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Abstract

Autism spectrum disorder (ASD) is accompanied with widespread impairment in social-emotional 

functioning. Classification of ASD using sensitive morphological features derived from structural 

magnetic resonance imaging (MRI) of the brain may help us to better understand ASD-related 

mechanisms and improve related automatic diagnosis. Previous studies using T1 MRI scans 

in large heterogeneous ABIDE dataset with typical development (TD) controls reported poor 

classification accuracies (around 60%). This may because they only considered surface-based 

morphometry (SBM) as scalar estimates (such as cortical thickness and surface area) and ignored 

the neighboring intrinsic geometry information among features. In recent years, the shape-related 

SBM achieves great success in discovering the disease burden and progression of other brain 

diseases. However, when focusing on local geometry information, its high dimensionality requires 
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careful treatment in its application to machine learning. To address the above challenges, we 

propose a novel pipeline for ASD classification, which mainly includes the generation of 

surface-based features, patch-based surface sparse coding and dictionary learning, Max-pooling 

and ensemble classifiers based on adaptive optimizers. The proposed pipeline may leverage the 

sensitivity of brain surface morphometry statistics and the efficiency of sparse coding and Max-

pooling. By introducing only the surface features of bilateral hippocampus that derived from 364 

male subjects with ASD and 381 age-matched TD males, this pipeline outperformed five recent 

MRI-based ASD classification studies with > 80% accuracy in discriminating individuals with 

ASD from TD controls. Our results suggest shape-related SBM features may further boost the 

classification performance of MRI between ASD and TD.

Keywords

Autism spectrum disorder (ASD); Surface-based morphometry (SBM); Classification; High-
dimensional features

1. Introduction

Autism spectrum disorder (ASD) is associated with a range of phenotypes that vary in 

severity of social, communicative and sensorimotor deficits, of which morbidity increased 

from 1 in 68 children (Autism and Investigators, 2014) to 1 in 59 children (Control and 

Prevention, 2018) in recent years. Therefore, computer-aided diagnosis is increasingly 

needed using biomarkers based on neuroimaging and other measurements to more 

adequately distinguish between ASD and typical development (TD) groups. Among various 

neuroimaging techniques, volumetric T1-weighted magnetic resonance imaging (MRI) has 

been the focus of many studies, especially given its stability in repeated measurements and 

the vast number of features available in a 3D brain image.

Distinguishing individuals with ASD and TD subjects has been a challenging topic since 

the pathological effects of ASD on brain morphology are always more obscure relative to 

brain diseases such as Alzheimer's disease (AD) or Parkinson's disease (PD). Early ASD 

studies mainly relied on the volumes or areas of whole gray, white matter or whole brain 

to describe the structural brain differences between ASD and TD groups (Courchesne et al., 

2003; Herbert et al., 2004; Lotspeich et al., 2004; Hazlett et al., 2006). These features 

achieved good classification accuracy in small and homogeneous dataset (Akshoomoff 

et al., 2004). Later, the cortical thickness (Hutsler et al., 2007) and gradually the voxel-

based morphometry (VBM) (Hyde et al., 2010; Nickl-Jockschat et al., 2012) became the 

new biomarkers as they may provide more sensitive geometric information. For example, 

adopting thickness-based classification with logistic model trees (LMTs), Jiao et al. (2010) 

achieved the accuracy of 87% in 22 ASD and 16 TD subjects; using VBM along with a 

novel multivariate pattern analysis approach and searchlight algorithm, Uddin et al. (2011) 

achieved the accuracy of approximately 90% in 24 ASD children subjects and 24 TD 

children subjects.

However, VBM also has some potential disadvantages. For example, it cannot directly 

measure the cerebral cortex which is a 2-D sheet with a highly folded and curved geometry 

Fu et al. Page 2

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Jiao et al., 2010). Some early studies (Thompson et al., 1998a; Fischl et al., 1999; Van 

Essen et al., 2001) have demonstrated that surface-based morphometry (SBM) may offer 

advantages over VBM as a method to study the structural features of the brain, such as 

surface deformation, as well as the complexity and change patterns in the brain due to 

disease or developmental processes.

Statistics derived from anatomical surface models, such as radial distance analysis (RD, 

distances from the medial core to each surface point) (Pizer et al., 1999; Pitiot et al., 

2004), spherical harmonic analysis (Styner et al., 2006; Gutman et al., 2009) and local area 

differences (related to the determinant of the Jacobian matrix) (Woods, 2003) also have been 

applied to analyze the shape and geometry of various brain structures.

Surface tensor-based morphometry (TBM) (Thompson et al., 1998a; Woods, 2003; Chung et 

al., 2008) is an intrinsic surface statistic that examines spatial derivatives of the deformation 

maps that register brains to a common template and construct morphological tensor maps. 

More specifically, the eigenvalues of the deformation tensor are determined by the size of 

the deformation in the direction of the associated eigenvectors. Our previous studies also 

showed that surface multivariate TBM (mTBM) (Wang et al., 2010; Wang et al., 2011; 

Shi et al., 2013a; Shi et al., 2013b; Lao et al., 2016) was more sensitive for detecting 

group differences than other standard TBM-based statistics. Later, we found the combination 

of surface RD and mTBM, which termed the multivariate morphometry statistics (MMS), 

could give the most powerful statistic results than RD or mTBM (Wang et al., 2011; Wang et 

al., 2012).

Although surface-based morphometry achieved great success in population-based analyses 

and discovered the general trend of disease burden and progression in a more sensitive 

way (Thompson et al., 1998b; Wang et al., 2011; Lao et al., 2016), few studies have 

investigated the use of surface-based morphometry features for brain disease classification 

on an individual basis. A potential reason, no matter for TBM (N × 1), mTBM (N × 3), 

or MMS (N × 4), is that they all belong to high-dimensional shape descriptors (HDSD). 

