the number of gradients per hospital leads
to higher performance. Whereas, it leads to a computation overhead
as shown in Fig. 6(b). Therefore, to reduce the computation overhead
in a practical environment, an appropriate number of gradients can be
empirically chosen. In terms of model iterations, it can be observed that
model accuracy converges after a certain number of iterations.

The required time to train the local model (local gradients) also
depends on the size of the data and the number of selected hospitals.
We analyzed the accuracy of different users to train the model. The
classification accuracy and execution time can be seen in Fig. 7. Similar
to the previous observation, naturally increasing numbers of iterations
and hospitals consume high computation costs. However, due to inde-
pendent gradient computation for each user, the number of hospitals
leads to high accuracy. The data is split into many chunks as per the
hospital. Therefore, the local gradient for A will be calculated and
combined to produce high accuracy.

4.4. Local model analysis

In this section, we analyze the local deep learning models, which
are divided into three parts. (i) Segmentation, (ii) Classification, and
(iii) Visualization of the Attention Map.

4.4.1. Segmentation network results
Capsule network-based localization of the lung’s COVID-19 region

is shown in Fig. 8. We extracted the region of the lung of COVID-
19 patients. We fix the parameters of the blockchain-based federated
learning where total communication costs𝑇 = 300 and validate each
model in every round to select the best local model from the blockchain
nodes. Moreover, we set the Adam optimizer learning rate at 0.0001.
Each round contains 300 iterations with a batch size of 4. Table 3 shows
the federated learning model for the five hospitals. The first three rows
show the hospitals (I/II/II). We compute the average of five hospitals’
accuracy in the ‘‘global test average’’. This measure shows the global
model and blockchain nodes as the major metrics for performance eval-
uation. Additionally, Table 5 compares the segmentation performance

stage-wise.



Computerized Medical Imaging and Graphics 102 (2022) 102139R. Kumar et al.
Fig. 6. Hospitals=5, no dropout, classification accuracy and running time for the various number of gradients per hospital.
Fig. 7. Gradient=1000, no dropout, classification accuracy and loss for various numbers of hospitals.
Fig. 8. Activation mapping algorithm segmentation results.
4.4.2. Comparison of the global and local model
This paper presents results from global and local deep learning mod-

els i.e., Local I, Local II, Local III, Fed AVG, FedGlobal, and FedProxy.
We compared the performance and adopted deep learning models with
different layers. Moreover, Fig. 9 shows the performance comparison
concerning the segmentation task. Additionally, we evaluate the perfor-
mance comparison of the capsule network concerning accuracy. Fig. 9
9

demonstrates the local and global models; the global model achieves
high-level detection performance through the network.

4.4.3. Visualizations of the attention map regions
For a better understanding, we computed the probabilistic CAM

for each CT image of COVID-19. The capsule network visualizes the
patient’s CT images from the normal and COVID-19 classes, and a
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Table 3
COVID-19 lesion segmentation. The global test average shows the Federated Learning global model. 𝑛 spices the number of
patients.

Parameters Local - I Local - II Local III FedAvg FedAvg - Blockchain FedProx

I (𝑛 = 40) 80.2 64.12 57.0 82.13 78.93 82.53
II (𝑛 = 20) 84.02 82.15 74.74 85.99 86.51 87.18
III (𝑛 = 17) 74.00 72.38 88.05 82.72 87.18 82.65
Global test avg 85.99 82.15 73.16 83.61 ± 0.18 84.21 ± 0.43 84.12 ± 0:58
Local avg 84.07 84.67 84.44 61.99
Local gen 70.99 81.0 81.48 80.53
Table 4
Federated learning segmentation performance at early, progressive, and severe stages.

Method Early
(75%)

Progressive
(15%)

Severe
(10%)

RMSE Recall Dice Worst-case

FedAvg - Blockchain 0.895 0.925 0.943 0.025 0.789 0.795 0.577
FedAvg 0.769 0.896 0.882 0.082 0.802 0.573 0.125
FedProx 0.799 0.912 0.924 0.028 0.702 0.692 0.032
DeepLabV3 0.726 0.820 0.868 0.048 0.759 0.896 0.175
UNet 0.758 0.805 0.855 0.076 0.625 0.459 0.087
Table 5
Federated learning time and memory consumption details.

Method Predication (s) Training (h)

FedAvg - Blockchain 12 5.5
FedAvg 13 5.4
FedProx 15 6
DeepLabV3 12 3.5
UNet 10 2

Table 6
Ablation study on the effect of number of users dropout on our proposed
blockchain-based federated learning (FedAvg-Blockchain).

