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A Feature-Encoded Physics-
Informed Parameter
Identification Neural Network
for Musculoskeletal Systems
Identification of muscle-tendon force generation properties and muscle activities from
physiological measurements, e.g., motion data and raw surface electromyography
(sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digi-
tal twin system for health condition assessment and motion prediction. While machine
learning approaches with capabilities in extracting complex features and patterns from a
large amount of data have been applied to motion prediction given sEMG signals, the
learned data-driven mapping is black-box and may not satisfy the underlying physics and
has reduced generality. In this work, we propose a feature-encoded physics-informed
parameter identification neural network (FEPI-PINN) for simultaneous prediction of
motion and parameter identification of human MSK systems. In this approach, features of
high-dimensional noisy sEMG signals are projected onto a low-dimensional noise-
filtered embedding space for the enhancement of forwarding dynamics prediction. This
FEPI-PINN model can be trained to relate sEMG signals to joint motion and simultane-
ously identify key MSK parameters. The numerical examples demonstrate that the pro-
posed framework can effectively identify subject-specific muscle parameters and the
trained physics-informed forward-dynamics surrogate yields accurate motion predictions
of elbow flexion-extension motion that are in good agreement with the measured joint
motion data. [DOI: 10.1115/1.4055238]

Keywords: physics-informed neural networks, parameter identification, musculoskeletal
system, data-driven computing, feature-encoding, surface electromyography

1 Introduction

Human movement resulting from the interaction of various sub-
systems within the human body is controlled by the excitation sig-
nals from the central nervous system that lead to joint motion in
the musculoskeletal (MSK) system. These subsystems, governed
by parameterized nonlinear differential equations [1,2], form the
forward dynamics problem [2]. Given information on muscle acti-
vations, the joint motion of a subject-specific MSK system can be
obtained by solving a forward dynamics problem. The muscle
activations can be estimated by the surface electromyography
(sEMG) signals through a noninvasive procedure [2,3]. Surface
electromyography driven forward dynamics have been widely
used for predictions of joint kinetics or kinematics [2–5]. For
rehabilitation applications in assessing muscular pathologies or
weakened muscle groups, Pau et al. [4] used a simplified geomet-
ric model of the MSK system for elbow flexion to predict the
motion of the elbow joint, given an sEMG signal. Zhao et al. [6]
utilized sEMG signals to simulate wrist kinematics for various
flexion/extension trials. Standard optimization techniques such as
genetic algorithms [4,6], simulated annealing [7], and nonlinear
least squares [2,3] have been used for parameter identification.

In recent years, machine learning (ML) or deep-learning-based
approaches have become a viable alternative due to their flexibil-
ity and capability in extracting complex features and patterns

from data [8] and have been successfully applied to various prob-
lems in engineering applications such as reduced-order modeling
[9–13], and materials modeling [14,15], among others. For motion
prediction, data-driven approaches have been introduced to
directly map the input sEMG signal to joint kinetics/kinematics,
bypassing the forward dynamics equations and the need for
parameter estimation. For example, Au et al. [16] used only
sEMG data as input to a time-delayed neural network (NN) to pre-
dict shoulder motion. Wu et al. [17] applied reinforcement learn-
ing for the sEMG and joint moment mapping. Leserri et al. [18]
used features of the raw sEMG signals to map them to the elbow
joint motion. Ma et al. and Ren et al. [19,20] used enhanced recur-
rent neural networks and convolutional neural networks, respec-
tively, to map the raw sEMG signal to the motion of the upper
limb. While these ML approaches do not require calibrating phys-
iological parameters, the resulting ML-based surrogate models
lack interpretability and may not satisfy the underlying physics.

To integrate data and physical models by using ML approaches,
data-driven computing that enforces constraints of conservation
laws in the learning algorithms of a material database has been
developed in the field of computational mechanics [21–23]. This
paradigm has been applied to other engineering problems, such as
nonlinear material modeling [22,24,25] and, fracture mechanics
[26], among others. Furthermore, deep manifold embedding tech-
niques have been introduced in data-driven computing for extract-
ing low-dimensional feature space [27,28].

More recently, physics-informed neural networks (PINNs) have
been developed [29–32] to approximate the solutions of given
physical equations by using feed-forward NNs and minimizing
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the residuals of the governing partial differential equations
(PDEs) and the associated initial and boundary conditions. The
PINN method has been successfully applied to problems such as
flow and transport in porous media [31], solid mechanics [30],
additive manufacturing [33], biomechanics, and biomedical appli-
cations [34–37], and inverse problems [29,30,38–40]. In inverse
modeling with PINNs, the unknown system characteristics are
considered trainable parameters or functions [29,41].

In this study, we propose a physics-informed parameter identifi-
cation neural network (PI-PINN) for the simultaneous prediction
of motion and parameter identification with application to MSK
systems. Using the raw transient sEMG signals obtained from the
sensors and the corresponding joint motion data, the PI-PINN
learns to predict the motion and identifies the parameters of the
hill-type muscle models representing the contractile muscle-
tendon complex.

The standard PINNs with a fully connected architecture present
difficulties in learning the high-frequency components of the solu-
tion, which is known as spectral bias [32,42,43]. Wong et al. [43]
pointed out that PINNs tend to have a strong bias toward low-
frequency patterns which are considered trivial solutions to the
governing equations. To mitigate the issue of spectral bias, in this
work a Fourier feature transformation is applied to modulate the
signals input to embedding space [42,43]. A similar approach was
proposed in Ref. [37] where a feature layer has been introduced
for encoding certain dynamic patterns, such as periodicity.
Inspired by these studies, we further propose a feature-encoded
approach for the PI-PINN framework, termed feature-encoded

physics-informed parameter identification neural network (FEPI-
PINN), in dealing with the highly oscillatory sEMG signals. Here,
the sEMG signals and joint motion data are first projected onto a
low-dimensional space consisting of Fourier and polynomial
bases. The NN is then used to map the associated basis coeffi-
cients between the input signal and the target output signal. Subse-
quently, the mapped coefficients are used to reconstruct the joint
motion using the bases.

This paper is organized as follows. Section 2 introduces the
subsystems and mathematical formulations of MSK forward
dynamics, including the EMG-to-activation dynamics, the
muscle-tendon contraction dynamics, and the MSK system
dynamics, followed by an introduction of the proposed FEPI-
PINN framework for simultaneous motion prediction and system
parameter identification. Section 3 discusses the verification of the
proposed algorithms using synthetic motion data. In Sec. 4, the
proposed frameworks are validated by modeling the elbow
flexion–extension movement using subject-specific sEMG signals
and recorded motion data. Concluding remarks and future work
are summarized in Sec. 5.