Though HDSD is a useful source for disease biomarkers, it requires careful treatment in 

its application to machine learning to mitigate the curse of dimensionality (Wade et al., 

2017). That means, when we use surface-based features such as MMS to classify, the feature 

dimension is usually much larger than the number of subjects, i.e., the so-called “high 

dimension, small sample size problem”. When a vast number of variables measured from a 

small number of subjects, it is often necessary to reduce their high dimensional features to a 

relatively lower dimension. By doing so, we may be able to truly stimulate the potential of 

MMS features in terms of classification.

The first aim of this study is to reduce the dimensionality of these high-dimensional 

surface-based features and therefore makes the process of classification easier. To the best 

of our knowledge, existing feature dimension reduction approaches mainly include feature 

selection (Jain and Zongker, 1997; Fan et al., 2005), feature extraction (Guyon et al., 2008; 

Abdi and Williams, 2010) and sparse learning methods (Donoho, 2006; Vounou et al., 

2010). In most cases, the information was lost by mapping into a lower-dimensional space. 

In fact, the discarded information may be compensated by a better defined subspace (or 
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features) — this forms the idea of sparse coding and dictionary learning. Sparse coding 

and dictionary learning has been previously proposed to learn an over-complete set of basis 

vectors (also called dictionary) to represent input vectors efficiently and concisely (Donoho 

and Elad, 2003). Previous studies have shown that sparse coding and dictionary learning 

was efficient enough for many tasks such as image imprinting (Moody et al., 2012), super-

resolution (Yang et al., 2008), functional connectivity (Lv et al., 2014; Lv et al., 2017) and 

structural morphometry analysis (Zhang et al., 2017b). Since sparse coding and dictionary 

learning was demonstrated can generate state-of-the-art results (Mairal et al., 2009; Zhang 

and Li, 2010; Lv et al., 2017; Zhang et al., 2017b) in the field of computer vision, medical 

imaging and bioinformatics applications, it is suggested this method may also boost the 

power in the dimensionality reduction of our MMS features.

Our second aim is to compare and select the most suitable classifiers and optimizers with 

our MMS features after dimensionality reduction. Based on this, we can illustrate which 

classifiers or optimizers may achieve a higher classification accuracy between ASD and TD 

groups, and may better cooperate with our final features.

Many previous ASD classification studies (Ecker et al., 2010; Jiao et al., 2010; Uddin et 

al., 2011) based on small samples and heterogeneous features generated in MRIs, which 

may limit their generalization performance in ASD diagnosis at different sites with different 

scanners. A much larger ASD dataset is needed to overcome the previous heterogeneous 

findings and extract more universal classification features. The emergence of the Autism 

Brain Imaging Data Exchange I (ABIDE I) dataset (Di Martino et al., 2014) provides this 

chance. Therefore, the third aim of this study is to test our final classification pipeline in 

the large multi-site dataset, and to obtain a more general and reproducible basis for ASD 

classification with different scanners and scan parameters.

In this paper, we finally propose a novel and automated classification pipeline for ASD 

classification, which mainly includes the generation of surface-based features, dimension 

reduction based on sparse coding and dictionary learning, Max-pooling and ensemble 

classifiers based on adaptive optimizers. This pipeline is specially designed for subcortical 

structures with high-dimensional morphological features. Subcortical structure surfaces 

usually do not have strong curvature contrasts, but most of them partially have a tube-like 

shape. We include hippocampus in our manuscript because it is a very representative 

tube-like subcortical structure among all of the subcortical structures. We hypothesize that 

our novel pipeline would improve the accuracy of ASD classification based on surface 

morphological features of bilateral hippocampus. We will also discuss the potential of this 

pipeline and its improvable directions in future applications and studies.

2. Materials and methods

2.1. ABIDE subjects

This study analyzes T1-weighted anatomical images from the ABIDE, which includes 539 

individuals with ASD and 573 TD participants (Di Martino et al., 2014), aged 6.47–64, 

collected as part of 20 studies at 17 different sites. All images were obtained with informed 

consent according to procedures established by human subjects' research boards at each 
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participating institution. Details of acquisition, informed consent, and site-specific protocols 

are available at http://fcon_1000.projects.nitrc.org/indi/abide/. As not all sites collected 

female participants and the sampling was extremely sparse than male group, this study 

only included male participants between the age of 6 and 34. It would be beneficial to do so 

as there is increasing evidence that both the biological and behavioral features of ASD may 

be substantially different in male and female individuals (Lai et al., 2017; Ferri et al., 2018). 

To ensure the quality of segmentation, only these male participants with hippocampus that 

could be normally segmented and with good to excellent segmentation quality were retained. 

According to age, gender and quality controls, the final sample consisted of 364 ASD and 

381 TD male participants. The demographic information of studied participants is shown in 

Table 1.

2.2. Image preprocessing

All made subjects' bilateral hippocampus were automatically segmented from T1 images 

using FIRST (available at https://fmrib.ox.ac.uk/fsl/fslwiki/FIRST/), which is an integrated 

tool developed as a part of the FSL library. Relative to Freesurfer, FSL can achieve higher 

accuracy and lower failed rate in the segmentation of subcortical structures (Mulder et al., 

2014; Perlaki et al., 2017). After the segmentation, the output results were strictly checked 

to verify their quality. When obtaining the binary segmentations of the hippocampus, we 

used a topology-preserving level set method (Han et al., 2003) to build surface models. 

