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Abstract

Background and Objective: Liver fibrosis is a disease with characteristics of an aberrant 

wound healing response. Fibrosis is commonly the end-stage for chronic liver diseases like 

alcohol-associated liver disease (ALD), metabolic-associated liver disease, viral hepatitis, and 

hepatic autoimmune disease. Innate immunity contributes to the progression of many diseases 

through multiple mechanisms including production of pro-inflammatory mediators, leukocyte 

infiltration and tissue injury. Chemokines and their receptors orchestrate accumulation and 

activation of immune cells in tissues and are associated with multiple liver diseases; however, 

much less is known about their potential roles in liver fibrosis. This is a narrative review of current 

knowledge of the relationship of chemokine biology to liver fibrosis with insights into potential 

future therapeutic opportunities that can be explored in the future.

Methods: A comprehensive literature review was performed searching PubMed for relevant 

English studies and texts regarding chemokine biology, chronic liver disease and liver fibrosis 

published between 1993 and 2021. The review was written and constructed to detail the intriguing 

chemokine biology, the relation of chemokines to tissue injury and resolution, and identify areas of 

discovery for fibrosis treatment.
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Key Content and Findings: Chemokines are implicated in many chronic liver diseases, 

regardless of etiology. Most of these diseases will progress to fibrosis without appropriate 

treatment. The contributions of chemokines to liver disease and fibrosis are diverse and include 

canonical roles of modulating hepatic inflammation as well as directly contributing to fibrosis 

via activation of hepatic stellate cells (HSCs). Limited clinical evidence suggests that targeting 

chemokines in certain liver diseases might provide a therapeutic benefit to patients with hepatic 

fibrosis.

Conclusions: The chemokine system of ligands and receptors is a complex network of 

inflammatory signals in nearly all diseases. The specific sources of chemokines and cellular 

targets lend unique pathophysiological consequences to chronic liver diseases and established 

fibrosis. Although most chemokines are pro-inflammatory and contribute to tissue injury, others 

likely aid in the resolution of established fibrosis. To date, very few targeted therapies exist for 

the chemokine system and liver disease and/or fibrosis, and further study could identify viable 

treatment options to improve outcomes in patients with end-stage liver disease.

Keywords

Chemokines; chemokine receptors; liver disease; fibrosis

Introduction

The inflammatory response is associated with the onset and progression of almost all 

diseases, including chronic liver disease. While inflammation is characteristic of all stages 

of liver injury, the specific etiology of chronic liver injury, i.e., alcohol- or metabolic-

associated, viral, or autoimmune can modulate the characteristics of the inflammatory milieu 

within the liver (1). The inflammatory environment is governed by a complex mixture 

of cellular and soluble factors that interact in response to noxious stimuli in an effort 

to resolve the injury or infectious agent (1–3). Mechanistically, appropriate and effective 

immune-cell trafficking is essential for host defense from pathogens and in response to 

injury. Whereas cytokines, interleukins, and complement act directly on tissues in response 

to noxious stimuli, chemokines orchestrate the dynamics of cellular infiltration into sites 

of damage within tissues (4,5). Research into the system of chemokines over the past two 

decades has defined the many roles these inflammatory mediators play in liver disease. 

The focus of this review is to incorporate current knowledge of chemokine biology as it 

pertains to chronic liver disease and liver fibrosis and look forward to the opportunities 

the chemokine system presents for meaningful improvements in patients. We present the 

following article in accordance with the Narrative Review reporting checklist (available at 

https://dmr.amegroups.com/article/view/10.21037/dmr-21-87/rc).

Methods

A PubMed search was conducted on September 1, 2021 for this review. The search terms 

and keywords utilized are summarized in Table 1. The final selection of information 

included in this manuscript was performed upon review of the identified manuscripts by 

the authors.

Poulsen et al. Page 2

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://dmr.amegroups.com/article/view/10.21037/dmr-21-87/rc


Chemokine biology: structure and families

The name “chemokine” is a portmanteau formed by merging the term chemotactic cytokines 

(3,6). They are relatively small (6–14 kilodaltons), are made up of many basic amino acids, 

and are heparin-binding proteins best characterized as chemo-attractants for immune cell 

trafficking (7,8). In addition, the roles of chemokines may also include effects on tissue 

epithelium, growth and angiogenesis (9). Per the focus on fibrosis, chemokines can act 

on hepatic stellate cells (HSCs) to promote and sustain the fibrogenic phenotype in HSCs 

within the liver (2,10).

To date, at least 50 chemokine ligands and 20 receptors have been identified, and many have 

been implicated in many forms of chronic liver disease (3,9,11). A comprehensive table of 

chemokines, chemokines receptors, cellular source and targets, as well as potential role(s) in 

liver diseases and liver fibrosis, is presented in Table 2. The system of chemokine ligands 

and receptors is degenerate, that is to say multiple ligands exist for most receptors and a 

given receptor can bind multiple chemokines. It is unclear as to whether the system is simply 

redundant, with biochemically similar chemokines performing copycat functions of each 

other. Multiple studies, however, would suggest that it is more nuanced, with structurally 

similar chemokines that bind the same receptor having distinct functions on a target cell 

(12). Furthermore, the cellular source and targets of these biologically similar chemokine 

families likely act to fine tune the inflammatory response rather than just acting as duplicate 

ligands for the same receptors (13).

The chemokine families are grouped into four subfamilies by the arrangement of the 

N-terminal cysteine motifs, so-called C, CC, CXC and CX3C (3,6,14,15). Within the 

CXC family, there is an additional layer of structural distinction that is determined by 

the presence or absence of an amino acid motif of glutamic acid (E)-leucine (L)-arginine 

(R) (ELR) before the first cysteine of the C-X-C motif (ELR+) or those without an ELR 

motif (ELR−) (16). Despite chemokines being intrinsic to immune cell/leukocyte trafficking 

and inflammation, they are produced by a spectrum of cells within the liver, from resident 

macrophages to non-immune hepatic epithelial cells like hepatocytes, sinusoidal epithelial 

cells, cholangiocytes, as well as HSCs and fibroblasts (10). Preclinical experimental models 

of liver injury show that most cell types can express and release chemokines in an attempt to 

resolve cellular injury or toxic insult (9,17,18).

An intriguing aspect of chemokine biology is that the genes for chemokine families reside in 

clusters within the mammalian genome (19–21). The majority of CC chemokines are found 

on the human chromosome 17q11-q21 and the CXC chemokines on 4q21-q21 (19,20). 

Subregions exist within these clusters, with the CC chemokines including MIP and MCP 

subregions and the CXC cluster divided into the GRO and IP-10 regions (21,22). The MIP 

region of the CC cluster contains CCL5, CCL16, CCL14, CCL15. CCL23, CCL18, CCL3, 

and CCL4 and the MCP regions containing CCL2, CCL7, CCL11, CCL8, CCL13 and 

CCL1 (21). All are considered to be proinflammatory due to their chemotactic activity, with 

CCL1 is specifically linked to fibrogenesis (21). For CXC chemokines, the GRO region 

contains CXCL8, CXCL6, CXCL4L1, CXCL4, CXCL7, CXCL5, CXCL3 and CXCL2 

and several of these are potent chemoattractants for neutrophils (22). In the IP-10 region 
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CXCL9, CXCL10, CXCL11 and CXCL13 are found and are not associated with neutrophil 

chemotaxis, but for T cells and B cells (23–25). This clustered organization suggests that 

regulation of chemokines has been evolutionarily honed to direct specific coordination of 

chemokine expression to best respond to noxious stimuli.

Standard chemokine nomenclature requires chemokine receptors to be named in parallel 

with their ligands, e.g., CCR for CC chemokine receptors and CXCR for CXC chemokine 

receptors. Chemokine receptors are mainly expressed on leukocytes and are classical 

G-protein coupled receptors (GPCR) with seven transmembrane domains (7,26). When 

a chemokine binds to a chemokine receptor, it initiates several intracellular signaling 

pathways necessary for leukocyte trafficking towards the chemokine source. The Gα1 

and Gβ-γ subunits of the GPCR dissociate and activate phosphatidylinositol 3-kinase, 

small Rho guanosine triphosphatase which alters intracellular calcium flux inside the 

chemokine target cells (26). These signaling events change the conformation of pivotal 

integrins in the leukocyte targets of chemokines. Chemokine receptor signaling promotes 

the interactions with cellular adhesion markers, such as intracellular adhesion molecules 

(ICAMs) and vascular cell adhesion molecules (VCAMs) on the sinusoidal epithelium for 

leukocyte extravasation from the peripheral circulation (27). Chemokines favor binding to 

glycosaminoglycans found in the extracellular matrix or the sinusoidal endothelium which 

generates the localized chemokine gradients for effective trafficking towards the chemokine 

source (28). This interaction with the extracellular matrix is intriguing in a disease like liver 

fibrosis that has disrupted synthesis and turnover of the extracellular matrix (29). Although 

untested, this interaction suggests that chemokines maybe a relatively underappreciated 

orchestrators of inflammation and fibrosis.