2 Methods

In this section, the mathematical formulations of subsystems
for the forward dynamics of the human MSK system are
described, followed by an introduction of the proposed PI-PINN
framework designed for simultaneous forward dynamics learning
and parameter identification.

Fig. 1 A flowchart depicting the interaction of the different subsystems related to the motion of the MSK
system. Excitation from neurons is transmitted to muscle fibers (activation dynamics) that contract to
produce force (muscle-tendon contraction dynamics). These forces generate torques at the joints (struc-
tural level MSK dynamics), leading to joint motion. The boxed entities are the nonlinear differential equa-
tions that relate to the different states of the system.
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2.1 Musculoskeletal Forward Dynamics. The hierarchical
interaction of various subsystems of MSK forward dynamics is
illustrated in Fig. 1, where the activation dynamics transform neu-
ral excitation (which can be measured by sEMG signals) to mus-
cle activation that drives muscle fibers to produce force through
the muscle-tendon (MT) contraction dynamics, leading to joint
motion (translation and rotation) of MSK systems via the MSK
system dynamics. The mathematical formulations of these subsys-
tems are introduced in Secs. 2.1.1–2.1.3.

2.1.1 EMG-to-Activation Dynamics. The raw sEMG signals
eðtÞ are measures of the neural excitation u tð Þ from the central
nervous system. The EMG-to-Activation dynamics describes a
nonlinear transformation from sEMG signals to muscle activa-
tions a tð Þ [4,6,44], which activate muscle fibers in a muscle group
to produce active force. The neural excitation signal uðtÞ can be
transformed from the sEMG signals eðtÞ by [2,3,45]

u tð Þ ¼ eðt� dÞ (1)

where d is the electromechanical delay between the neural excita-
tion originating and reaching the muscle group [45]. The muscle
activation signal aðtÞ can then be obtained from the neural excita-
tion u tð Þ in Eq. (1) by

a tð Þ ¼ exp Au tð Þð Þ � 1

exp Að Þ � 1
(2)

where A is a shape factor [45].

2.1.2 Muscle-Tendon Contraction Dynamics. The MT con-
traction dynamics is introduced to relate the muscle contraction to
force production via a hill-type muscle model [46,47] parameter-
ized by the maximum isometric force in the muscle (f M

0 ), the opti-
mal muscle length (lM

0 ) corresponding to the maximum isometric
force, the maximum contraction velocity (vM

max), the slack length
of the tendon (lT

s Þ, and the pennation angle (/Þ to be discussed as
follows.

First, let each muscle group be characterized by a parameter
vector

j ¼ ½lM0 ; vM
max; f M

0 ; lT
s ; /� (3)

The force generated by the muscle group contains an active and a
passive component [48,49]. The active force f A component can be
expressed as

f A a; ~l
M
; ~v M; j

� �
¼ af A;L ~l

M
; j

� �
f V ~v M; j
� �

~l
M ¼ lM=lM0

~v M ¼ vM=vM
max

(4)

where a is the activation function in Eq. (2), ~l M is the normalized
muscle length, ~vM is the normalized velocity of the muscle, and

f A;L ~l Mð Þ and f V ~vMð Þ are functions of the length and velocity-
dependent force generation properties of the active muscle repre-
sented by generic functions of dimensionless quantities as given
in Appendix B [48–50], allowing them to be scaled to specific
muscles through the parameters described. The total muscle force

FM can be expressed as

FM a; ~l M; ~vM; j
� �

¼ f M
0 f A a; ~l M; ~vM; j

� �
þ f P ~lM; j

� �� �
(5)

where f P ~lMð Þ is the passive muscle length-dependent force gener-
ation function with the specific form given in Appendix B.

The muscle force FM obtained in Eq. (5) is transmitted to the
joints through the tendon (Fig. 2(b)). The tendon produces force
FT only when its length lT is stretched beyond its slack length lTs .
In this study, the tendon is assumed to be rigid [6,47] and thus the
tendon length lT ¼ lT

s is adopted. According to the schematics of
the MT complex shown in Fig. 2(b), the total length of MT com-
plex, lMT, is first obtained by

lMT ¼ lT
s þ lMcos/ (6)

where / is the pennation angle. The total force produced by the
MT complex, FMT, can be expressed as follows based on the force
equilibrium:

FMTða; ~l M; ~vM;/; jÞ ¼ FM a; ~l M; ~vM; j
� �

cos/ (7)

The rigid-tendon model simplifies the MT contraction dynamics
[46,47,50] which accounts for the interaction of the activation,
force-length, and force-velocity properties of the MT complex.
More details on how muscle length and velocity are calculated
can be found in Appendix A.

2.1.3 Musculoskeletal System Dynamics. The motion of the
MSK system is modeled as the rotational movement of rigid links
(bones) with force producing actuators (MT complex’s). The force
produced by these actuators is converted to torques at the joints of
the body which ultimately leads to movement. This torque equi-
librium can be expressed as

I qð Þ €q � TMTða; q; _q; jÞ � EðqÞ ¼ 0 (8)

where q; _q; €q are the vectors of generalized angular motions,
angular velocities, and angular accelerations, respectively; EðqÞ is
the torque from the external forces acting on the MSK system,
e.g., ground reactions, gravitational loads, etc.; I qð Þ is the inertial

matrix; TMT is the torque from all muscles in the model calculated

by TMTða; q; _q; jÞ ¼ R qð ÞFMTða; q; _q; jÞ, where R qð Þ are the

moment arm’s and FMTða; q; _q; jÞ is obtained from Eq. (7). As the

Fig. 2 A representation of the muscle-tendon complex in the arm modeled by homogenized hill-type models. Each
dark grey line in (a) is a homogenized MT complex described by the model shown in (b).
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muscle lengths lM and velocities vM are functions of the joint
motion q and _q, and the total force produced by all the MT com-

plex’s in the model is represented as FMTða; q; _q; jÞ. Given the
muscle activation signals from Eq. (2) and parameters of involved
muscle groups, the generalized angular motions q and angular
velocities _q of the joints can be obtained by solving Eq. (8) [50].