Based on that, the marching cube algorithm (Lorensen and Cline, 1987) was applied to 

construct triangular surface meshes. Then, to reduce the noise from MR image scanning and 

to overcome the partial volume effects, surface smoothing was applied consistently to all 

surfaces. Our surface smoothing process consists of mesh simplification using “progressive 

meshes” (Hoppe, 1996) and meshes refinement by loop subdivision surface (Loop, 1987). 

Similar procedures were adopted in a number of prior studies of our group (Wang et al., 

2010; Wang et al., 2011; Colom et al., 2013; Shi et al., 2013a; Shi et al., 2015), which have 

shown that the smoothed meshes are accurate approximations to the original surfaces with 

higher signal-to-noise ratio (SNR) (Shi et al., 2013a).

To facilitate hippocampal shape analysis, we generated a conformal grid on each surface, 

which is used as a canonical space for surface registration (Wang et al., 2008). On each 

hippocampal surface, we computed its conformal grid with holomorphic 1-form basis (Wang 

et al., 2007; Wang et al., 2010). We adopted surface conformal representation (Shi et al., 

2013a) to obtain surface geometric features for automatic surface registration. It consists 

of the conformal factor and mean curvature, encoding both intrinsic surface structure and 

information on its 3D embedding. After capturing these two local features on each surface 

point, we computed their summation and then linearly scaled the dynamic range of the 

summation into [0, 255] to obtain a feature image for the surface. Finally, we further 

registered each hippocampal surface to an existing common template surface. With surface 

conformal parameterization and conformal representation, we generalized the well-studied 

image fluid registration algorithm (Bro-Nielsen and Gramkow, 1996; D'agostino et al., 2003) 

to general surfaces. Furthermore, most of the image registration algorithms in the literature 

are not symmetric, i.e., the correspondences established between the two images depending 

on which image is assigned as the deforming image and which one is the non-deforming 
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target image. An asymmetric algorithm can be problematic as it tends to penalize the 

expansion of image regions more than shrinkage (Rey et al., 2002). In our system, to address 

this issue, we further extended the surface fluid registration method to an inverse-consistent 

framework (Leow et al., 2005). Therefore, the obtained surface registration is diffeomorphic. 

Details of our inverse-consistent surface fluid registration method can be found in (Shi et al., 

2013a).

Together, these above steps allow us to compare and analyze surface data effectively on 

a simpler parameter domain, which avoids considering the complicated brain surfaces 

(Wang et al., 2013). In other words, it is usually hard to handle surfaces with complicated 

topologies (boundaries and landmarks) without singularities. The one-to-one correspondence 

achieved between vertices allows us to accurately analyze localized information on the 

surfaces of the hippocampus.

The a-d subplots of Fig. 1 illustrate the whole pipeline applied in this paper, which 

includes the segmentation of hippocampus, surface reconstruction, surface registration and 

the extraction of high-dimensional surface-based features.

2.3. Capturing the surface-based features

This study adopted 2 novel features: the radial distance (RD) and the multivariate 

tensor-based morphometry (mTBM), which formed the final joint feature — the surface 

multivariate morphometry statistics (MMS). Here we make a brief introduction for RD and 

mTBM as follows:

1. The RD (1 × 1 vector): radial distance, refers to the distance from a medial axis to a 

vertex on the surface — which represents the thickness of the shape at each vertex to the 

medial axis (Pizer et al., 1999; Thompson et al., 2004). The isoparametric curve (see red 

curves in Fig. 1d) is perpendicular to the medial axis (usually the medial axis is determined 

by calculating the geometric center of each red annulus) on the computed conformal grid 

(Wang et al., 2011), after which RD value is easily found at each vertex.

2. The surface mTBM (3 × 1 vector) has been widely studied in our prior work (Wang et al., 

2009; Wang et al., 2010; Shi et al., 2013b; Shi et al., 2015), which usually describes a set 

of multivariate statistics that computed by analyzing the local deformations. Details about 

mTBM can be found in our previous papers (Wang et al., 2009; Wang et al., 2013).

The joint feature MMS has an obvious advantage as the mTBM describes the surface 

deformation along the surface tangent plane while RD reflects surface differences along the 

surface normal directions. Therefore, for each vertex, the MMS is constructed as a 4 × 1 

vector consisting of the both RD and mTBM.

2.4. Patch-based surface sparse coding and Max-pooling for surface feature dimension 
reduction

2.4.1. Patch selection on vertex-wise surface morphometry features—In 

surface-based brain morphometry research, after establishing a one-to-one correspondence 

map between surfaces of subcortical structures (e.g., the subject 1's left hippocampus 
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and subject 2's left hippocampus), the Jacobian matrix J of the map is determined. As 

introduced by some prior studies of our group (Zhang et al., 2016a; Zhang et al., 2017a), 

Surface TBM (Davatzikos, 1996; Thompson et al., 1998a; Woods, 2003; Chung et al., 

2008) and its variant, mTBM (Wang et al., 2009; Wang et al., 2011), are further defined 

to measure local surface deformation based on the local surface metric tensor changes. 