The interactions between chemokines and their receptors, as well as the sources and 

targets of chemokines and expression of receptors in chronic liver disease and fibrosis 

are summarized in Table 2. An atypical chemokine is included in this list, macrophage 

migration inhibitory factor (MIF) (30,31). MIF is a pleiotropic cytokine/chemokine which 

can interact with CXCRs to promote leukocyte chemotaxis, but our understanding of MIF’s 

role in liver disease has evolved over the past decade of research (18,32–36). The role of 

MIF in fibrosis is somewhat controversial, as studies in genetic knockout models reported 

contrasting roles for MIF in fibrosis. However, recent studies indicate that MIF’s role in 

fibrosis is likely dependent on the context of disease and/or cellular source of MIF (35,37–

39). The roles of MIF in fibrosis include indirect effects in signaling pathways regulated 

by MIF, including cytokine- and chemokine-like functions. Our group has recently shown 

MIF is a potent regulator of coordinated chemokine expression in murine models of alcohol-

associated liver disease (ALD). Importantly, MIF concentration in supra-hepatic circulation 

was associated with disease severity in patients with alcohol-associated hepatitis (AH) (18). 

Further research into the role of MIF in specific liver diseases associated with susceptibility 

to the development of fibrosis could lead to re-defining the potential efficacy of therapeutic 

targeting of inflammation to treat liver fibrosis.

At present, the abundance of data regarding the involvement of chemokines and/or 

chemokine receptors in chronic liver disease has yielded only a few clinically relevant 

therapeutic candidates, such as cenicriviroc, a dual CCR2/CCR5 inhibitor (40,41). The 
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CCR2/CCR5 signaling axis was identified as an attractive target to treat metabolic-

associated fatty liver disease [MAFLD; note: here we are using the newly recommended 

term of MAFLD/metabolic-associated steatohepatitis (MASH) to replace the previous term 

of non-alcoholic fatty liver disease (NAFLD) and non-alcohol associated steatohepatitis 

(NASH)] and has shown promise in treating MAFLD-associated liver fibrosis. Mounting 

evidence from studies in the era of anti-viral therapies for viral hepatitis suggests that 

hepatic fibrosis and even cirrhosis can be reversed with removal of the noxious stimuli 

(29,42,43). Despite this evidence, the chemokine system is largely underutilized as a 

therapeutic target in liver fibrosis. Appropriate immune cell trafficking to enable elimination 

of excessive matrix and resolve inflammation would require specific chemokines to direct 

this act of cleanup in the resolution of fibrosis. In essence, the upregulation of chemokines 

and chemokine receptors in chronic liver disease represents a link between the liver’s 

response to injury that can feed forward into maladaptive inflammation and severe tissue 

injury. However, further investigations into the chemokine system might also reveal novel 

roles that contribute to the regression of fibrosis.

Cell recruitment by chemokines in liver injury

Since we have covered the disease-related upregulation of chemokines, we will now briefly 

define some of the leukocytes that are recruited during liver injury that are likely to 

participate in fibrogenesis or fibrosis. Summarized in Table 2, the target cells of chemokines 

are diverse and include monocytes/macrophages, natural killer (NK) and natural killer T 

(NKT) cells, neutrophils and T lymphocytes.

Monocytes and macrophages

The recruitment of monocytes and macrophages to the injured or inflamed liver is a 

common feature of chronic liver disease. In addition, Kupffer cells, the liver-resident 

macrophage, are consistently associated with pro-inflammatory functions in liver disease. 

Several studies confirm the profibrogenic response of monocytes and macrophages in 

liver disease since depletion of macrophages decreases liver fibrosis (44–47). Monocytes/

macrophages are recruited by chemokines including CCL1, CCL2, and members of the 

GRO family of CXC chemokines. However, recruited monocytes/macrophages can have 

both restorative and damaging function, both producing multiple chemokines that can 

lead to feed-forward inflammation and promotion of fibrosis through HSC activation and 

promoting the resolution of fibrosis through expression of matrix metalloproteinases or 

killing of activated HSCs (48).

Neutrophils

The role of neutrophils in fibrogenesis and injury resolution is controversial (49). The 

functional role of neutrophils in liver injury is likely context-dependent (50) with studies 

reporting that neutrophils contribute to exacerbated injury in acute liver inflammation 

or both protection or exacerbation in chronic injury (49). Initial evidence demonstrating 

that decreasing neutrophil infiltration/accumulation, either by administration of neutrophil 

anti-serum to rats undergoing bile duct ligation, or α-naphthylisothiocynate to CXCR2-

deficient mice, suggested a limited role for neutrophils in fibrosis (48). However, neutrophils 
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can orchestrate leukocyte infiltration through modulation of chemokine receptors, which 

can indirectly modulate fibrogenesis (51,52). Neutrophils will downregulate CXCR2 and 

upregulate inflammatory CC receptors CCR1, CCR2, and CCR5 in an effort to activate 

phagocytic activity and reactive oxygen species (ROS) production (53). Neutrophils also 

promote recruitment of T lymphocytes by producing Th1 chemokines CXCL9, CXCL10, 

and CXCL11 (54).

NK and NKT cells

NK and NKT are immune cells that connect the innate and adaptive immune systems with 

multiple roles in liver injury and fibrosis (44,55,56). They are targets of CCL3 and CCL4, 

IFN-γ-dependent chemokines CXCL9, CXCL10, and CXCL1, as well as CXCL16. NK and 

NKT cells have clearly defined roles in response to infection and in tumor surveillance, but 

also in both promotion and resolution of fibrosis in both direct pro-inflammatory functions 

but indirectly on HSC activation.

T lymphocytes

The adaptive immune response plays an important role in liver disease and fibrosis. The T 

cell subsets exert both pro- and anti-inflammatory functions dependent upon the subtype of 

T cell; Th1, Th17, CD8 T are pro-inflammatory where as Th2 and regulatory T cells (Tregs) 

can dampen inflammation or promote injury resolution (15,57). Many studies involving 

chemically-induced fibrosis suggest little involvement for T cells in fibrogenesis and/or 

fibrosis, but this might represent a limitation of preclinical models of liver fibrosis (58,59). 

In liver diseases where an adaptive immune response is prominent, T cell migration to the 

liver might be protective in subsequent fibrosis. Many of the chemokines that recruit NK and 

NKT cells are similar for T lymphocytes, e.g., CCL3, CCL4, CXCL9, CXCL10, CXCL11, 

as well as CCL17 and CCL22 for Tregs (15,57).

Other granulocytes: mast cells and eosinophils

The leukocytes mentioned previously are the most studied in liver disease and immunology, 

but recent studies in other cell types describe intriguing functions for the other granulocytes, 

like mast cells and eosinophils. Mast cells were traditionally associated with allergic 

responses, but recently have been shown to play many roles in models of liver injury such 

as MAFLD, ALD and fibrosis (60–62). Mast cell chemotaxis has been observed in response 

to CXCL1, CXCL5, CXCL8, CXCL14, as well as CX3CL1 and CCL5 and CCL11 (63). 

Furthermore, in addition to chemotaxis, the interactions of chemokines at receptors on mast 

cells can also lead to their activation and degranulation (64) and feed-forward production 

of more chemokines (65). The other granulocyte mentioned are eosinophils which are 

associated with parasitic infection and allergic responses, but also have been described to 

play roles in tissue injury and resolution (66). Eosinophils express a number of chemokine 

receptors that will lead to migration towards a site of tissue injury or infection which include 

CXCR1, CXCR2, CXCR3, CXCR4, as well as CCR1, CCR2, CCR3, CCR6 and CCR8 

(67). Similar to most immune cells, eosinophils are also important sources of chemokines. 

A recent study showed that eosinophils are protective against chemically-induced fibrosis as 

well as acute liver injury (66). The study went on to show that the chemokines responsible 

for eosinophil chemotaxis were due to CCL24 produced by macrophages in a dynamic 
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crosstalk, further demonstrating how tightly controlled the chemokine system can be in 

disease and homeostasis (66).

Liver diseases associated with fibrosis

The dynamics of chemokine regulation and cellular recruitment in chronic liver diseases 

likely impacts the ability of the chemokine system to both contribute to and promote 

the resolution of fibrosis. Therefore, here we highlight liver disease-specific changes in 

expression and release of chemokines.

Fatty liver diseases—ALD and MAFLD

The progression of fatty liver disease to fibrosis and eventual cirrhosis are similar on 

a clinical level for both ALD and MAFLD (4,68–70). Initial stages include steatosis, 

whether due to excessive intake of alcohol or nutrients in ALD and MAFLD, respectively. 

Steatosis is reversible with cessation of drinking alcohol or with decreases in caloric intake 

and/or increases in energy expenditure (69,71). Although steatosis is relatively benign, it is 

considered a necessary step to the latter stages of fatty-liver disease. In addition, steatosis 

is characterized by increased hepatic inflammation as measured by increased expression 

of pro-inflammatory cytokines like tumor necrosis factor-alpha, interleukin-6, and many 

chemokines (1,3). With continued drinking and/or metabolic stress, fatty liver disease can 

progress to fibrosis, cirrhosis, and eventually hepatocellular carcinoma (4,68–70). Within 

ALD, a particularly inflammatory stage of ALD is AH (4,69,72). AH can superimpose along 

the spectrum of ALD and is associated with high patient mortality. In fact, most patients 

who present with AH have some form of underlying fibrosis (69,73).