2.2 Simultaneous Forward Dynamics Learning and
Parameter Identification. The proposed PI-PINN framework for
simultaneous prediction of motion and parameter identification of
human MSK systems is first introduced in Sec. 2.2.1, where the
MSK forward dynamics are learned by an NN surrogate that pre-
dicts motion for identification of MSK properties using time-
domain training. The enhanced forward dynamics surrogate is
then introduced in Sec. 2.2.2, with the feature-encoded training.

With the governing equations for the MSK forward dynamics
introduced in Sec. 2.1, the following parameterized ordinary dif-
ferential equation (ODE) system is defined as

L q tð Þ; k½ � ¼ b t; xð Þ 8 t 2 ð0;T�; B½q 0ð Þ� ¼ g (9)

where the differential operator L½�; k� is parameterized by a set of
parameters k ¼ fk0; k1;…; kng. The right-hand side b t; xð Þ is par-

ameterized by x ¼ ½x1;x2;…;xm�. B½�� is the operator for initial
conditions, and g is the vector of prescribed initial conditions. To
simplify notations, the ODE parameters are denoted by
C ¼ fk;xg. The solution to the ODE system q : ½0;T� ! R
depends on the choice of parameters C.

2.2.1 Forward Dynamics NN Surrogate With Time-Domain
Training. Here, a multilayer NN is used to relate data inputs con-
taining discrete sEMG signals and discrete time, x 2 Rnin , to dis-
crete joint motion data outputs, q 2 Rnout , by a nonlinear
activation function h �ð Þ as follows:

a kð Þ ¼ h W kð Þa k�1ð Þ þ b kð Þ
� �

; k ¼ 1;…;M (10)

where M is the number of hidden layers; the superscript ðkÞ
denotes the layer number. Here, the activation a kð Þ 2 Rnk is the
output of layer k with nk neurons. For the input layer, n0 ¼ nin is

the input dimension and a 0ð Þ ¼ x; W kð Þ 2 Rnk�nk�1 and b kð Þ 2 Rnk

are trainable weight and bias coefficients, respectively;
h ¼ fW; bg is used to denote all trainable parameters of the net-

work, where W ¼ fW kð ÞgMþ1
k¼1 and b ¼ fb kð ÞgMþ1

k¼1 are the set of all
weights and biases, respectively. A hyperbolic tangent activation
function h �ð Þ is used for the hidden layers, where the activation is

applied to all components of its input vector. As the application of
interest is a regression task, a linear activation is used for the out-
put layer, which means the output of the last hidden layer is
mapped to the prediction of the output layer

q̂ ¼ W Mþ1ð Þa Mð Þ þ b Mþ1ð Þ (11)

where q̂ is the approximation of the output training data q.
An NN approximates the MSK forward dynamics, which pre-

dicts MSK motion given the time history of raw sEMG signals of
muscle groups. The raw sEMG signals inform the motion predic-
tion with all transient information of sensor measured sEMG sig-
nals without any processing. Since we use the signals in their
time-domain, we denote this as time-domain training.

Let us consider the kth motion trial out of p trials of the training
data of the MSK forward dynamics with nk data points or time-

steps. For the surrogate, the input data of the kth trial is xk ¼

x 1ð ÞT
k ;…; x

nkð ÞT
k

h iT

with the ith row as x ið ÞT
k ¼ t ið Þ

k ; e
ið Þ

k;1;…; e ið Þ
k;Na

h i
while the output data is qk ¼ q 1ð Þ

k ; …; q
nkð Þ

k

h iT

. Here, t ið Þ
k and q ið Þ

k

denote the time and the MSK joint motion at the ith time-step in

the kth trial, respectively, and e ið Þ
k;j

n oNa

j¼1
denotes the set of the raw

sEMG signals of Na muscle groups involved in the MSK joint

motion q ið Þ
k at the ith time-step. The entire training dataset has

Ndata ¼
Pp

i¼1 ni data points with the input as x ¼ x1; …; xpb cT
and the target output as q ¼ q1; …; qpb cT .

The NN is trained to learn the mapping from the raw sEMG
and time (x ið Þ

k ) to the MSK joint motion (q ið Þ
k ). The trainable

parameters of the NN are obtained by minimizing the following
loss function:

Jdata ¼
1

Ndata

Xp

i¼1

kq̂iðxi; hÞ � qik2
L2

(12)

where k � k2
L2

denotes the L2 norm. In addition to training an MSK
forward dynamics surrogate, the proposed framework aims to
simultaneously identify important MSK parameters from the
training data by minimizing residual of the governing equation of
MSK system dynamics in Eq. (8)

Jres ¼
1

Ndata

Xp

i¼1

kr q̂iðxi; hÞ; Cð Þk2
L2

(13)

Fig. 3 A computational graph of time-domain PI-PINNs with Fourier features prefixed to the network
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where r q̂i xi; hð Þ; Cð Þ ¼ L q̂i xi; hð Þ; k½ � � b t ið Þ; x
� �

denotes the

vector of residuals associated with Eq. (8) for the ith sample;
q̂i xi; hð Þ is the vector of predicted MSK joint motion from the NN

with the trainable parameters h for the ith sample; C ¼ fk;xg rep-
resents the set of ODE parameters relevant to the MSK system.

The optimal NN parameters ~h and the ODE parameters ~C are
obtained by minimizing the composite loss function J as follows:

~h; ~C ¼ argmin
h;C

Jð Þ ¼ argmin
h;C

Jdata þ b Jresð Þ (14)

where b is the parameter to regularize the loss contribution from
the ODE residual term in the loss function and is estimated ana-
lytically during the training [51]. For this study, b was scaled so
that the terms Jres and Jdata in the loss function given in Eq. (14)
were with the same unit. The details are described in Sec. 3. The
gradients of the NN outputs with respect to the NN MSK parame-
ters h;Cð Þ can be obtained efficiently by automatic differentiation
[52]. The computational graph is illustrated in Fig. 3.

2.2.1.1 Fourier features. It has been pointed out in the litera-
ture that training PINNs can be challenging as the solution could
be trapped in a local minima, leading to large training data errors
[42,43,51]. Wang et al. [42,51] showed that these networks tend
to learn low-frequency components of the solution rather than the
high-frequency counterparts, which is described as the spectral
bias of PINNs. Wong et al. [43] further showed that PINNs are
biased toward flat outputs which are considered as trivial solutions
to the governing equations. It has been shown that employing
Fourier features enables PINNs to learn the higher frequency com-
ponents and avoid local minima, leading to improved learning
performance [42]. PINNs with Fourier features have also been
applied to image regression tasks in biomedical applications with
high-dimensional data sources as magnetic resonance imaging
[53]. Due to the oscillatory nature of the sEMG signals in the
time-domain, the mapping to the MSK motion could contain fea-
tures of various frequencies. Here, PINNs with Fourier features
are employed in the forward dynamics surrogate with time-
domain training.