Such vertex-wise surface morphometry features can help improve local deformation measure 

accuracy and may offer better localization and visualization of regional atrophy/expansion 

(Yao et al., 2018) and development (Thompson et al., 1998a). However, classification 

using vertex-wise high-dimensional neuroimaging features is likely to be plagued by the 

curse of dimensionality (Wade et al., 2017). Prior studies on surface feature-based (Sun 

et al., 2009; Wang et al., 2013) or voxel-based (Davatzikos et al., 2008; Uddin et al., 

2011) classification mainly depended on direct feature dimension reduction or without 

dimension reduction, and then do the predict. Actually, such approaches do not exploit the 

possible relationships among features and may ignore the intrinsic properties of a structure's 

regional morphometry. For example, if a surface point carries strong statistical power 

for classification, most likely its neighboring surface points also have certain statistical 

discrimination power. More importantly, a single surface vertex may not carry strong 

statistical power, but a set of such correlated points may do so. In other words, our aim 

is to establish an association mapping among vertices and this may “borrow strength” from 

correlated phenotypes and can potentially yield higher statistical power. In computer vision 

and medical imaging research, patch-based local analysis has been frequently adopted for 

image classification and segmentation (Mairal et al., 2008; Lin et al., 2014). These prior 

patch-based studies, along with the potential advantages of conformal parameterization 

method (Wang et al., 2007) proposed in our prior research, inspired us to generalize patch-

based analysis to anatomical surfaces of human subcortical structures.

Specifically, with regular surface parameterization obtained in our surface fluid registration 

research (Shi et al., 2013a), we randomly generated a number of p-vertex square windows on 

each registered surface to obtain a collection of small surface patches with different amounts 

of overlapping. These patches are allowed to overlap, so a vertex may be contained in 

several patches. We allow patches with overlapping vertices for the purpose that ensure 

every vertex can be learned at least once in the learning stage (therefore all vertices 

participate in the formation of the final features). The e subplot of Fig. 1 shows overlapping 

areas on selected patches from a hippocampal surface. Based on this method, we can 

get a much smaller feature dimension than vertex-wise features for each input sample. 

Meanwhile, we are still able to keep the surface spatial structure and learn the mesh 

structures. We finally transferred the original high-dimensional hippocampal surface features 

into 1008 overlapping patches, as the same as our previous studies (Zhang et al., 2016b; Wu 

et al., 2018). Based on our prior experience, the total number of surface patches is usually 

the most suitable for the hippocampus when it is equal to 1008.

2.4.2. Setting the appropriate patch size—As introduced in our previous studies 

(Zhang et al., 2016a; Zhang et al., 2017a), setting a suitable patch size can be an intriguing 

problem in our system. Ordinarily this problem can be solved empirically by exploiting 

the relationship between the classification performance and patch sizes. In the classification 
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evaluation stage, for each patch size, a 10-fold cross validation protocol (9 folds for training 

and 1 fold for test, repeatedly) was adopted to determine the most suitable patch size (with 

the best classification performance). In our experiment, with 5 as the iteration interval, we 

tried all window sizes from 5 × 5 to 30 × 30 and finally found that the size of 20 × 20 had 

the best classification performance between ASD and TD groups. That means we got the 

best patch size which is 20 × 20 window. The relationship between surface patch size and 

classification accuracy is showed in Fig. 2.

2.4.3. Sparse coding and dictionary learning—After illustrating these patches, 

we used the technique of sparse coding and dictionary learning (Mairal et al., 2009) to 

learn a sparse representation of patch features. In this way, the feature dimension can 

be further reduced. To our knowledge, solving sparse coding remains a computationally 

challenging problem, especially when dealing with large-scale datasets and learning large 

size dictionaries. Here, the Stochastic Coordinate Coding (SCC) (Lin et al., 2014) was 

adopted on our surface patches to construct the dictionary because of its computational 

efficiency.

In brief, the sparse coding and dictionary learning techniques (Olshausen and Field, 1997; 

Lee et al., 2006) consider a finite training set of signals/image patches X = (x1, x2, …, xn) 

in Rp × n. In our work, X is a set of surface patches and each surface patch xi ∈ Rp, i = 1, 2, 

…, n, where p is the dimension of the surface patch (p-vertex) and n is the number of surface 

patches. We aim to optimize the empirical cost function

f(D) ≜ 1
n ∑

i = 1

n
l(xi, D) (1)

where D ∈ Rp × m (n)m) is the dictionary, each column (atom) representing a basis vector, 

and l is a loss function such that l(xi, D) should be small if D is “good” at representing the 

surface patch xi. Specifically, suppose there are m atoms dj ∈ Rp, j = 1, 2, …, m, then xi can 

be represented into

xi = Dzi (2)

where xi is approximated by both dj (atoms of dictionary) and zi, j (sparse codes). In this 

way, the p-dimensional vector xi is represented by an m-dimensional vector zi = (zi, 1, 

zi, 2, ..., zi, m)T. Then, we define l (xi, D) as the optimal value of the l1- sparse coding 

problem:

l(xi, D) ≜ min
zi ∈ Rm

1
2 ∣ ∣ Dzi − xi ∣ ∣22 + λ ‖zi‖1 (3)

where λ is a regularization parameter which is usually taken to avoid the overfitting of the 

regression, ∥ · ∥ is the standard Euclidean norm. This problem is also known as “Lasso 

problem” (Fu, 1998), which is a convex problem.
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Then, we can incorporate the idea of n surface patches into eq. (3) and have the following 

optimization problem:

min
D, zi

1
2 ∑

i = 1

n
‖Dzi − xi‖2

2 + λ ∑
i = 1

n
‖zi‖1 (4)

where ∥zi∥1 = Σj = 1
m ∣zi, j∣. The first term of eq. (4) measures the degree of goodness 

representing the surface patches. The second term ensures the sparsity of the learned feature 

zi. D = (d1, d2, …, dm) ∈ Rp × m is the dictionary, where dj ∈ Rp, j = 1, …, m. The second 

term of eq. (4) is also called l1 penalty (Fu, 1998). It is well known that the l1 penalty yields 

a sparse solution for Z. However, there is no link between the value of λ and the l1 penalty. 