ALD is now one of the leading causes of preventable liver disease and patient mortality 

worldwide (69,74,75). The incidence of ALD is increasing, however, there are limited 

therapeutic options other than off-label glucocorticoid use and, for patients with cirrhosis, 

orthotopic liver transplant (72). From steatosis through cirrhosis, inflammatory infiltrates 

including monocytes and neutrophils are well-described in clinical studies as well as in 

preclinical models in ethanol-fed mice (1,76). The initial studies almost 30 years ago 

regarding chemokines in ALD reported that upregulation of CXCL8 in patients with AH 

was associated with a poor prognosis and that hepatocytes exposed to ethanol upregulated 

expression of CXCL8 (77). As CXCL8 is the prototypical ELR+ CXC chemokine and 

neutrophil chemoattractant, it suggested a role for neutrophils in ALD, AH and by extension, 

alcohol-associated fibrosis. Several studies have confirmed the prominent role for neutrophil 

infiltration in ALD and AH, however, it is still unclear whether neutrophils contribute to 

both injury and/or repair (73).

With the advent of transcriptomics, a seminal study from Dominguez et al. found that 

hepatic expression of chemokines CXCL1, CXCL5, CXCL6, CXCL8, CXCL10 and 

CXCL4 was upregulated in patients with AH, as well as CCL2 and CCL20 (78). In 

particular, the expression of CXC chemokines was associated with hepatic dysfunction and 

patient mortality, including portal hypertension, a known feature of the fibrotic liver (29). 

Follow-up in vivo studies in mouse models of ethanol feeding defined the roles of CCL2 and 

CCL20 in hepatic injury which served to link ethanol-mediated inflammation to steatosis, 
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hepatocyte injury and eventual fibrosis (78–80). Interestingly, although Ccl2−/− mice were 

protected from ethanol-induced liver injury, Ccr2 deficiency was not protective. This 

disconnect between a chemokine and its receptor suggests that a binary relationship between 

ligand and receptor is insufficient to explain the role of a specific chemokine-receptor 

combination in any disease and that the system requires a broader, more comprehensive 

approach when considering targeted therapies.

A recent study from our group expanded on previous studies highlighting the roles of 

specific chemokines in ALD. Patients with AH exhibited a very specific chemokine 

expression signature as compared to other disease etiologies such as MAFLD and viral 

hepatitis including CCL2, CCL20, CXCL1, CXCL5, CXCL6, and CXCL8 (18). The next 

step was to determine what drives the transcriptional program in livers of these patients, as 

both CC and CXC chemokines were upregulated in a strong association with one another, 

despite being found in distinct regions of the genome (21). Since MIF is known to control 

expression of chemokines, we tested if hepatocyte-derived MIF drove this expression in 

ethanol-fed mice. Upregulation of mRNA expression for CXC and CC chemokines was 

dependent upon hepatocyte-derived MIF and when MIF signaling was interrupted by a small 

molecule inhibitor, expression of these chemokines was prevented in murine hepatocytes. 

MIF, was therefore a likely upstream mediator of pro-inflammatory functions in ALD, and 

could contribute to fibrosis through expression of hepatic chemokines. In another study, MIF 

was shown to control expression of Ccl2 in a model of carbon tetrachloride (CCl4)-induced 

fibrosis in mice (39). Ccl2 is consistently associated with hepatic inflammation and chronic 

liver disease in many modalities of injury, adding to the evidence for MIF as an important 

controller of chemokine expression in the liver. Taken together, the intricate regulation of 

chemokine expression in ALD is necessary to drive maladaptive inflammation in the liver, 

and might be coordinately regulated by MIF.

MAFLD has several similarities in the clinical presentation of liver pathophysiology to 

ALD; however, MAFLD also has unique aspects with respect to the role of chemokines 

to disease progression. The upregulation of hepatic inflammation via chemokine expression 

and leukocyte trafficking is well-established (3,11). Many chemokines, including CCL2, 

CCL5, CXCL1, and CXCL8 are implicated in the progression of MAFLD to MASH and 

eventual fibrosis. There is some controversy in experimental results that contrast with 

respect to CCL2, however, this is largely dependent upon the source of the chemokine. 

CCL2 expression in hepatocytes is associated with steatosis, insulin resistance and obesity 

(81). Targeting Ccr2 prevents macrophage accumulation in the liver as well as steatosis, as 

expected (82–84). Models of MAFLD also reveal a prominent role for CCL2 expression 

and leukocyte recruitment to the adipose tissue, which contributes to liver injury (85–

87). Interestingly, some studies show that Ccl2 knockout mice are not protected from 

adipose tissue macrophage recruitment nor insulin resistance (87,88), yet Ccr2−/− mice or 

pharmacological antagonists of CCR2 are effective interventions in experimental models 

(89), suggesting that the other ligands for CCR2, such as CCL7, CCL8 and CCL13, are 

important for disease progression (3). CCR2, therefore, might play a more prominent role 

in experimental MAFLD and MASH development compared to ALD. CCL2 is also known 

to be an activator and recruiter of HSCs. HSCs can in turn also produce chemokines like 

Poulsen et al. Page 8

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCL2, CCL5, as well as CXCL9, CXCL10 and CX3CL1, adding more players in the 

complex chemokine response in MAFLD (82,90,91).

CCL5, produced by many of the same cell types in the liver that produce CCL2, is 

associated with MAFLD, MASH and fibrosis (92,93) and CCL5 binds several receptors 

including CCR1, CCR3 and CCR5 (3,94). Hepatic expression of CCL5 is upregulated 

in obese humans and murine models of MASH, and is likely produced by fat-laden 

hepatocytes, targeting macrophages and HSCs (93,94). CCR5 appears to play a pivotal 

role in HSC migration and activation, macrophage polarization and subsequent insulin 

resistance in models of MASH (91,93). Therefore, both CCR2 and CCR5 signaling are 

among the most important players in the development of MAFLD-associated fibrosis within 

the chemokine system.

Neutrophil chemotaxis via the GRO family is well established in studies of MASH and in 

patient samples of MASH. Markers of neutrophil infiltration including neutrophil elastase 

(NE), myeloperoxidase (MPO), and neutrophil extracellular traps are elevated in the patients 

with MAFLD (95–97). In addition, elevated levels of neutrophil-secreted MMP9 drives 

MASH-related fibrosis progression (98). Neutrophils also release factors that play a role in 

MAFLD. NE, a regulator of insulin signaling contributes to liver damage through decreased 

insulin sensitivity, and MPO in granules of neutrophils catalyzes ROS to induce hepatocyte 

death (99,100). Although indirect, the generation of ROS and cellular damage from GRO-

dependent neutrophil recruitment to the liver in MAFLD is likely important to hepatic 

fibrosis but some evidence suggests that neutrophils could promote resolution of fibrosis 

(101).

CXCL9 and CXCL10 are also implicated in MASH, with their receptor CXCR3 expressed 

on macrophages, T cells and NK cells (102,103). Both CXCL9 and CXCL10 are typically 

expressed at low levels, but are robustly induced in pathophysiological conditions. CXCL9 

expression is upregulated in the liver sinusoidal epithelium and its expression is induced 

in MASH patients and in models of MASH in mice (103,104). Furthermore, CXCL10 is 

known to play a role in MASH pathophysiology through promotion of inflammation and 

steatosis (105). The studies regarding CXCL9, CXCL10 and CXCL11 in MAFLD suggest 

a prominent role for CXCR3 in the development of experimental models of MAFLD and 

fibrosis and are corroborated in patient samples (106).

In contrast to ALD, the role of MIF in experimental MASH and MAFLD has been 

somewhat controversial. In models of high fat diet feeding and methionine- and choline-

deficient (MCD) diets, Mif−/− mice had exacerbated liver injury, inflammation and steatosis, 

including increased expression of CCL2 in the liver (36). Interestingly, inflammation in the 

adipose tissue was decreased in Mif−/− mice, suggesting that the protective role of MIF in 

MASH or MASH-associated fibrosis might be through suppression of inflammation, but 

expression of only a few chemokine genes was assessed in this study (36). A more recent 

study, however, found that MIF deficiency protected from MCD diet-induced steatohepatitis 

and fibrogenesis, but more importantly that hepatocyte-derived MIF deficiency was also 

protective, but through a unique mechanism. MIF signaling, via CXCR2, skewed the 

infiltrating NKT cell phenotype towards proinflammatory (38). We have reported that 

Poulsen et al. Page 9

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



upregulation of chemokines in livers of MAFLD patients is not as robust as it is in ALD or 

viral hepatitis (18). MIF might not act as a regulator of chemokine expression in metabolic 

liver disease or the subsequent fibrosis, but as a chemokine signaling through CXCR2, 

highlighting an etiology-specific role for MIF in liver fibrosis.