A Fourier feature xF 2 Rm of a given input x 2 Rd is defined
as [42,43]

xF ¼ sin WFxþ bFð Þ (15)

where WF 2 Rm�d and bF 2 Rm are weight and bias coefficients,
respectively, randomly sampled from a normal distribution
N 0;r2
� �

, with r as a tunable hyperparameter and sinð�Þ is the
sinusoidal activation function. They can be easily added to the
computational graph of PINN, as shown in Fig. 3. The equations
for forward propagation remain the same with an additional Fou-
rier feature transformation before the input layer. The optimiza-
tion problem to obtain the optimal trainable network parameters ~h
and the ODE parameters ~C remains the same as described in
Eq. (14).

2.2.2 Forward Dynamics NN Surrogate With Feature-
Encoded Training. Mapping oscillations in the input signal of the
network to a smooth less-oscillatory output signal is susceptible to
spectral bias. Given the high degree of oscillations in the transient
raw sEMG signals, it was observed in the tests with time-domain
training (Sec. 4) that the motion predictions were affected by arti-
facts of those oscillations. To this end, the framework was
enhanced by encoding the features of the raw sEMG signals and
motion signals to a low-dimensional space with Fourier and poly-
nomial basis functions. This dimensionality reduction enables
noise filtering and provides a smooth low-dimensional representa-
tion of the high-dimensional noisy data. A forward dynamics NN
surrogate is then trained in the low-dimensional feature embed-
ding space to perform mapping and simultaneously identify mus-
cle parameters in the MSK system.

Due to the periodic nature of the signals, Fourier basis was used
along with polynomials up to quadratic terms in the feature-
encoded training. The polynomial basis helps capture the signals
close to the boundary of the time-domain that have incomplete

periodicity. For the jth sEMG signal from the kth trial,

ek;j ¼
n

e ið Þ
k;j

onk

i¼1
, consider the employment of 2nEMG Fourier basis

terms with their respective coefficients Ak;j ¼ fA lð Þ
k;jg

nEMG

l¼1 fB
lð Þ

k;jg
nEMG

l¼1

and three coefficients for the complete quadratic basis terms, i.e.,

C 0ð Þ
k;j ; C 1ð Þ

k;j , and C 2ð Þ
k;j : The set of all input coefficients is denoted by

Ik;j, defined as

Ik;j ¼ fAk;j;Bk;j;C
0ð Þ

k;j ;C
1ð Þ

k;j ;C
2ð Þ

k;j g (16)

and the encoded approximation of the jth sEMG signal from the
kth trial is given by

eFE
k;j t; Ik;jð Þ ¼

XnEMG

l¼1

A lð Þ
k;jcos

2plt

Te
k;j

 !
þ B lð Þ

k;jsin
2plt

Te
k;j

 !" #
þ C 0ð Þ

k;j

þ C 1ð Þ
k;j tþ C 2ð Þ

k;j t2 (17)

where Te
k;j is the duration of the sEMG signal. Applying the

encoding to all sEMG signals of the kth trial gives a set of input

coefficients, i.e., Ik ¼ Ik;jf gNa

j¼1
.

Correspondingly, there would be 2nq þ 3 coefficients for the

encoded approximation of the kth motion signal with the Fourier

coefficients Fk ¼
n

F lð Þ
k

onq

l¼1
; Gk ¼

n
G lð Þ

k

onq

l¼1
and polynomial

coefficients H 0ð Þ
k ;H 1ð Þ

k , and H 2ð Þ
k . The set of coefficients Ok is

defined as

Ok ¼ fFk;Gk;H
0ð Þ

k ;H 1ð Þ
k ;H 2ð Þ

k g (18)

qFE
k t; Okð Þ ¼

Xnq

l¼1

F lð Þ
k cos

2plt

Tq
k

� �
þ G lð Þ

k sin
2plt

Tq
k

� �� 	

þ H 0ð Þ
k þ H 1ð Þ

k tþ H 2ð Þ
k t2

(19)

where Tq
k is the duration of the motion signal. The encoded coeffi-

cients of the approximations can be obtained by a least-squares
minimization between the approximate and the original signals.
An NN with M hidden layers is then trained to predict the output
coefficients Ôk by mapping the input coefficients Ik to the target
output coefficients Ok as follows:

Ôk ¼ W Mþ1ð Þ h W Mð Þ …h W 1ð ÞIk þ b 1ð Þ
� �

…
� �� �� �

þ b Mþ1ð Þ (20)

where W ¼ fW lð ÞgMþ1
l¼1 , b ¼ fb kð ÞgMþ1

l¼1 and hð�Þ are the set of
weights, set of biases, and activation functions (hyperbolic tan-
gent) of the NN, respectively. Note that rather than learning the
mapping related to transformed input features [37,42,43] in the
time-domain, this feature-encoding approach is designed to learn
the mapping of the basis coefficients, which can reduce mapping
complexity and improve prediction accuracy as shown in our vali-
dation example.

Given the predicted output coefficients Ok, the predictions of
angular motion, velocity, and acceleration are obtained from
Eq. (19) and its time derivatives. The loss function in Eq. (14) is
modified as follows. The computational graph for the feature-
encoded PI-PINN, termed FEPI-PINN, is shown in Fig. 4

~h; ~C ¼ argmin
h;C

JFEð Þ ¼ argmin
h;C

JFE
data þ b JFE

res

� �
(21)
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JFE
data ¼

Xp

i¼1

k Ôi Ii; hð Þ � Oik2
L2

(22)

JFE
res ¼

Xp

i¼1

k r qFE t; Ôi Ii; hð Þ
� �

; C
� �

k2
L2

(23)

2.3 Sensor Data Acquisition. The subject performs three tri-
als of varying elbow flexion and extension motions as shown in
Fig. 5, with each trial lasting 10 s. Three retroreflective markers
with a diameter of 14 mm were attached to the acromion
(shoulder), the humeral lateral epicondyle (elbow), and the radial
styloid (wrist) of the right arm of the subject. Two delsys trigno
surface sEMG sensors were affixed onto the biceps and triceps
muscle groups, following surface electromyography for the non-
invasive assessment of muscles project recommendations [54]. To
minimize signal artifacts, the subject’s arm was wiped with iso-
propyl alcohol before sEMG sensors were attached. The marker
positions during the duration of the motion were captured by a
Vicon motion capture system (Vicon Motion Systems Ltd., UK)
at 150 Hz [55], and the sEMG signals were recorded at 2250 Hz.