To prevent D from being arbitrarily large and leading to arbitrary scaling of the sparse codes, 

one may constrain its columns (di)j = 1
k to have l2 norm less than or equal to one. We will let 

C become the convex set of matrices verifying the constraint:

C ≜ {D ∈ Rp × m, s . t . ∀ j = 1, 2, …, m, dj
T dj ≤ 1} (5)

Therefore, our objective function in this work can be written into following matrix notation:

min
D ∈ C, Z ∈ Rm × n

∣ ∣ DZ − X ∣ ∣F2 + λ ∣ ∣ Z ∣ ∣1 (6)

where the first term is Frobenius norm, the matrix F-norm is defined as the square root 

of the sum of the absolute squares of its elements. Eq. (6) is a non-convex problem with 

respect to joint parameters in the dictionary D and the sparse codes Z. However, it is a 

convex problem when either D or Z is fixed. When the dictionary D is fixed, solving sparse 

codes Z is a Lasso problem (Fu, 1998). On the other hand, when the sparse code Z is 

fixed, optimizing D is a quadratic problem. However, either solving D or Z in sparse coding 

problem requires much time (Lin et al., 2014) when dealing with large-scale data sets and 

a large sized dictionary. Thus, we choose the stochastic coordinate coding (SCC) algorithm 

(Lin et al., 2014), which can dramatically reduce the computational cost of the sparse coding 

while keeping a comparable performance.

2.4.4. Pooling operation—In practice, we could directly use all learned surface patch 

features computed by the previous sparse coding step as input features with a suitable 

classifier. However, we found the classification accuracy was relatively lower and it was 

more challenging in computation if we do so. To describe our surface features efficiently, 

one natural approach is to aggregate statistics of these features at various locations. 

Therefore, we introduced the pooling operation. Commonly used pooling operations include 

Max-pooling and Average-pooling. As a key component of deep learning models in recent 

years, Max-pooling takes the most responsive node (usually the biggest in value) of a 

given region of interest (Boureau et al., 2010), which therefore can better retain the texture 

features of this region. Average-pooling is widely used for image retrieval (Gu et al., 2018), 

which has certain advantages in maintaining the overall characteristics of a region.
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Although Max-pooling and Average-pooling both down sampled the data, the idea of Max-

pooling is more like feature extraction, as the features with better classification recognition 

are selected. Therefore, we finally used Max-pooling in our pooling operation. As displayed 

in Fig. 3, Max-pooling usually takes each max value over four numbers (little 2 × 2 squares 

with the same colors) and the feature dimension is then reduced to one fourth, when we set 

the stride as 2.

2.5. Choosing the most suitable ensemble classifier

Despite a series of dimension reduction and feature extraction methods were applied, the 

final feature dimension for bilateral hippocampus still remain 8000 — a huge number which 

is challenging for usual single classifiers such as SVM, decision tree or Naive Bayes. To 

better solve the curse of dimensionality in subcortical brain surface morphometry, here we 

introduced and compared a series of ensemble classifiers.

Like a “committee” of weak classifiers, ensemble classifiers (Rodriguez et al., 2006; 

Pratama et al., 2018) can usually achieve higher accuracy and stronger statistical ability 

than any individual classifier and are especially suitable for data sets with high-dimensional 

distribution patterns. After sparse coding and max-pooling, the diversification of our sparse 

surface features becomes more subtle — this give ensemble classifier chance to better 

detect these subtle differences between groups. How to construct a high-quality ensemble 

classifier/predictor is a critical topic here, and the framework of construction is introduced 

in Fig. 4, which mainly includes ensemble aggregation method, number of iterations and 

type selection of weaker learners. Generally, there are many ensemble algorithms for solving 

the binary classification problem, such as boost learning series (subtypes include: AdaBoost, 

LogitBoost, GentleBoost and RUSBoost) (Freund and Schapire, 1997; Friedman, 2001; 

Freund, 2009), Subspace (Barandiaran, 1998) and Bagging (Breiman, 1996).

To choose the most suitable ensemble classifier for our patch-based surface features, we 

plan to compare the performance of all the above ensemble algorithms (see Table 2 and 

Table 3) and meanwhile retain other parameter consistent (e.g., all of them use tree as 

weak learners and adopt the same number of iterations). Here we use tree as weak learners 

rather than the SVM which applied in our prior studies (Zhang et al., 2016a; Zhang et al., 

2017a) because our recent research discovered that tree (which may construct the random 

forest or even deep forest) had very stable performance in patch-based features of our ASD 

datasets. A possible explanation is that ensemble classifier with trees as weak learners can 

handle high-dimensional features without variable deletion and it can always run efficiently 

on large databases. Different with SVM-based ensemble classifier, it doesn't need to do a 

lot of parameter tuning, which, in some degree, guarantees the universality of our model. 

Meanwhile, a previous study has pointed out that random forest, which constructed by trees, 

had the most stable classification performance in high-dimensional shape descriptors (Wade 

et al., 2017).

In the final performance evaluation stage, a 10-fold cross validation protocol is adopted on 

the experiments of all ensemble classifiers to estimate the classification accuracy. We repeat 

this procedure for 10 times and estimate their average results. Five performance measures 

Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Positive predictive value (PPV) and 
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Negative predictive value (NPV) are used to evaluate the classification performance (see 

Table 2 and Table 3). We also illustrate the area-under-the-curve (AUC) of the receiver 

operating characteristic (ROC), which is based on the results of the last fold in the last time 

experiment of all ensemble classifiers.