Infection-related hepatitis

Fibrosis can develop in response to both viral and parasitic infections. While some data 

is available demonstrating a role of chemokines in fibrotic responses to schistosome 

infection (107,108), the role of chemokines in viral hepatitis is better understood. Viral 

hepatitis is of particular interest with respect to chemokines and liver disease progression, 

as it represents an inflammatory response to infectious disease rather than the sterile 

inflammation driving ALD and MAFLD (109). Schistosoma infection is also an important 

cause of liver fibrosis. Chemokines perform classical roles of directing the inflammatory 

response to the liver in the anti-viral response, but also are associated with upstream 

development of the inflammatory environment that can eventually lead to fibrosis (110,111). 

Although an efficient and targeted response to the viral pathogens helps in clearance 

of the hepatitis C virus (HCV), a prolonged and unresolved infection could progress to 

more extensive injury and fibrosis. CXCR3, the receptor for interferon-gamma inducible 

chemokines CXCL9, CXCL10 and CXCL11 released by the sinusoidal endothelium and 

hepatocytes, is critical for T-cell recruitment to the liver (27,112–115). In response to HCV 

particles in the liver, CCL5 expression and release is increased, and expression of the 

CXCR3 and CCR5 ligands (CCL3–5) are increased in the liver (112,116). Furthermore, 

these ligands, specifically CXCL10, could serve as biomarkers for infection (114,117) 

CXCL10 expression is associated with the likelihood of the development of fibrosis in 

patients with HCV who have received a previous liver transplant (118).

Outside the adaptive immune response, NK cells are also recruited by ligands for CCR1, 

CCR5 and CX3CR1, as well as CXCR3, CCR5 and CCR7 (119,120). Although recruitment 

of NK cells is necessary for their anti-viral functions, they are associated with the 

development of fibrosis. Interestingly, despite the robust accumulation of these NK cells 

in the liver in viral hepatitis, they appear to be dysfunctional, suggesting a more complex 

biology than the chemokine ligand-receptor interaction in this disease (121).

One final chemokine worthy of mentioning in viral hepatitis is CXCL16. It is upregulated 

in sinusoidal epithelium in viral hepatitis and interacts with CXCR6 and is thought to be 

critical in recruitment of memory NK cells that recruit and concentrate cytotoxic NK cells 

to the liver (120,122). As stated previously, with the advent of direct acting antivirals, the 

resolution of HCV-mediated liver injury and subsequent fibrosis is likely to continue to 

decrease in the future, but could also serve as a rich source of clinical data to investigate the 

role(s) that the chemokine system can play in fibrosis regression.

Hepatic autoimmunity

For the purposes of hepatic autoimmunity, we will focus on the role of chemokines in 

primary biliary cholangitis (PBC) and in autoimmune hepatitis (AIH). Consistent with 

metabolic-related and viral hepatitis, both PBC and AIH exhibit profound leukocyte 
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infiltration into liver, including monocytes, macrophages, NK cells, and T cells. Moreover, 

many of the same chemokines previously detailed in other liver diseases are upregulated in 

the liver and play important roles in the pathogenesis of PBC and AIH. Within PBC, CCL2 

and CXCL8 are detected around damaged bile duct epithelium and are likely expressed 

by these cells as well (15,119,123). They are likely indirect participants in damage to 

the bile ducts due to the inflammatory infiltrates, induction of feed-forward expression of 

cytokines and other fibrogenic factors in these areas (15). CCL3, CCL4 and CCL5 are 

also upregulated in the bile duct epithelium leading to enhanced chemotaxis of infiltrating 

mononuclear cells (124). Finally, CXCL9 and CXCL10 are significantly increased in the 

circulation of patients with PBC, as is the expression of CXCR3, suggesting an important 

role for these chemokines in attracting Th1 cells to participate in liver injury in PBC (15). In 

AIH, the secretion of CXCL9, CXCL10 and CXCL11 recruit T helper type 17 lymphocytes 

expressing CXCR3 and CCR6 which in turn attract T helper type 1 lymphocytes (57). 

Hepatic secretion of CXCL16 leads to migration of NKT cells via interaction with CXCR6 

(125,126). Resident NKT cells expressing CXCR6 migrate in response to the local secretion 

of CXCL16 (127). Despite less information regarding chemokines in hepatic autoimmunity, 

there are consistent players amongst all of these diseases, suggesting consistent chemokine 

players, e.g., CCL2, CXCL8, CXCL9, CXCL10 and CXCL16, within the liver to most 

injurious stimuli, highlighting their importance to pathophysiology in the liver.

Direct roles of chemokines in HSCs and fibrosis

The consistent and sustained inflammatory environment in chronic liver diseases contributes 

to the fibrogenic phenotype with the chronic inflammation and wound healing responses 

that cannot appropriately resolve. The consequence of this pathophysiological response is 

excess production of extracellular matrix (29). Different cells within the liver can contribute 

to excess collagen production, but the activation of HSCs from their quiescent phenotype is 

necessary for the generation of myofibroblasts, a pivotal step in fibrogenesis (43,128). While 

there are multiple indirect roles for chemokines in fibrosis, as detailed above, there are also 

several chemokines that either act on HSCs or have been shown to be produced by HSCs to 

amplify their pro-fibrotic milieu.

Within the CC chemokine family, several members can activate HSCs, promote their 

fibrogenic activity, and can be produced by HSCs. CCL2, produced by multiple cell types 

in the inflamed liver, promotes the migration of HSCs and activates HSCs (129,130). CCL5 

is upregulated in livers of patients with fibrosis, and interfering with CCL5 and its receptor 

CCR5 prevents experimentally-induced activation of HSCs and fibrosis (91,93,131). CCL5 

promotes the migration and pro-fibrogenic functions of HSCs (132). CCL20 is also 

produced by resident cells in the liver, including damaged hepatocytes and cholangiocytes, 

and is prominently upregulated in livers of patients with AH (78,80). CCL20 promotes 

HSC-mediated fibrogenesis and can be produced by activated HSCs. In the CXC family, 

the CXCL10 directly acts on HSCs to be profibrogenic but also can prevent NK-mediated 

inactivation of HSCs (133). HSCs are also a source of CXCL9 and CXCL10, but CXCL9 

might be anti-fibrogenic (115,134,135).
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Chemokines and injury resolution in fibrosis

Although the pro-inflammatory and pro-fibrogenic roles of chemokines are implicated in 

chronic liver diseases, evidence also exists as to chemokine-receptor interactions that might 

promote resolution and thus be anti-fibrogenic. This is not as well understood due to our 

nascent understanding of the mechanisms for regression of fibrosis in patients, but has 

shown promise in preclinical models of fibrosis.

The chemokine CX3CL1, also known as fractalkine, is rather unique in chemokine biology. 

It is the only known member of the CX3C chemokine family that signals through 

CX3CR1 (136–138). There remains some controversy as to whether CX3CL1 is always 

pro-resolution, but several studies show that the interaction with CX3CR1 on macrophages 

decreases hepatic inflammation, enhances macrophage survival and promotes a switch in 

phenotype to an anti-inflammatory cell (139). If CX3CL1 or CX3CR1 are knocked out 

in mice, they are more likely to develop fibrosis, providing a functional link to CX3CR1-

CX3CL1 signaling and a protective role in liver fibrosis.

In AIH, CCR4-expressing T helper type 2 lymphocytes migrate into the liver due to CCL17 

and CCL22, and dampen the expansion of pro-inflammatory cells (57,140–142). Tregs 

expressing CXCR3 are also attracted by the secretion of CXCL9 in AIH, which can also 

attenuate the pro-inflammatory environment (143–145). Identifying the chemotactic signals 

for anti-inflammatory cells like Th2 or Tregs could be an important area of discovery, 

especially in liver diseases with prominent adaptive immune responses like in viral hepatitis 

and autoimmune disease

Neutrophils may have a role in fibrotic injury resolution, with neutrophil-derived MMP 

expression contributing to collagen breakdown in the context of biliary obstruction (146) and 

CCl4 liver injury model where neutrophil recruitment was driven by an artificial increase 

in bone marrow-derived macrophages (146,147). Neutrophils were also found to mediate 

resolution of liver inflammation and fibrosis through expression microRNA (miR)-223 

prompting macrophage polarization to a restorative phenotype (101).

Another potential link to fibrosis resolution and chemokines comes from a seminal study 

by the Iredale group which detailed the resolution of chemically-induced fibrosis. After 

ceasing CCl4 treatment, the recruited monocytes converted to a restorative-type macrophage. 

The Ccr2+ monocytes were likely recruited by the chemokines released in response 

to liver damage in this model, but undergo a phenotypic switch which could be tied 

to increased expression of CX3CL1 and CX3CR1 (42,148). These cells also decrease 

expression of pro-fibrogenic chemokines like CXCL10 and CXL2. Interestingly, these 

restorative macrophages also have increased expression of MIF and the MIF receptor 

CD74, highlighting a potential mechanism of MIF-dependent anti-fibrosis, supported by 

the exacerbated liver injury in Mif−/− mice in models of chemically-induced fibrosis.