The kinematic data and the sEMG data were time-synchronized
using the Vicon system via a trigger module. To obtain the muscle
activations needed to calculate the MSK ODE residual, the raw
sEMG signals were first centered with respect to their medians to
center them around zero. The centered sEMG signals were proc-
essed using a Hampel filter to remove outliers resulting from skin
artifacts, before going through a full-wave rectification. The recti-
fied signals then go through a second-order Butterworth filter with
a cutoff frequency of 3 Hz. Finally, the maximum voluntary con-
traction for each muscle was then taken as the maximum voltage
from all trials for each muscle. The centered, rectified, and filtered
sEMG signals were then normalized by the maximum voluntary
contraction voltage to complete processing. They were then
passed to the EMG-to-activation dynamics model for each muscle
group to get the muscle activations as described in Sec. 2.1. The
marker trajectories were directly used as is without any processing
to estimate the elbow angle.

3 Verification: Elbow Flexion-Extension Motion

To verify the proposed PI-PINN framework, an elbow flexion-
extension model was considered and the flowchart of the proposed

Fig. 5 Overview of the application of this framework to the recorded motion data. The location of the motion capture markers
is circled in red and the EMG sensors in blue. The simplified rigid body model is used in the forward dynamics equations
within the framework with appropriately scaled anthropometric properties (for geometry) and physiological parameters (for
muscle tendon material models). The raw sEMG signals are mapped to the target angular motion of the elbow and used to
simultaneously characterize the MSK system using the proposed frameworks for PI-PINN.

Fig. 4 The computational graph for the FEPI-PINN framework
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PI-PINN computational framework for simultaneous forward
dynamics prediction and parameter identification of MSK parame-
ters is shown in Fig. 5. Synthetic sEMG signals and associated
motion responses were considered and the time-domain PI-PINN
approach was examined. The FEPI-PINN approach was employed
in dealing with the recorded oscillatory sEMG data in the valida-
tion problem in Sec. 4.

The model contained two rigid links resembling the upper arm
and forearm with lengths lua and lfa, respectively. Both rigid links
were connected at a hinge resembling the elbow joint “A,” and
the upper arm link was fixed at the top joint “B,” while the lines
connecting the two links represented the biceps and triceps
muscle-tendon complex, as shown in Fig. 2(b). The degree-of-
freedom of the model was the elbow flexion angle q. The biceps
and triceps muscle-tendon complex assemblies were modeled by
two hill-type models with parameters jBi and jTri, as discussed in
Sec. 2.1. It was assumed that the mass in the forehand is concen-
trated at the wrist location, hence, a mass mfa was attached to one
end of the forearm link with a moment arm lfa from the elbow
joint. We assumed that the tendons were rigid as discussed in Ref.
[47] for ease of computation. The equation of motion for this rigid
body system was

I€q ¼ EðqÞ þ TMTðaBi; aTri; q; _q; jBi; jTriÞ (24)

where

I ¼ mfal2fa (25)

E
�
qÞ ¼ �mfaglfasin qð Þ (26)

TMT aBi; aTri; q; _q; jBi;jTrið Þ
¼ TMT

Bi aBi; q; _q; jBið Þ � TMT
Tri aTri; q; _q; jTrið Þ

(27)

TMT
Bi aBi; q; _q; jBið Þ ¼

FMT
Bi aBi; ~l M

Bi; ~v
M
Bi;

~l T
Bi; jBi

� �
l2;Bisin qð Þl1;Bi

lMT
Bi ðqÞ

(28)

TMT
Tri aTri; q; _q; jTrið Þ ¼

FMT
Tri aTri; ~l M

Tri; ~v
M
Tri;

~l T
Tri; jTri

� �
l2;Trisin qð Þl1;Tri

lMT
Tri ðqÞ

(29)

with the initial conditions q 0ð Þ ¼ p
6

radians and _q 0ð Þ ¼ 0
radians=sec. Given the synthetic sEMG signals (eBi; eTri) that
were plugged into the sEMG-to-activation dynamics equations
(Sec. 2.1.1), leading to muscle activations aBi; atri and using the
parameters summarized in Table 1, the motion of the elbow joint,
q, was obtained by solving the MSK forward dynamics problem
using a synthetic solver.

Five synthetic samples of the elbow flexion-extension motion
were generated by solving Eq. (24) given synthetic muscle sEMG
signals, as shown in Fig. 6. The training dataset contained the data
of trials 1, 2, 4, and 5, while the data of trial 3 was used for
testing, each trial with n ¼500 data points. The data of the

kth sample with n temporal data points contained ½xk; qk� ¼
½tk; ek;Bi; ek;Tri; qk� �

n
t ið Þ
k ; e

ið Þ
k;Bi; e

ið Þ
k;Tri; q

ið Þ
k

on

i¼1

The set of MSK parameters C ¼ Clf g4
l¼1¼ f M

0;Bi; v
M
max;Bi; f

M
0;Tri;

n
vM

max;Tri

o
were considered to be identified from the training data

using the proposed framework. Due to different units and physio-
logical nature of the parameters, they could be very different in
terms of scale. For example, there could be a difference of more

than two orders of magnitude between f M
0 and vM

max, which could
affect the conditioning of the parameter identification system. To
mitigate this issue, normalization [40] was applied to each of the
parameters

Table 1 Parameters involved in the forward dynamics setup of elbow flexion-extension motion

Parameter Type Value Parameter Type Value

lM
0;Bi Biceps muscle model 0.6 m mfa Equation of motion 1.0 kg

vM
max;Bi Biceps muscle model 6 m=sec lua Geometric 1.0 m

f M
0;Bi Biceps muscle model 300 N lfa Geometric 1.0 m

lT
s;Bi Biceps muscle model 0.55 m l1;Bi Geometric 0.3 m

/Bi Biceps muscle model 0.0 radians l2;Bi Geometric 0.8 m

lM
0;Tri Triceps muscle model 0.4 m l1;Tri Geometric 0.2 m

vM
max;Tri Triceps muscle model 4 m=sec l2;Tri Geometric 0.7 m

f M
0;Tri Triceps muscle model 300 N d Activation dynamics 0.08 sec

lT
s;Tri Triceps muscle model 0.33 m A Activation dynamics 0.2
/Tri Triceps muscle model 0.0 radians