Dropout
no.

Early
(75%)

Progressive
(15%)

Severe
(10%)

RMSE Recall Dice

1 0.882 0.912 0.935 0.030 0.780 0.786
2 0.851 0.901 0.918 0.080 0.703 0.734
3 0.823 0.870 0.881 0.124 0.680 0.690

Table 7
Tradeoff between global average accuracy
and privacy.

Privacy budget (𝜖) Global test avg

0.10 54 ± 0.75
0.20 69 ± 0.92
0.30 73 ± 0.02
0.40 76 ± 0.83
0.50 84 ± 0.21

noticeable activation map is shown in Fig. 10. Moreover, the applied
CAM (LaLonde and Bagci, 2018; Liao et al., 2019) function visualizes
each image slice.

4.5. Trade off between accuracy and privacy

For this experiment, we measure the global test average of the
proposed model corresponding to different privacy budgets, and in
each case, we set the sensitivity of the additional noise added to the
model’s weights as the optimal probability that increases the privacy
of the framework. Here, the privacy budget indicates the overall end-
to-end privacy loss for the participating user and smaller implies higher
privacy. As shown in Table 7, by increasing the privacy budget 𝜖 < 1
value from 0.10 to 0.50, the corresponding test average keeps increas-
ing, matching the intuition that higher privacy corresponds to lower
accuracy.
10
Fig. 9. Activation mapping algorithm segmentation results.
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Fig. 10. Visualizations of the attention map regions.
Table 8
Comparison with the security analysis. Furthermore, DA represents data authentication,
P/E represents Privacy/Encryption of data Data, DaA represents Data Access and CeT
represents Centralized Trust.

Study Blockchain Server DA P/E DaA CeT

Ours Yes No Yes Yes Yes Yes
Kumar et al. (2021a) Yes No Yes No Yes Yes
Kim et al. (2019) Yes No Yes No Yes Yes
Lu et al. (2020b) Yes No Yes No Yes Yes
Lu et al. (2020a) Yes No Yes No Yes Yes
Xu et al. (2019) No Yes No Yes Yes No
Yang et al. (2014) No Yes No Yes Yes No

4.6. Comparison with other methods

To prove the local models’ accuracy and effectiveness, the proposed
model (as we can observe), the capsule network achieved 98% accuracy
in detecting the COVID-19 CT scans. Although Han et al. also achieve
98% accuracy, they do not consider the data sharing techniques. Fur-
thermore, we compare our scheme with the security analysis shown in
Table 8. Moreover, Bonawitz et al. (2017) adopted federated learning
and proposed a framework to secure the aggregation of gradients.
Whereas, Zhang et al. (2017) introduced the scheme of homomorphic
encryption (HE) and threshold secret sharing to secure the gradients.
The main problem with sharing the model is uncertainty about user
authenticity. In other words, there is still a lack of trust among various
groups. Thus, the proposed approach bridges this gap and achieves the
desired result of trust between parties.

4.7. Ablation study

We further performed additional experiments to ascertain the effect
of user dropout for our proposed federated blockchain framework for
medical images. Users participating in the federated learning task may
drop from the federated learning systems at any time due to several
reasons, such as low device battery, poor connectivity, etc., which may
affect the performance of the model. For each dropout setting, we
randomly drop out 𝑛 ∈ {1, 2, 3} number of users for each training round.
In Table 6, it could be realized that the performance of our proposed
method reduces as the number of drop-out users increases, which is
consistent with the literature. The reason for the performance drop is
likely due to the divergence of weights of the local models from the
global model (Sattler et al., 2019). Also, when users drop out from the
federated learning round, it indirectly decreases the total number of
data instances to aid the training process. Even though there was a
reduction in performance as the number of users dropped out from the
training, the performance reduction is insignificant.

5. Conclusion

This paper proposes a secure data sharing scheme for distributed
multiple hospitals for the internet of things applications that includes
both local model training and secure global model training. We secure
the local model through the homomorphic encryption scheme which
helps build an intelligent model without leakage of the data providers’
privacy and creates trust in the data training process. However, the
11
blockchain-based algorithm aggregates the local model updates and
provides the authentication of the data. The experiment results confirm
the performance and effectiveness of the model. In future work, we
aim to enhance the latency of the blockchain and provide a more
cost-effective solution.
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