Therapeutic targeting of chemokine axes in liver fibrosis

To date, there are few options for anti-fibrotic therapies, and many are still in clinical trials 

(136). By extension, this is certainly true for therapies that might modulate the chemokine 
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system in chronic liver disease or in liver fibrosis. The extensively interconnected web of 

chemokines, receptors and cell types requires further comprehensive studies to analyze the 

spatial, and temporal relationships of chemokine expression and chemokine activities in 

liver disease that could result in fibrosis. Furthermore, the specific sources of chemokines 

could also represent viable targets for neutralization of proinflammatory and profibrotic 

chemokines, e.g., CCL2 or CXCL10, or even the over expression of chemokines that can 

induce and anti-inflammatory phenotype or lead to fibrosis regression, e.g., CX3CL1 or 

CXCL9.

Most recently, the dual CCR2/CCR5 inhibitor, cenicriviroc, was evaluated in clinical trials 

as a therapy to treat liver fibrosis in adults with MASH. The results suggested that 

cenicriviroc was well-tolerated and effective as an antifibrotic therapy, without affecting 

the underlying steatohepatitis. The disconnect between the persistent underlying disease but 

effective fibrosis regression is unknown, but demonstrated the feasibility of specific targeting 

of the chemokine system as a means to resolve fibrosis (41).

Targeting of specific sources of chemokines is another avenue for discovery, with respect 

to the immune master regulator, MIF. Hepatocyte-derived MIF is now implicated as a 

controller of the coordinated chemokine signature in ALD and possibly required for NK 

cell-mediated injury and fibrogenesis in a model of MAFLD (18,38). In contrast, the first 

studies to investigate the role of MIF in liver fibrosis described protective functions of MIF 

with respect to hepatocellular signaling and the recruitment of scar-associated macrophages 

in global Mif−/− mice (35,37). The dichotomous roles MIF might play in fibrosis could 

be due to the pleiotropic nature of MIF, the temporal relationship to onset of fibrosis, or 

etiology of underlying chronic liver disease. Thus, MIF serves as an exciting target of 

discovery in chemokine biology and fibrosis as it highlights the dynamic relationship within 

the chemokine system, from the source(s) to the target(s).

An effective therapeutic in fibrosis could come from several facets of the chemokine system; 

designed as preventatives, therapies to lessen fibrogenesis, and/or to resolve established 

fibrosis. First and most directly, specific inhibitors of chemokines or their receptors 

could prevent sustained recruitment of leukocytes that might contribute to sustained 

and maladaptive inflammation. Secondly, targeting chemokines that act on HSCs or are 

produced by HSCs could help to augment the pro-fibrogenic phenotype in these cells, 

decrease or prevent the activation of HSCs. Third, a chemokine-type therapy that could 

enhance chemotaxis of leukocytes that would decrease extracellular matrix deposition in 

established fibrosis. It is important to note the potential challenges associated with targeting 

chemokines for the treatment human diseases because their role in driving and regulating 

various aspects of the immune response are crucial for the ability of a patient to survive 

viral, fungal, and bacterial infection. For example, clinical trials using CXCR1 and CXCR2 

inhibitors proved successful in treating patients with chronic disease, but their use was 

harmful in patients with viral infection (149).
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Discussion/summary

In summary, the role of the chemokine system in liver fibrosis is dynamic and our 

understanding of it is still developing. Despite robust upregulation of chemokine expression 

in nearly all liver pathologies, profound roles of infiltrating leukocytes in inflammatory 

biology, as well as the effects of chemokines on activation and proliferation of HSCs, 

they are still relatively fewer studies about the roles of chemokines in liver fibrosis. The 

multiple sources of chemokines in the liver and increased chemokines in circulation in 

most chronic liver diseases are important features in the progression of liver fibrosis. Future 

studies into the chemokine system in fibrosis could represent a shift in the therapeutic 

interventions which target HSC activation and possibly the prevention of fibrosis in 

susceptible populations of patients, e.g., patients with fatty liver disease, viral hepatitis or 

hepatic autoimmune disease.

Research of the past two decades has revealed the dynamics of the chemokine system 

as critical mediators of inflammation and chronic disease. In striking parallel, both 

inflammation and chronic disease states are associated with the development of liver 

fibrosis. In general, despite the growing body of knowledge showing the pivotal roles played 

by chemokines in liver disease, they remain relatively understudied in the field as compared 

to cytokines, with only one clinical trial for cenicriviroc in MAFLD patients showing some 

benefits. Increased research into the chemokine system could uncover specific and potent 

targets to either prevent fibrosis in susceptible populations or help to stabilize or reverse the 

progression of fibrosis to improve the quality of life in these patients with liver disease.

Acknowledgments

Funding:

This work was supported in part by NIH grants: No. P50AA024333, No. U01AA020821, No. U01AA026938 and 
No. R01AA023722 (to LEN); No. R00AA026648 (to KLP) and No. F32AA0029290 (to CKCDR).

References

1. Gao B, Ahmad MF, Nagy LE, et al. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 
2019;70:249–59. [PubMed: 30658726] 

2. Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary 
Pancreat Sci 2015;22:512–8. [PubMed: 25869468] 

3. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014;147:577–594.e1. 
[PubMed: 25066692] 

4. Nagy LE. The Role of Innate Immunity in Alcoholic Liver Disease. Alcohol Res 2015;37:237–50. 
[PubMed: 26695748] 

5. Mathews S, Xu M, Wang H, et al. Animals models of gastrointestinal and liver diseases. Animal 
models of alcohol-induced liver disease: pathophysiology, translational relevance, and challenges. 
Am J Physiol Gastrointest Liver Physiol 2014;306:G819–23. [PubMed: 24699333] 

6. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. 
N Engl J Med 2006;354:610–21. [PubMed: 16467548] 

7. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 
2000;18:217–42. [PubMed: 10837058] 

8. Kim CH, Broxmeyer HE. Chemokines: signal lamps for trafficking of T and B cells for development 
and effector function. J Leukoc Biol 1999;65:6–15. [PubMed: 9886241] 

Poulsen et al. Page 14

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944–71. 
[PubMed: 29637711] 

10. Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012;3:213. 
[PubMed: 22723782] 

11. Roh YS, Seki E. Chemokines and Chemokine Receptors in the Development of NAFLD. Adv Exp 
Med Biol 2018;1061:45–53. [PubMed: 29956205] 

12. Schall TJ, Proudfoot AE. Overcoming hurdles in developing successful drugs targeting chemokine 
receptors. Nat Rev Immunol 2011;11:355–63. [PubMed: 21494268] 

13. Dyer DP, Medina-Ruiz L, Bartolini R, et al. Chemokine Receptor Redundancy and Specificity Are 
Context Dependent. Immunity 2019;50:378–389.e5. [PubMed: 30784579] 

14. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. 
Immunity 2000;12:121–7. [PubMed: 10714678] 

15. Choi J, Selmi C, Leung PS, et al. Chemokine and chemokine receptors in autoimmunity: the case 
of primary biliary cholangitis. Expert Rev Clin Immunol 2016;12:661–72. [PubMed: 26821815] 

16. Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol 
2000;68:1–8. [PubMed: 10914483] 

17. Roh YS, Zhang B, Loomba R, et al. TLR2 and TLR9 contribute to alcohol-mediated liver injury 
through induction of CXCL1 and neutrophil infiltration. Am J Physiol Gastrointest Liver Physiol 
2015;309:G30–41. [PubMed: 25930080] 

18. Poulsen KL, Fan X, Kibler CD, et al. Role of MIF in coordinated expression of hepatic 
chemokines in patients with alcohol-associated hepatitis. JCI Insight 2021;6:141420. [PubMed: 
33945507] 

19. Naruse K, Ueno M, Satoh T, et al. A YAC contig of the human CC chemokine genes clustered on 
chromosome 17q11.2. Genomics 1996;34:236–40. [PubMed: 8661057] 

20. Modi WS, Chen ZQ. Localization of the human CXC chemokine subfamily on the long arm of 
chromosome 4 using radiation hybrids. Genomics 1998;47:136–9. [PubMed: 9465307] 

21. Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and 
their molecular evolution. Genome Biol 2006;7:243. [PubMed: 17201934] 

22. Nomiyama H, Osada N, Yoshie O. The evolution of mammalian chemokine genes. Cytokine 
Growth Factor Rev 2010;21:253–62. [PubMed: 20434943] 

23. Loetscher P, Clark-Lewis I. Agonistic and antagonistic activities of chemokines. J Leukoc Biol 
2001;69:881–4. [PubMed: 11404371] 

24. Hardtke S, Ohl L, Förster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells 
determines their transient positioning to lymph node follicles and is essential for efficient B-cell 
help. Blood 2005;106:1924–31. [PubMed: 15899919] 

25. Gunn MD, Ngo VN, Ansel KM, et al. A B-cell-homing chemokine made in lymphoid follicles 
activates Burkitt’s lymphoma receptor-1. Nature 1998;391:799–803. [PubMed: 9486651] 

26. Mellado M, Rodríguez-Frade JM, Mañes S, et al. Chemokine signaling and functional responses: 
the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001;19:397–
421. [PubMed: 11244042] 

27. Oo YH, Shetty S, Adams DH. The role of chemokines in the recruitment of lymphocytes to the 
liver. Dig Dis 2010;28:31–44. [PubMed: 20460888] 