Fig. 6 The dataset with synthetic bicep and tricep sEMG signals with variations in frequency for all trials, and the corre-
sponding motion from the two
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�Cl ¼
Cl

C 0ð Þ
l

(30)

where C
0ð Þ

l was the initial value of the parameter. Therefore, the
set of parameters to be identified became �C ¼ Clf g4

l¼1.
The proposed PI-PINN framework, as described in Sec. 2.2,

was applied to simultaneously learn the MSK forward dynamics
surrogate and identify the MSK parameters �C by optimizing
Eq. (14), where the residual of the governing equation for the
training input x ið Þ

k , was expressed as

r q̂k x ið Þ
k ; hq

� �
; _̂qk x ið Þ

k ; hq

� �
; €̂qk x ið Þ

k ; hq

� �
; C C; Cð0Þ
� �� �

¼ I€̂q k x ið Þ
k ;hq

� �
� E q̂k x ið Þ

k ;hq

� �� �
� TMT aBi t ið Þ

� �
; aTri t ið Þ

� �
; q̂k x ið Þ

k ; hq

� �
; _̂qk x ið Þ

k ; hq

� �
; C �C; C 0ð Þ
� �� �

(31)

and could be plugged into the residual term Jres in the loss func-
tion in Eq. (14).

The residual of the equation of motion ð JresÞ involved in the
loss function J (Eq. (14)) was scaled so that the terms Jdata and
bJres in Eq. (14) had the same unit. This yielded the scaling
parameter b / Dt2

I , where Dt is the time-step size in the time-
signal and I is the moment of inertia of the mass around the
elbow.

A three-layer feedforward NN with 32 neurons in each layer
was used. The training was performed using the Adam algorithm

[56] with an initial learning rate of 5�10�3. In this example,

b / Dt2

I ¼ 10�4. The trained forward dynamics surrogate could

accurately predict the joint kinematics given an input signal from
the testing data, as shown in Fig. 7(b). Meanwhile, the MSK

parameters, f M
0 and vM

max, of both the biceps and the triceps were
accurately identified from the motion data, with an error of less
than 1%, as shown in Fig. 8. A sensitivity study of the results
of this verification problem with respect to b is shown in

Appendix C, where the study showed that this estimate of b /
Dt2

I ¼ 10�4 lies within a range leading to optimal motion predic-

tion and parameter identification from the framework.

4 Validation: Elbow Flexion–Extension Motion

The recorded motion data and sEMG signals were collected as
per the data acquisition protocols mentioned in Sec. 2.3. The sub-
ject performed three trials of the elbow flexion-extension motion,
where the sEMG sensors were fixed on two muscle groups,
namely, the biceps and triceps. The sEMG signals were processed
as described in Sec. 2.1 to obtain muscle activation signals for
each muscle group that was used to calculate the MSK ODE resid-
ual. We used the same simplified rigid body model as in Sec. 3
and appropriately scaled the anthropometric properties (for the
geometry of the model) and physiological parameters (for muscle-
tendon material models used for the muscle groups) based on the
generic upper body model defined in Refs. [50] and [57]. Figure 9
shows the measured data of the three trials, including the transient
raw sEMG signals and the corresponding angular motion of the
elbow flexion-extension of the subject.

In this example, the raw sEMG signals were used as input. The
time-domain and the feature-encoded PI-PINN frameworks were
examined and compared. The data of trials 1 and 3 were used for
training, while trial 2 was used for validation, where each signal
contained 1000 temporal data points. The normalization described
in Eqs. (30) and (31) were adopted. The set of muscle parameters
to be identified by the framework include the maximum isometric
force and the maximum contraction velocity from both muscle

groups, which are denoted as C ¼ f M
0;Bi; v

M
max;Bi; f

M
0;Tri; v

M
max;Tri

n o
.

The training was performed using the Adam algorithm [56] with

an initial learning rate of 5�10�3.

4.1 Time-Domain PI-PINN Approach. For the time-domain

training, the training data of the kth sample with nk data points
contained ½xk; qk� ¼ ½tk; ek;Bi; ek;Tri; qk�. The entire training dataset
with a total of Ndata ¼ n1 þ n3 data points could then be defined as
follows: the input discrete time and sEMG signals were

t ¼ tT
1 ; t

T
3


 �T
, eBi ¼ eT

1;Bi; e
T
3;Bi

h iT
, and eTri ¼ eT

1;Tri; e
T
3;Tri

h iT
. The

output was the corresponding angular motion data q ¼ ½qT
1 ; q

T
3 �

T
.

An NN with three hidden layers, with 64 neurons in each layer,
was used. The Fourier features used in the time-domain training
were controlled by parameter r ¼ 1.

Figure 10 compares the data of joint kinematics with the predic-
tions from the trained forward dynamics surrogate with time-

Fig. 7 Comparison between the data of joint kinematics and the predictions from the trained forward dynamics
surrogate: (a) the training cases and (b) the testing case
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domain training on both training and testing cases. The noise and
oscillations in the raw sEMG signals pose difficulties for the NN
surrogate in learning accurate mappings, leading to oscillatory
and nonphysiological motion predictions, especially in the testing
case. Nevertheless, the motion prediction captured the essential
motion pattern, with the mean predicted motion trajectory close to
that of the data.

4.2 Feature-Encoded PI-PINN (FEPI-PINN) Approach.
For the feature-encoded approach, the set of training data of the

kth sample contained fIk;Bi; Ik;Tri;Okg. The input coefficients of
the training data sEMG signals of the biceps and triceps muscles

were IBi ¼ IT
1;Bi; I

T
3;Bi

h iT
; and ITri ¼ IT

1;Bi; I
T
3;Tri

h iT
. The corre-

sponding output coefficients were O ¼ ½OT
1 ;O

T
3 �

T
. The number of

Fourier basis terms used for the feature encoding of sEMG signals
were nEMG ¼ 1000 while for the motion, nq ¼ 100 were used. An
NN with two hidden layers, 32 neurons in each layer, was
employed.

