Table 5.
Classification results of the three ensemble classifiers based on PCA feature reduction.
| AdaBoost | AdaBoost_PCA | GentleBoost | GentleBoost_PCA | LogitBoost | LogitBoost _PCA | |
|---|---|---|---|---|---|---|
| ACC | 0.81 ± 0.04 | 0.52 ± 0.07 | 0.83 ± 0.07 | 0.53 ± 0.05 | 0.80 ± 0.04 | 0.51 ± 0.04 |
| SEN | 0.78 ± 0.09 | 0.44 ± 0.12 | 0.80 ± 0.10 | 0.48 ± 0.09 | 0.77 ± 0.04 | 0.44 ± 0.15 |
| SPE | 0.84 ± 0.06 | 0.60 ± 0.02 | 0.85 ± 0.06 | 0.58 ± 0.09 | 0.84 ± 0.06 | 0.58 ± 0.10 |
| PPV | 0.82 ± 0.08 | 0.51 ± 0.12 | 0.84 ± 0.06 | 0.52 ± 0.06 | 0.81 ± 0.09 | 0.50 ± 0.07 |
| NPV | 0.81 ± 0.08 | 0.53 ± 0.06 | 0.82 ± 0.08 | 0.54 ± 0.10 | 0.79 ± 0.06 | 0.53 ± 0.07 |
ACC = Accuracy; SEN = Sensitivity; SPE = Specificity; PPV = Positive predictive value; NPV = Negative predictive value. All of the values are denoted by Mean with SD. Results based on PCA feature reduction are denoted by bold.