28. Proudfoot AE, Handel TM, Johnson Z, et al. Glycosaminoglycan binding and oligomerization are 
essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A 2003;100:1885–
90. [PubMed: 12571364] 

29. Friedman SL. Liver fibrosis -- from bench to bedside. J Hepatol 2003;38 Suppl 1:S38–53. 
[PubMed: 12821042] 

30. Bernhagen J, Calandra T, Mitchell RA, et al. MIF is a pituitary-derived cytokine that potentiates 
lethal endotoxaemia. Nature 1993;365:756–9. [PubMed: 8413654] 

31. Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical 
Chemokines. Front Med (Lausanne) 2019;6:3. [PubMed: 30729111] 

Poulsen et al. Page 15

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Barnes MA, McMullen MR, Roychowdhury S, et al. Macrophage migration inhibitory factor 
contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. 
Hepatology 2013;57:1980–91. [PubMed: 23174952] 

33. Marin V, Poulsen K, Odena G, et al. Hepatocyte-derived macrophage migration inhibitory factor 
mediates alcohol-induced liver injury in mice and patients. J Hepatol 2017;67:1018–25. [PubMed: 
28647568] 

34. Poulsen KL, McMullen MR, Huang E, et al. Novel Role of Macrophage Migration Inhibitory 
Factor in Upstream Control of the Unfolded Protein Response After Ethanol Feeding in Mice. 
Alcohol Clin Exp Res 2019;43:1439–51. [PubMed: 31009094] 

35. Heinrichs D, Knauel M, Offermanns C, et al. Macrophage migration inhibitory factor (MIF) 
exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci U S A 
2011;108:17444–9. [PubMed: 21969590] 

36. Heinrichs D, Berres ML, Coeuru M, et al. Protective role of macrophage migration inhibitory 
factor in nonalcoholic steatohepatitis. FASEB J 2014;28:5136–47. [PubMed: 25122558] 

37. Barnes MA, McMullen MR, Roychowdhury S, et al. Macrophage migration inhibitory factor 
is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol 
2015;97:161–9. [PubMed: 25398607] 

38. Heinrichs D, Brandt EF, Fischer P, et al. Unexpected Pro-Fibrotic Effect of MIF in Non-Alcoholic 
Steatohepatitis Is Linked to a Shift in NKT Cell Populations. Cells 2021;10:252. [PubMed: 
33525493] 

39. Xie J, Yang L, Tian L, et al. Macrophage Migration Inhibitor Factor Upregulates MCP-1 
Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury. Sci Rep 
2016;6:27665. [PubMed: 27273604] 

40. Friedman SL, Ratziu V, Harrison SA, et al. A randomized, placebo-controlled trial of 
cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2018;67:1754–
67. [PubMed: 28833331] 

41. Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc Treatment for Adults With Nonalcoholic 
Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology 
2020;72:892–905. [PubMed: 31943293] 

42. Campana L, Iredale JP. Regression of Liver Fibrosis. Semin Liver Dis 2017;37:1–10. [PubMed: 
28201843] 

43. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat 
Rev Gastroenterol Hepatol 2021;18:151–66. [PubMed: 33128017] 

44. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. 
Hepatology 2015;61:1066–79. [PubMed: 25066777] 

45. Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals 
distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115:56–65. [PubMed: 
15630444] 

46. Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute 
to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 
2013;58:1461–73. [PubMed: 23553591] 

47. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic 
fibrosis. Nat Med 2007;13:1324–32. [PubMed: 17952090] 

48. Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of 
wound healing in a solid organ. Nat Rev Immunol 2014;14:181–94. [PubMed: 24566915] 

49. Tang J, Yan Z, Feng Q, et al. The Roles of Neutrophils in the Pathogenesis of Liver Diseases. Front 
Immunol 2021;12:625472. [PubMed: 33763069] 

50. Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression 
of Liver Disease. Front Immunol 2019;10:893. [PubMed: 31068952] 

51. Saito JM, Bostick MK, Campe CB, et al. Infiltrating neutrophils in bile duct-ligated livers do not 
promote hepatic fibrosis. Hepatol Res 2003;25:180–91. [PubMed: 12644055] 

52. Xu J, Lee G, Wang H, et al. Limited role for CXC chemokines in the pathogenesis of 
alpha-naphthylisothiocyanate-induced liver injury. Am J Physiol Gastrointest Liver Physiol 
2004;287:G734–41. [PubMed: 15130876] 

Poulsen et al. Page 16

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Rudd JM, Pulavendran S, Ashar HK, et al. Neutrophils Induce a Novel Chemokine Receptors 
Repertoire During Influenza Pneumonia. Front Cell Infect Microbiol 2019;9:108. [PubMed: 
31041196] 

54. Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin 
Immunol 2016;28:119–28. [PubMed: 27151246] 

55. Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated 
stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-
dependent manners. Gastroenterology 2006;130:435–52. [PubMed: 16472598] 

56. Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NK cells in experimental liver 
injury through killing of activated HSC. J Hepatol 2006;45:60–71. [PubMed: 16515819] 

57. Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential 
therapeutic targets. Aliment Pharmacol Ther 2014;40:261–79. [PubMed: 24890045] 

58. Muhanna N, Horani A, Doron S, et al. Lymphocytehepatic stellate cell proximity suggests a direct 
interaction. Clin Exp Immunol 2007;148:338–47. [PubMed: 17437422] 

59. Novobrantseva TI, Majeau GR, Amatucci A, et al. Attenuated liver fibrosis in the absence of B 
cells. J Clin Invest 2005;115:3072–82. [PubMed: 16276416] 

60. Jarido V, Kennedy L, Hargrove L, et al. The emerging role of mast cells in liver disease. Am J 
Physiol Gastrointest Liver Physiol 2017;313:G89–G101. [PubMed: 28473331] 

61. Kennedy L, Meadows V, Sybenga A, et al. Mast Cells Promote Nonalcoholic Fatty Liver Disease 
Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology 2021;74:164–
82. [PubMed: 33434322] 

62. Meadows V, Kennedy L, Ekser B, et al. Mast Cells Regulate Ductular Reaction and Intestinal 
Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology 2021;74:2684–
98. [PubMed: 34164827] 

63. Juremalm M, Nilsson G. Chemokine receptor expression by mast cells. Chem Immunol Allergy 
2005;87:130–44. [PubMed: 16107768] 

64. Willox I, Mirkina I, Westwick J, et al. Evidence for PI3K-dependent CXCR3 agonist-induced 
degranulation of human cord blood-derived mast cells. Mol Immunol 2010;47:2367–77. [PubMed: 
20627397] 

65. Mukai K, Tsai M, Saito H, et al. Mast cells as sources of cytokines, chemokines, and growth 
factors. Immunol Rev 2018;282:121–50. [PubMed: 29431212] 

66. Xu L, Yang Y, Wen Y, et al. Hepatic recruitment of eosinophils and their protective function during 
acute liver injury. J Hepatol 2022. [Epub ahead of print].

67. Carr TF, Berdnikovs S, Simon HU, et al. Eosinophilic bioactivities in severe asthma. World Allergy 
Organ J 2016;9:21. [PubMed: 27386041] 

68. Tacke F, Weiskirchen R. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis 
(NASH)-related liver fibrosis: mechanisms, treatment and prevention. Ann Transl Med 
2021;9:729. [PubMed: 33987427] 

69. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. 
Gastroenterology 2011;141:1572–85. [PubMed: 21920463] 

70. Lee YA, Friedman SL. Inflammatory and fibrotic mechanisms in NAFLD-Implications for new 
treatment strategies. J Intern Med 2022;291:11–31. [PubMed: 34564899] 

71. Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in 
NASH. J Hepatol 2018;68:238–50. [PubMed: 29154966] 

72. Louvet A, Thursz MR, Kim DJ, et al. Corticosteroids Reduce Risk of Death Within 28 Days 
for Patients With Severe Alcoholic Hepatitis, Compared With Pentoxifylline or Placebo-a Meta-
analysis of Individual Data From Controlled Trials. Gastroenterology 2018;155:458–468.e8. 
[PubMed: 29738698] 

73. Altamirano J, Miquel R, Katoonizadeh A, et al. A histologic scoring system for prognosis of 
patients with alcoholic hepatitis. Gastroenterology 2014;146:1231–9. e1–6. [PubMed: 24440674] 

74. Mellinger JL, Winder GS. Alcohol Use Disorders in Alcoholic Liver Disease. Clin Liver Dis 
2019;23:55–69. [PubMed: 30454833] 

Poulsen et al. Page 17

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



75. Dang K, Hirode G, Singal AK, et al. Alcoholic Liver Disease Epidemiology in the United States: 
A Retrospective Analysis of 3 US Databases. Am J Gastroenterol 2020;115:96–104. [PubMed: 
31517639] 

76. Nagy LE, Ding WX, Cresci G, et al. Linking Pathogenic Mechanisms of Alcoholic Liver Disease 
With Clinical Phenotypes. Gastroenterology 2016;150:1756–68. [PubMed: 26919968] 