2.6. Selecting the best optimizer for our patch-based dataset and classifier

After choosing the most suitable ensemble classifier, a key point for boosting the 

power of this classifier is to select a best suitable optimizer, and this is also a 

component of optimization for hyperparameters. Although our model can search of 

network hyperparameters automatically, we still should predefine a specific search method. 

Generally, there are three kinds of automated methods for searching the hyperparameters 

— Bayesian optimization, grid search and random search. Here, the grid search is actually 

an exhaustive search and therefore it is expensive (Keerthi et al., 2007). Particularly, when 

the number of train examples is very large, this search is so time-consuming relative to 

Bayesian optimization or random search. In terms of effectiveness, previous study (Bergstra 

and Bengio, 2012) showed empirically and theoretically that randomly chosen trials (random 

search) are more efficient for hyperparameter optimization than trials on a grid (grid search). 

Due to the poor performance of grid search in high-dimensional large samples, this section 

finally compared the Bayesian optimization and random search.

Bayesian optimization is a powerful tool for optimizing objective functions which are 

very costly or slowly to evaluate (Martinez-Cantin et al., 2007; Snoek et al., 2012). 

Mathematically, we are considering the problem of finding a global maximizer (or 

minimizer) of an unknown objective function f

x∗ = arg max
x ∈ χ

f(x) (7)

where χ is some design space of interest; in global optimization, χ is often a compact subset 

of ℝd but the Bayesian optimization framework can be applied to more unusual search 

spaces that involve categorical or conditional inputs, or even combinatorial search spaces 

with multiple categorical inputs (Shahriari et al., 2015). Bayesian optimization can usually 

find an acceptable hyperparameter value quickly and it needs fewer iterations (relative to 

grid search), even its disadvantage is that it is not easy to find the global optimal solution.

In random search, we can express the hyper-parameter optimization problem (Snoek et al., 

2012) in terms of a hyper-parameter response function Ψ by:

λ∗ = arg max
λ ∈ Λ

Ψ(λ) (8)

≈ arg max
λ ∈ {λ(1)⋯λ(S)}

Ψ(λ) ≡ λ

where λ is a hyper-parameter which identified by a good value; λ ∈ Λ and Λ represents 

a specific dataset. Hyper-parameter optimization is the maximization or minimization of 
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Ψ(λ) over λ ∈ Λ. The dominant strategy for finding a good λ is to choose some number 

(S) of trial points {λ(1)⋯λ(S)}, to evaluate Ψ(λ) for each one, and return the λ(i) that 

worked the best as λ. Previous study (Snoek et al., 2012) has shown that random search 

is more efficient than grid search in high-dimensional spaces if functions Ψ of interest 

have a low effective dimensionality. In particular, if a function f of two variables could be 

approximated by another function of one variable (f(x1, x2) ≈ g(x1)), we could say that f 
has a low effective dimension. Obviously, random search also has huge potential for our 

high-dimensional features.

Later, we compare the optimizer performance of Bayesian optimization and random search 

in all ensemble classifiers, and try to evaluate which one is better.

3. Results and validations

3.1. Demographic characteristics

The demographic characteristics of all the male subjects are summarized in Table 1, which 

includes site name, information of scanner, mean and standard deviation (SD) of the age 

of male subjects. Among the 20 sites, only the NYU site has significant difference in age 

distribution between ASD and TD groups (p < 0.05). Put aside different sites, all of the 364 

ASD and 381 TD male participants are age-matched.

3.2. Classification results and the selection of suitable ensemble classifiers

Classification results of these ensemble classifiers are displayed in Table 2 and Table 

3. When adopting the same optimizer (e.g. Bayesian optimization), the GentleBoost 

outperformed than other ensemble classifiers in ACC, SEN, SPE, PPV and NPV. Subspace 

is found not suitable for our features and pipeline (ACC ≈ 0.50). Except for the Subspace, 

the impact of different optimizers (Bayesian optimization vs. random search) on the final 

classification accuracy is very limited, which usually less than 1% in changes of ACC, 4% in 

changes of SEN, 2% in changes of SPE, 2% in changes of PPV and 3% in changes of NPV.

No matter what optimizer is used, the classification accuracy of the three ensemble 

classifiers — include Adaboost, GentleBoost and LogitBoost, are steadily greater than 

or equal to 80%. We illustrating 5 best and representative optimization performances for 

each ensemble classifier under the same number of iterations (Fig. 5) based on Bayesian 

optimization. Results show that in the optimization process of all ensemble classifiers, the 

Adaboost, GentleBoost and LogitBoost are easier to find acceptable minimum estimated 

values relative to minimum observed value. In other classification metrics, such as SEN, 

SPE, PPV and NPV, the three ensemble classifiers displayed very similar patterns.

Note that the ROC results in Fig. 6 are derived on the results of the last fold in the last 

time experiment of all ensemble classifiers (not directly choosing the best ROC), because 

our aim is just simply display which ensemble classifiers might be better. In conclusion, 

the Adaboost, GentleBoost and LogitBoost ensemble classifiers might work well with our 

pipeline.
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In the best case, when combining GentleBoost ensemble classifier with Bayesian 

optimization, this pipeline can achieve 83% accuracy, 80% sensitivity, 85% specificity for 

the classification of ASD vs. TD, though it only used morphological features from bilateral 

hippocampus.