Figure 11 shows that a good agreement between the predictions
and motion data was achieved for both training and testing cases
using the feature encoding method. It demonstrated that the
trained forward dynamics surrogate could learn the MSK forward
dynamics and effectively predict the joint kinematics given a
sEMG signal of the same type of motion used for training. Com-
pared with the results obtained from the time-domain training, as
shown in Fig. 10, the feature-encoded training showed a signifi-
cant improvement in terms of prediction accuracy, which was
attributed to the dimensionality reduction that filters out unneces-
sary noise and oscillations of original high-dimensional data.
Figures 10(c) and 10(d) and Figs. 11(c), and 11(d) compare the
data with the predictions of both methods in terms of angular
motion q and velocity _q. Using exact derivatives in the feature-
encoded training also led to smoother _q values as compared to the
ones obtained through the NN in time-domain training. It is noted
that the motion prediction on the testing case was with a slight
error, which could be attributed to the small size of the training
dataset (i.e., using two trials). Overall, the feature-encoded

Fig. 9 The measured transient raw sEMG signals and the corresponding angular motion of the elbow flexion-extension of
the subject

Fig. 8 Evolution of the MSK parameters, f M
0 and vM

max, of bicep and triceps during the training process
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training performs better in terms of motion prediction as shown in
these figures and Table 2 where the error statistics are reported.
The testing predictions from both training methods were com-
pared to the true data and lower mean squared error and R2 statis-
tic close to 1 were seen in the case of the feature encoding. Here,
the mean squared error (MSE) and R2 statistic are defined as

MSE ¼ 1

n2

k q� q̂ k2
L2

(32)

R2 ¼ 1�

Pn2

i¼1

q ið Þ � q̂ ið Þ
� �2

Pn2

i¼1

q ið Þ � �q
� �2

(33)

where q ¼ q 1ð Þ;…; q n2ð Þ

 �T

is the motion data of trial 2, q̂ ¼

q̂ 1ð Þ;…; q̂ n2ð Þ
h iT

is the prediction from the PI-PINN framework,

and �q is the mean of trial 2 s motion data.

4.3 Parameter Identification. The identified MSK parame-
ters from the FEPI-PINN that yielded higher accuracy of motion
predictions are summarized in Table 3. Figure 12 shows the evo-

lution of the MSK parameters, f M
0 and vM

max, of both the biceps and
the triceps during optimization, with the final converged values of

f M
0 lying within the physiological estimates of these parameters

reported in the literature [57–59]. Note that since it is difficult to

measure the parameter vM
max in experiments, an estimate of vM

max,

8� 10 lM0 =sec; was typically used in hill-type muscle models [50].

Given that lM
0;Bi ¼ 0:1157 m and lM

0;Tri ¼ 0:1138 m were used in

this model, the physiologically reasonable estimated range of

vM
max;Bi and vM

max;Tri were 1.16–1.32 m=s and 1.14–1.34 m=s,

respectively. The vM
max;Bi and vM

max;Tri identified by the proposed

framework were 1.24 m=s and 1.138 m=s, respectively, as sum-
marized in Table 3, which shows good agreement. The results

Fig. 10 Comparison of the angular motion data with the predictions from the time-domain
PI-PINN: (a) training case: trial 1; (b) training case: trial 3; (c) testing case: trial 2. The com-
parison of angular velocity of the testing case is shown in (d).

Table 2 Statistics comparing the testing predictions of the
framework with original time-domain training versus the
enhanced feature-encoded training

Kinematics Framework MSE R2 score

Angular motion Time-domain 0.50 –0.45
Feature-encoded 0.03 0.91

Angular velocity Time-domain 1973.75 –826.95
Feature-encoded 0.37 0.84

Table 3 The identified parameter estimates using feature
encoding training, and their values reported in the literature
[57–59]

Parameter Identified values Estimates from literature

f M
0;Bi ðNÞ 819.56 525–849.29

vM
max;Bi m=sð Þ 1.24 1.16–1.32

f M
0;Tri ðNÞ 421.37 504–1176

vM
max;Tri ðm=sÞ 1.138 1.14–1.34
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demonstrated the effectiveness of the proposed FEPI-PINN frame-
work and promising potential for real applications.

5 Discussion and Conclusions

In this work, a physics-informed parameter identification neural
network (PI-PINN) framework, as well as its feature-encoded

version (FEPI-PINN), was proposed for motion prediction and
parameter identification of MSK systems. In this approach, the
recorded marker data for positional information and raw signals
from the sEMG sensors (for estimation of the activity of the two
muscle groups involved in the motion) were utilized for training.
The framework was built using a neural network that learns the
mapping between the raw sEMG signals and joint kinematics,

Fig. 11 Comparison of the angular motion data with the predictions from the FEPI-PINN: (a)
training case: trial 1; (b) training case: trial 3; (c) testing case: trial 2. The comparison of
angular velocity of the testing case is shown in (d).

Fig. 12 Evolution of the identified MSK parameters: (a) f M
0 and (b) vM

max of bicep and triceps during
the training process. It shows the identified parameters converge to estimates that are in the physio-
logical range of those parameters, as summarized in Table 3.
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minimizing a loss function that consists of the error in the training
data and the residual of the MSK forward dynamics equilibrium.
Under this PI-PINN framework, time-domain training was first
investigated. In this approach, sEMG and motion signals were
mapped for their entire time duration, and Fourier features were
used to learn the relationship between them as a forward dynamics
surrogate. Next, an alternative FEPI-PINN approach was proposed
to enhance the model performance by introducing a feature trans-
formation encoder to project the noisy and oscillatory raw data
onto a low-dimensional feature embedding space. In this feature-
encoded PI-PINN (i.e., FEPI-PINN) framework, the forward
dynamics surrogate relates basis coefficients of inputs to those of
target outputs encoded in noise-filtered embedding space, yielding
an enhanced prediction accuracy.

The time-domain method was first verified with synthetic data
where PI-PINN was trained to learn the motion of elbow flexion-
extension given synthetic sEMG signals. Simultaneously, the
parameters related to the maximum isometric force and maximum
contraction velocity in the hill-type models of the biceps and tri-
ceps muscle groups were also identified. In the validation prob-
lem, the elbow flexion-extension model was scaled according to
the subject’s anthropometric geometry. The recorded raw sEMG
signal was employed as input to predict the angular motion. It was
found that the time-domain PI-PINN training led to nonphysiolog-
ical motion predictions due to the noise and oscillations in the raw
sEMG signal that increases mapping complexities. FEPI-PINN,
on the other hand, yielded smoother and physiologically accurate
mappings of the angular motion and angular velocity. It was
noticeable that, despite the limited size of the dataset, the FEPI-
PINN approach outperformed the time-domain PI-PINN
approach. A reasonable agreement was found between the identi-
fied parameters and the range of their physiological parameter
estimates.