77. Shiratori Y, Takada H, Hikiba Y, et al. Production of chemotactic factor, interleukin-8, from 
hepatocytes exposed to ethanol. Hepatology 1993;18:1477–82. [PubMed: 8244273] 

78. Dominguez M, Miquel R, Colmenero J, et al. Hepatic expression of CXC chemokines 
predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 
2009;136:1639–50. [PubMed: 19208360] 

79. Mandrekar P, Ambade A, Lim A, et al. An essential role for monocyte chemoattractant protein-1 
in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. 
Hepatology 2011;54:2185–97. [PubMed: 21826694] 

80. Affò S, Morales-Ibanez O, Rodrigo-Torres D, et al. CCL20 mediates lipopolysaccharide induced 
liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 
2014;63:1782–92. [PubMed: 24415562] 

81. Rull A, Rodríguez F, Aragonès G, et al. Hepatic monocyte chemoattractant protein-1 is upregulated 
by dietary cholesterol and contributes to liver steatosis. Cytokine 2009;48:273–9. [PubMed: 
19748796] 

82. Miura K, Yang L, van Rooijen N, et al. Hepatic recruitment of macrophages promotes nonalcoholic 
steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 2012;302:G1310–21. 
[PubMed: 22442158] 

83. Tamura Y, Sugimoto M, Murayama T, et al. C-C chemokine receptor 2 inhibitor improves diet-
induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb 
2010;17:219–28. [PubMed: 20179360] 

84. Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 
(MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 
2012;61:416–26. [PubMed: 21813474] 

85. Xu ZM, Zhao SP, Li QZ, et al. Atorvastatin reduces plasma MCP-1 in patients with acute coronary 
syndrome. Clin Chim Acta 2003;338:17–24. [PubMed: 14637261] 

86. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose 
tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–505. 
[PubMed: 16691291] 

87. Inouye KE, Shi H, Howard JK, et al. Absence of CC chemokine ligand 2 does not limit obesity-
associated infiltration of macrophages into adipose tissue. Diabetes 2007;56:2242–50. [PubMed: 
17473219] 

88. Kirk EA, Sagawa ZK, McDonald TO, et al. Monocyte chemoattractant protein deficiency fails 
to restrain macrophage infiltration into adipose tissue corrected. Diabetes 2008;57:1254–61. 
[PubMed: 18268047] 

89. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of 
high-fat feeding. J Clin Invest 2006;116:115–24. [PubMed: 16341265] 

90. Baeck C, Wei X, Bartneck M, et al. Pharmacological inhibition of the chemokine C-C motif 
chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by 
suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology 2014;59:1060–72. [PubMed: 
24481979] 

91. Seki E, De Minicis S, Gwak GY, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin 
Invest 2009;119:1858–70. [PubMed: 19603542] 

92. Henao-Mejia J, Elinav E, Strowig T, et al. Inflammasomes: far beyond inflammation. Nat Immunol 
2012;13:321–4. [PubMed: 22430784] 

93. Berres ML, Koenen RR, Rueland A, et al. Antagonism of the chemokine Ccl5 ameliorates 
experimental liver fibrosis in mice. J Clin Invest 2010;120:4129–40. [PubMed: 20978355] 

94. Kirovski G, Gäbele E, Dorn C, et al. Hepatic steatosis causes induction of the chemokine RANTES 
in the absence of significant hepatic inflammation. Int J Clin Exp Pathol 2010;3:675–80. [PubMed: 
20830238] 

Poulsen et al. Page 18

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



95. Mirea AM, Toonen EJM, van den Munckhof I, et al. Increased proteinase 3 and neutrophil elastase 
plasma concentrations are associated with non-alcoholic fatty liver disease (NAFLD) and type 2 
diabetes. Mol Med 2019;25:16. [PubMed: 31046673] 

96. Rensen SS, Slaats Y, Nijhuis J, et al. Increased hepatic myeloperoxidase activity in obese subjects 
with nonalcoholic steatohepatitis. Am J Pathol 2009;175:1473–82. [PubMed: 19729473] 

97. van der Windt DJ, Sud V, Zhang H, et al. Neutrophil extracellular traps promote inflammation 
and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 
2018;68:1347–60. [PubMed: 29631332] 

98. D’Amico F, Consolo M, Amoroso A, et al. Liver immunolocalization and plasma levels of MMP-9 
in non-alcoholic steatohepatitis (NASH) and hepatitis C infection. Acta Histochem 2010;112:474–
81. [PubMed: 19604544] 

99. Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a 
high-fat diet through secreted elastase. Nat Med 2012;18:1407–12. [PubMed: 22863787] 

100. Aratani Y Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. 
Arch Biochem Biophys 2018;640:47–52. [PubMed: 29336940] 

101. Calvente CJ, Tameda M, Johnson CD, et al. Neutrophils contribute to spontaneous resolution of 
liver inflammation and fibrosis via microRNA-223. J Clin Invest 2019;129:4091–109. [PubMed: 
31295147] 

102. Braunersreuther V, Viviani GL, Mach F, et al. Role of cytokines and chemokines in non-alcoholic 
fatty liver disease. World J Gastroenterol 2012;18:727–35. [PubMed: 22371632] 

103. Schrage A, Wechsung K, Neumann K, et al. Enhanced T cell transmigration across the murine 
liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. 
Hepatology 2008;48:1262–72. [PubMed: 18697212] 

104. Semba T, Nishimura M, Nishimura S, et al. The FLS (fatty liver Shionogi) mouse reveals local 
expressions of lipocalin-2, CXCL1 and CXCL9 in the liver with non-alcoholic steatohepatitis. 
BMC Gastroenterol 2013;13:120. [PubMed: 23875831] 

105. Zhang X, Shen J, Man K, et al. CXCL10 plays a key role as an inflammatory mediator and a 
non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol 2014;61:1365–75. [PubMed: 
25048951] 

106. Zhang X, Han J, Man K, et al. CXC chemokine receptor 3 promotes steatohepatitis in mice 
through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol 2016;64:160–
70. [PubMed: 26394162] 

107. Souza AL, Sousa-Pereira SR, Teixeira MM, et al. The role of chemokines in Schistosoma 
mansoni infection: insights from human disease and murine models. Mem Inst Oswaldo Cruz 
2006;101 Suppl 1:333–8. [PubMed: 17308793] 

108. Chuah C, Jones MK, Burke ML, et al. Cellular and chemokine-mediated regulation in 
schistosome-induced hepatic pathology. Trends Parasitol 2014;30:141–50. [PubMed: 24433721] 

109. Fahey S, Dempsey E, Long A. The role of chemokines in acute and chronic hepatitis C infection. 
Cell Mol Immunol 2014;11:25–40. [PubMed: 23954947] 

110. Negash AA, Ramos HJ, Crochet N, et al. IL-1β production through the NLRP3 inflammasome by 
hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS 
Pathog 2013;9:e1003330. [PubMed: 23633957] 

111. Bataller R, Paik YH, Lindquist JN, et al. Hepatitis C virus core and nonstructural proteins 
induce fibrogenic effects in hepatic stellate cells. Gastroenterology 2004;126:529–40. [PubMed: 
14762790] 

112. Nguyen N, de Esch C, Cameron B, et al. Positioning of leukocyte subsets in the portal and lobular 
compartments of hepatitis C virus-infected liver correlates with local chemokine expression. J 
Gastroenterol Hepatol 2014;29:860–9. [PubMed: 24236853] 

113. Butera D, Marukian S, Iwamaye AE, et al. Plasma chemokine levels correlate with the outcome 
of antiviral therapy in patients with hepatitis C. Blood 2005;106:1175–82. [PubMed: 15860662] 

114. Zeremski M, Shu MA, Brown Q, et al. Hepatitis C virus-specific T-cell immune responses in 
seronegative injection drug users. J Viral Hepat 2009;16:10–20. [PubMed: 18647233] 

Poulsen et al. Page 19

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



115. Tacke F, Zimmermann HW, Berres ML, et al. Serum chemokine receptor CXCR3 ligands are 
associated with progression, organ dysfunction and complications of chronic liver diseases. Liver 
Int 2011;31:840–9. [PubMed: 21645215] 

116. Larrubia JR, Calvino M, Benito S, et al. The role of CCR5/CXCR3 expressing CD8+ cells in liver 
damage and viral control during persistent hepatitis C virus infection. J Hepatol 2007;47:632–41. 
[PubMed: 17560677] 

117. Sahin H, Borkham-Kamphorst E, do O NT, et al. Proapoptotic effects of the chemokine, CXCL 
10 are mediated by the noncognate receptor TLR4 in hepatocytes. Hepatology 2013;57:797–805. 
[PubMed: 22996399] 

118. Berres ML, Trautwein C, Schmeding M, et al. Serum chemokine CXC ligand 10 (CXCL10) 
predicts fibrosis progression after liver transplantation for hepatitis C infection. Hepatology 
2011;53:596–603. [PubMed: 21274880] 

119. Zimmermann HW, Seidler S, Gassler N, et al. Interleukin-8 is activated in patients with chronic 
liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. 
PLoS One 2011;6:e21381. [PubMed: 21731723] 