3.3. Validations of classification performances

3.3.1. Classification performance of this pipeline in a single site—We also 

added a single site experiment to test the classification performance of our pipeline on 

subjects with the same scan parameters. Considering the number of subjects and the 

matching degree of age, we extracted subjects from the USM site (rather than NYU site) 

to perform this verification process. The USM site contains 87 of 745 male subjects, which 

consisting of 50 male subjects with ASD and 37 TD male subjects. GentleBoost ensemble 

classifier with Bayesian optimization was applied here because of its better performance 

in ABIDE multi-site classification. Due to the much smaller sample size, here we used a 

20-fold cross-validation protocol and repeated this procedure for 10 times. As shown in Fig. 

7, USM site dataset outperformed than multi-site dataset in the mean values of ACC (86% > 

83%), SEN (92% > 80%), PPV (88% > 84%) and NPV (86% > 82%), but displayed lower 

SPE (81% < 85%).

3.3.2. Classification performance of this pipeline when only using RD 
features—The advantage of MMS feature is it contains both RD (from surface normal 

direction) and mTBM (form surface tangent direction) in each surface vertex. Combining 

features from both directions usually makes the classification results better. In this section, 

we also evaluated the average classification performance of using only the RD features with 

a 10-fold cross-validation protocol. We repeated this experiment in AdaBoost, GentleBoost 

and LogitBoost ensemble classifiers. All of the performances of using RD features are 

significantly worse than using MMS features (Table 4).

3.3.3. Classification performance of this pipeline based on direct feature 
reduction—As a classical feature dimensionality reduction method, Principal Component 

Analysis (PCA) is usually used as a representative method for the direct feature reduction. 

While maintaining the contribution rate of 90%, we reduced the original features with 

120,000 dimensions to the final 145 dimensions. We repeated this experiment in AdaBoost, 

GentleBoost and LogitBoost ensemble classifiers and found the classification results based 

on PCA feature reduction were much worse than our method (see Table 5).

4. Discussion

This study has four main findings. Firstly, we make the high-dimensional surface-based 

features of bilateral hippocampus more feasible for classification and achieved good 

accuracy. In fact, surface-based features, especially derived from subcortical structures, are 

challenging in feature extraction — small errors or uncaptured deformations may cause 

worse accuracy. This solution mainly relies on our novel pipeline for ASD classification, 

which includes the generation of surface-based features, dimension reduction based on 
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sparse coding and dictionary learning, Max-pooling and classifier selection based on 

adaptive optimizer.

Secondly, we find our multivariate morphometry statistics (MMS), which consists of surface 

multivariate tensor-based morphometry and radial distance, are applicable for prediction 

and classification research of ASD. This discovery implies that when analyzing ASD-

related morphological changes in subcortical structures, it may be highly beneficial if we 

simultaneously consider the surface normal direction and surface tangent direction. Our 

supplementary experiment in Section 3.3.2 also confirms that classification results included 

morphological features in only one direction usually perform worse.

Thirdly, by leveraging the multi-site international dataset (ABIDE), we show that our 

pipeline is stable and has good generalization in MRI data with long span of ages, strong 

heterogeneity in scan parameters and scanners. This also means our pipeline may produce 

more attractive results in data sets with less heterogeneity (e.g. more closely matched in age, 

IQ and use the same scanner and the same scan parameters). Our supplementary experiment 

in Section 3.3.1 has provided a preliminary evidence.

Fourthly, our pipeline demonstrates that high-dimensional surface-based features of 

subcortical structures may provide stronger statistical power in ASD-related classification 

and diagnosis if we encode a great deal of neighboring intrinsic geometry information that 

might be overlooked in previous studies. As for comparison, the traditional feature reduction 

method (e.g., PCA, see Section 3.3.3) works much worse than our method.

4.1. The tradeoff of high-dimensional surface-based features and classification accuracy

One of the original intentions of this paper is to make a tradeoff between high-dimensional 

surface-based features and classification accuracy. The high-dimensional surface-based 

features, such as SPHARM, RD, mTBM, MMS and so on (Woods, 2003; Pitiot et al., 

2004; Styner et al., 2006; Chung et al., 2008; Gutman et al., 2009; Wang et al., 2010; Shi 

et al., 2013a), are usually more sensitive than volume, surface area or VBM (Jiao et al., 

2010; Wang et al., 2011; Yao et al., 2018). However, these high-dimensional surface-based 

features have different degrees of sensitivity in capturing local deformations. For example, 

the surface multivariate TBM (mTBM) was demonstrated outperformed than SPHARM (Shi 

et al., 2011).

The MMS features adopted in this research may capture richer details in local morphometry 

than using only RD or mTBM (Wang et al., 2011; Wang et al., 2012), therefore it is sensitive 

enough among existing surface-based features. However, this “sensitivity” is not always 

a good thing — simultaneously includes features in surface normal direction and surface 

tangent direction make MMS a bit noisier (Lao et al., 2016; Yao et al., 2018). In order to 

prove that our proposed pipeline is novel and effective, we also need to ensure that the final 

classification accuracy is stable and can achieve similar or better results than these current 

classification schemes.

After image preprocessing, a pair of hippocampus includes totally 30,000 vertices on their 

surface, while MMS feature at each surface vertex is a 4 × 1 vector, therefore the final 
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original feature dimension is up to 120,000 dimensions. In the initial of this study, we 

tried to classify directly with the original high-dimensional features or do some traditional 

dimensionality reduction method such as PCA (see Section 3.3.3), but obtained poor 

classification performance. Then we considered patch-based analysis, as a single surface 

vertex may not carry strong statistical power and is too sensitive to noise. We found 

the best patch size is 20 × 20 since it may generate the best prediction performance 

between ASD and TD groups. This is slightly different from our previous experience, as 

our previous research found that 10 × 10 window is the most suitable for the classification 

between Alzheimer's disease (AD) group and cognitive unimpaired (CU) group (Zhang et 

al., 2016b; Zhang et al., 2017a). We speculate the underlying reason may be that the overall 

degree of hippocampal morphological changes caused by ASD is relatively weaker or the 

recognizable areas between the two groups on bilateral hippocampus are more dispersive 

(as for comparison, morphological changes in hippocampus of AD are obviously more 

extensive). In practical analysis, it may be rewarding to consider the association of patch 

sizes and classification accuracies.