The applications of this technique are aimed at assistive devices
or exoskeletons [20] that rely on guiding the motion of the subject
based on control signals such as sEMG that inform muscle activ-
ity. Accurate prediction of the intended motion of the subject,
based on their muscle activity is crucial for the successful imple-
mentation of these technologies. While in the earlier studies,
methods have been proposed to map the sEMG signals to the joint
motion by using deep learning techniques such as convolutional
neural networks, recurrent neural networks, and auto-encoders
[19,60,61], these black-box ML-based models do not satisfy the
underlying physics and often lack interpretability. The proposed
FEPI-PINN framework, on the other hand, provides a systematic
approach to enforce the underlying physics into the mapping,
improving the interpretability of ML-based motion. This study
also suggested the potential extension of the FEPI-PINN frame-
work for MSK digital twin applications. Under this framework,
upon completion of model training with sufficient data from the
subject(s), the characterized MSK and NN parameters provide a
real-time model for joint motion prediction using sEMG signals
without solving the nonlinear ODEs, as long as the sEMG signals
are within the range of the training data. The characterized MSK
physiology parameters also offer the potential diagnosis for mus-
cle injury and disease development.

While a simplified MSK model was used to model the elbow
flexion-extension movement, a more physiologically accurate rep-
resentation of muscle tissues with fats, connective tissues, and
muscle fibers could be used to inform the length and velocity-
dependent force generation capacity of the muscles [62] in future
work. To incorporate different types of motions and account for
subject variability, transfer learning [63] could be applied to carry
over the features from the previously learned motions for model
enhancement.
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Nomenclature

a ¼ muscle activations
A ¼ shape factor used to relate neural excitation to muscle

activation
d ¼ electromechanical delay between origin of neural excita-

tion from central nervous system and reaching the muscle
group

e ¼ raw sEMG signals captured by sensors
f A ¼ active force component of hill-type muscle model

f A;L ¼ length-dependent active force generation component
f P ¼ passive force component of hill-type muscle model
f V ¼ velocity-dependent active force generation component
f M
0 ¼ maximum isometric force in the muscle

FM ¼ total muscle force
FMT ¼ total force produced by muscle-tendon complex

Ik;j ¼ set of all input feature-encoded basis coefficients of the jth

sEMG signal from the kth trial
J ¼ composite loss function of the PI-PINN minimizing data

and ODE residual
~l M ¼ normalized muscle length

lMT ¼ total length of muscle-tendon complex
lM
0 ¼ optimal muscle length corresponding to the maximum iso-

metric force
lTs ¼ slack length of the tendon
lfa ¼ forearm length
lua ¼ upper arm length

mfa ¼ mass of forearm
Ok ¼ set of all output feature-encoded basis coefficients of the

kth trial
Ôk ¼ predicted output feature-encoded basis coefficients of the

kth trial
q ¼ generalized angular motion of the MSK system

q̂k ¼ predicted angular motion of the kth trial from the PI-PINN
framework

TMT ¼ torque produced by the muscle-tendon complex
~vM ¼ normalized muscle velocity

vM
max ¼ maximum contraction velocity

u ¼ neural excitations
xk ¼ input data from the kth motion trial
xF ¼ Fourier feature vector
Ci ¼ ith parameter characterizing the parameterized ODE

system
h ¼ set of weights and biases of the neural network
j ¼ vector of muscle parameters for each muscle group
/ ¼ pennation angle between muscle and tendon

Appendix A: Calculating Muscle Length and Velocity

Using a Rigid Tendon Model

The total length of the MT system lMT is given by

lMT ¼ lMcos/þ lT (A1)

Given the current joint angle q and the angular velocity _q, the cur-
rent length, lMT of the MT system can be calculated using trigono-
metric relations. As an example, consider the following simplified
model (Fig. 13).

The total length and velocity of the MT complex can then be
written as
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Fig. 13 Simplified model to explain geometrical relations between lM and lMT

lMT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l22 þ 2l1l2cosq

q
vMT ¼ _l

MT ¼ _qð�l1l2sinqÞ=lMT

(A2)

where l1; l2 are the projected lengths of the MT complex on the forearm and upper-arm. By using the fixed-height assumption to main-
tain a constant muscle volume

lMsin/ ¼ lM0 sin/0 (A3)

the muscle length can then be found as

lM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMT � lTS
� �2 þ lM

0 sin/0

� �2
q

(A4)

using which the pennation angle / can also be found. The velocity of the MT system can then be found as

vM ¼ vMTcos/ (A5)

Appendix B: Hill-Type Muscle Models

For the length-dependent muscle force relations, this work uses the equations given in Ref. [48,49].
The active muscle force dependent on variation in length is given as

f A;L ~l Mð Þ ¼
9 ~l M � 0:4ð Þ2; ~l M � 0:6

1� 4 1� ~l Mð Þ2; 0:6 � ~l M � 1:4

9 ~lM � 1:6ð Þ2; ~l M > 1:4

8>>><
>>>:

(B1)

f P ~l Mð Þ ¼
0; ~l M � 1

c1 exp c2ð~l M � 1Þ
� �

� 1
� �

; 1 � ~l M � 1:4

c1c2exp 0:4c2ð Þð Þ~l M þ c1 1� 1:4c2ð Þexp 0:4c2ð Þ � 1ð Þ; ~l M > 1:4

8>><
>>: (B2)

where c1 ¼ 0:075 and c2 ¼ 6:6 correspond to parameters in the passive muscle force model related to an adult human. The muscle force

velocity relationship f V ~vMð Þ is used directly from Ref. [50].
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Appendix C: Sensitivity Study of Weight Parameter b

in Composite Loss Function

The scaling parameter b in the loss function in Eq. (14) was

estimated as b / Dt2

I , as described in Secs. 2.2.1 and 3. A sensitiv-

ity study performed in this appendix uses the verification problem
in Sec. 3 to demonstrate the proper range of b for stable and

accurate solution of optimization problem in Eq. (14). Six differ-

ent parameters b ¼ 100; 10�1; 10�2; 10�3; 10�4; 10�5 were chosen
as shown in Fig. 14 and the results show the motion prediction of
one representative training trial and the optimal MSK parameters

identified for each b. The estimated b / Dt2

I ¼ 10�4 falls in the

range of b ¼ 10�5; 10�3

 �

where good optimization solutions are
obtained.

Fig. 14 Results of the sensitivity study showing the range of b within which the framework shows stable results
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