In terms of improving the classification accuracy, we compared six classical ensemble 

classifiers, and found three of them may produce good classification results. We also 

demonstrated that our pipeline seems not very sensitive to the selection of different 

optimizers. In the future, we may discuss the underlying causes of this phenomenon.

4.2. Comparison with other ASD classification research based on MRI data of ABIDE 
dataset

Considering the contrast, it may be advantageous to list some prior classification research 

based on T1-weighted MRIs of ABIDE dataset. Using autism, classification and ABIDE 
as key words simultaneously, we got five ASD classification studies from the Google 

Scholar. The time range we conducted is from 2014 to 2019. We found that the topic of 

ASD classification becomes hotter in recent years. We summarized these state-of-the-art 

MRI-based classification studies (Haar et al., 2014; Katuwal et al., 2015; Sabuncu et al., 

2015; Katuwal et al., 2016; Zheng et al., 2019) and this study in Table 6 for comparison. 

From this table, we can see that 1) our experiments are conducted with a large dataset and 

heterogeneous subjects; 2) our experimental results show the superiority of the proposed 

pipeline over the state-of-the-art morphometry classification methods; 3) our pipeline may 

be more expandable in future research (because we only used patch-based features derived 

from the bilateral hippocampus, and a large number of features in the brain were not 

include).

4.3. Limitations and potential future improvements

Although the current work drew on the experience of our previous studies (Zhang et al., 

2016b; Zhang et al., 2017a) and its performance is tested in both AD and ASD groups, 

this pipeline is still on its preliminary stage. This study has three main limitations. First, 

because of the overlaps in patch selection and the max-pooling scheme, we generally 

cannot visualize the selected features and it decreases the comprehensibility of this pipeline. 

Usually an alternative solution is that we may visualize these statistically significant regions 

based on our previous analysis framework for group difference (Shi et al., 2013a; Wang 
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et al., 2013; Yao et al., 2018). Second, we only tested the performance of six classical 

ensemble classifiers and two automated methods for searching the hyperparameters. Using 

more novel classifiers and optimizers in experiment may find more attractive results. Third, 

MRIs of ABIDE were obtained from different sites, with different scanning parameters, 

have large age spans and different phenotypic characteristics. When these factors are mixed, 

they may weaken the classification ability of our pipeline. Since ASD is a “spectrum” 

disorder, there are a large array of different phenotypic characteristics that may classify an 

individual as having ASD. For example, the lower accuracies achieved when classifying 

ASD in comparison to other disorders may be caused by the wide variety of individuals who 

fall under the categorization of ASD (Mathur and Lindberg, n.d.).

In the future, there are at least two improvements worth exploring with our pipeline. First, 

no matter in our previous AD classification studies or this ASD classification study, we 

only used patch-based features that derived from hippocampal morphometry. As we know, 

there are many subcortical structures and cortical structures in the human brain that are 

pathologically related to ASD, hence the joint features from these multiple structures may 

further boost the classification potential of our pipeline. Second, the ASD subjects included 

in this study are very heterogeneous. A better alternative in the future, as pointed out by 

Katuwal et al. (2016), may be to focus on the classification in relatively more homogenous 

sub-groups defined by a number of criteria such as age, sex, IQs, handedness, severity, etc.

5. Conclusion

In the present study, we illustrated a novel pipeline that leverages surface multivariate 

morphometry statistics with surface sparse coding and max-pooling for the ASD 

classification. We discussed the selection of patch sizes, ensemble classifiers and automated 

optimizers. We compared our classification results with previous MRI-based classification 

studies using ABIDE dataset and found our pipeline had superiority in both accuracy and 

expansibility. Software source code of sparse coding and dictionary learning were also 

released on our website for public access (available at: http://gsl.lab.asu.edu/software). In 

future, we plan to apply our pipeline to more cortical and subcortical surface data and further 

improve the comprehensibility of this framework by visualizing morphometry features 

selected in classification.
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Fig. 1. 
The whole pipeline applied in this paper. Subplots: (a) T1 MRIs; (b) segmentation 

of bilateral hippocampus; (c) reconstruction of 3D surface models; (d) one to one 

correspondence obtained from surface registration (the red curves are the isoparametric 

curves and therefore they are perpendicular to the medial axis; the intersection of each 

red curve and blue curve represents a surface vertex; each vertex contains a 4 × 1 vector 

that represents by S1, S2, S3 and S4); (e) selection of patches; (f) sparse coding and 

dictionary learning; (g) construction of patch features; (h) Max-pooling; (i) selection of 

suitable ensemble classifiers and optimizers.
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Fig. 2. 
The relationship between surface patch size and classification accuracy. Patch size of 20 × 

20 (red bar) was used in this study. Error bars signify SEM (Standard error of mean).
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Fig. 3. 
The process of Max-pooling and Average-pooling.
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Fig. 4. 
The framework of constructing a suitable ensemble classifier.
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Fig. 5. 
The 5 best and representative optimization performance for each ensemble classifier under 

the same number of iterations.
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Fig. 6. 
The ROC of the six ensemble classifiers based on Bayesian optimization (left) and Random 

search (right).
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Fig. 7. 
The classification performance of USM site vs. ABIDE multi-site. Error bars signify SEM.
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