120. Rehermann B Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. 
Nat Med 2013;19:859–68. [PubMed: 23836236] 

121. Eisenhardt M, Glässner A, Krämer B, et al. The CXCR3(+)CD56Bright phenotype characterizes a 
distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. 
PLoS One 2012;7:e38846. [PubMed: 22792160] 

122. Paust S, Gill HS, Wang BZ, et al. Critical role for the chemokine receptor CXCR6 in NK 
cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 2010;11:1127–35. 
[PubMed: 20972432] 

123. Tsuneyama K, Harada K, Yasoshima M, et al. Monocyte chemotactic protein-1, −2, and −3 are 
distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: implications 
for pathogenesis. J Pathol 2001;193:102–9. [PubMed: 11169522] 

124. Shimoda S, Harada K, Niiro H, et al. Biliary epithelial cells and primary biliary cirrhosis: the role 
of liver-infiltrating mononuclear cells. Hepatology 2008;47:958–65. [PubMed: 18181218] 

125. Omenetti A, Syn WK, Jung Y, et al. Repair-related activation of hedgehog signaling promotes 
cholangiocyte chemokine production. Hepatology 2009;50:518–27. [PubMed: 19575365] 

126. Abel S, Hundhausen C, Mentlein R, et al. The transmembrane CXC-chemokine ligand 16 
is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like 
metalloproteinase ADAM10. J Immunol 2004;172:6362–72. [PubMed: 15128827] 

127. Wehr A, Baeck C, Heymann F, et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell 
accumulation promotes inflammation and liver fibrosis. J Immunol 2013;190:5226–36. [PubMed: 
23596313] 

128. Mederacke I, Hsu CC, Troeger JS, et al. Fate tracing reveals hepatic stellate cells as dominant 
contributors to liver fibrosis independent of its aetiology. Nat Commun 2013;4:2823. [PubMed: 
24264436] 

129. Ramm GA. Chemokine (C-C motif) receptors in fibrogenesis and hepatic regeneration following 
acute and chronic liver disease. Hepatology 2009;50:1664–8. [PubMed: 19877298] 

130. Marra F Hepatic stellate cells and the regulation of liver inflammation. J Hepatol 1999;31:1120–
30. [PubMed: 10604588] 

131. Heinrichs D, Berres ML, Nellen A, et al. The chemokine CCL3 promotes experimental liver 
fibrosis in mice. PLoS One 2013;8:e66106. [PubMed: 23799074] 

132. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES 
to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003;285:G949–
58. [PubMed: 12829440] 

133. Hintermann E, Bayer M, Pfeilschifter JM, et al. CXCL10 promotes liver fibrosis by prevention 
of NK cell mediated hepatic stellate cell inactivation. J Autoimmun 2010;35:424–35. [PubMed: 
20932719] 

134. Wasmuth HE, Weiskirchen R. Pathogenesis of liver fibrosis: modulation of stellate cells by 
chemokines. Z Gastroenterol 2010;48:38–45. [PubMed: 20072995] 

Poulsen et al. Page 20

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



135. Sahin H, Borkham-Kamphorst E, Kuppe C, et al. Chemokine Cxcl9 attenuates liver fibrosis-
associated angiogenesis in mice. Hepatology 2012;55:1610–9. [PubMed: 22237831] 

136. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a 
CX3C motif. Nature 1997;385:640–4. [PubMed: 9024663] 

137. Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine 
receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997;91:521–30. 
[PubMed: 9390561] 

138. White GE, Greaves DR. Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. 
Arterioscler Thromb Vasc Biol 2012;32:589–94. [PubMed: 22247260] 

139. Karlmark KR, Zimmermann HW, Roderburg C, et al. The fractalkine receptor CX₃CR1 protects 
against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. 
Hepatology 2010;52:1769–82. [PubMed: 21038415] 

140. Imai T, Nagira M, Takagi S, et al. Selective recruitment of CCR4-bearing Th2 cells toward 
antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and 
macrophage-derived chemokine. Int Immunol 1999;11:81–8. [PubMed: 10050676] 

141. Andrew DP, Chang MS, McNinch J, et al. STCP-1 (MDC) CC chemokine acts specifically on 
chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 
cytokines IL-4 and IL-13. J Immunol 1998;161:5027–38. [PubMed: 9794440] 

142. Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming 
and Th1/Th2-mediated responses. Immunol Today 1998;19:568–74. [PubMed: 9864948] 

143. Sebastiani S, Allavena P, Albanesi C, et al. Chemokine receptor expression and function in CD4+ 
T lymphocytes with regulatory activity. J Immunol 2001;166:996–1002. [PubMed: 11145678] 

144. Müller M, Carter SL, Hofer MJ, et al. CXCR3 signaling reduces the severity of experimental 
autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and 
regulatory T cells in the central nervous system. J Immunol 2007;179:2774–86. [PubMed: 
17709491] 

145. Saeki C, Nakano M, Takahashi H, et al. Accumulation of functional regulatory T cells in actively 
inflamed liver in mouse dendritic cell-based autoimmune hepatic inflammation. Clin Immunol 
2010;135:156–66. [PubMed: 20080065] 

146. Harty MW, Muratore CS, Papa EF, et al. Neutrophil depletion blocks early collagen degradation 
in repairing cholestatic rat livers. Am J Pathol 2010;176:1271–81. [PubMed: 20110408] 

147. Thomas JA, Pope C, Wojtacha D, et al. Macrophage therapy for murine liver fibrosis recruits 
host effector cells improving fibrosis, regeneration, and function. Hepatology 2011;53:2003–15. 
[PubMed: 21433043] 

148. Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the 
recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc 
Natl Acad Sci U S A 2012;109:E3186–95. [PubMed: 23100531] 

149. Capucetti A, Albano F, Bonecchi R. Multiple Roles for Chemokines in Neutrophil Biology. Front 
Immunol 2020;11:1259. [PubMed: 32733442] 

Poulsen et al. Page 21

Dig Med Res. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Poulsen et al. Page 22

Ta
b

le
 1

T
he

 s
ea

rc
h 

st
ra

te
gy

 s
um

m
ar

y

It
em

s
Sp

ec
if

ic
at

io
n

D
at

e 
of

 s
ea

rc
h

Se
pt

em
be

r 
1,

 2
02

1

D
at

ab
as

es
 a

nd
 o

th
er

 s
ou

rc
es

 s
ea

rc
he

d
Pu

bM
ed

Se
ar

ch
 te

rm
s 

us
ed

“C
he

m
ok

in
es

” 
A

N
D

 “
L

iv
er

 F
ib

ro
si

s”

“C
he

m
ok

in
es

” 
A

N
D

 “
C

hr
on

ic
 L

iv
er

 D
is

ea
se

”

“C
he

m
ok

in
es

” 
A

N
D

 “
Fi

br
og

en
es

is
”

“I
nf

la
m

m
at

io
n”

 A
N

D
 “

L
iv

er
 F

ib
ro

si
s”

“I
nf

la
m

m
at

io
n”

 A
N

D
 “

L
iv

er
 D

is
ea

se
”

T
im

ef
ra

m
e

19
93

–2
02

1

In
cl

us
io

n 
an

d 
ex

cl
us

io
n 

cr
ite

ri
a

In
cl

us
io

n 
cr

ite
ri

a:
(I

) 
B

as
ic

 a
nd

 c
lin

ic
al

 s
tu

di
es

(I
I)

 E
ng

lis
h 

la
ng

ua
ge

(I
II

) 
Fu

ll 
te

xt
 a

va
ila

bl
e

Se
le

ct
io

n 
pr

oc
es

s
Se

le
ct

io
n 

by
 a

ll 
au

th
or

s

Dig Med Res. Author manuscript; available in PMC 2022 November 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Poulsen et al. Page 23

Ta
b

le
 2

A
 c

om
pr

eh
en

si
ve

 ta
bl

e 
of

 c
he

m
ok

in
es

, c
he

m
ok

in
es

 r
ec

ep
to

rs
, c

el
lu

la
r 

so
ur

ce
 a

nd
 ta

rg
et

s,
 a

s 
w

el
l a

s 
po

te
nt

ia
l r

ol
e(

s)
 in

 li
ve

r 
di

se
as

es
 a

nd
 li

ve
r 

fi
br

os
is

C
he

m
ok

in
e

C
om

m
on

 n
am

e
R

ec
ep

to
r

C
el

lu
la

r 
so

ur
ce

 in
 fi

br
os

is
Ta

rg
et

 c
el

ls
R

ol
e 

in
 li

ve
r 

di
se

as
e

C
C

L
1

I-
30

9,
 T

C
A

-3
C

C
R

8
B

E
C

s,
 L

SE
C

s
M

ac
ro

ph
ag

es
, m

on
oc

yt
es

Fi
br

os
is

C
C

L
2

M
C

P-
1

C
C

R
2

B
E

C
s,

 h
ep

at
oc

yt
es

, H
SC

s,
 K

up
ff

er
 c

el
l, 

m
ac

ro
ph

ag
es

, m
on

oc
yt

es
H

SC
s,

 m
ac

ro
ph

ag
es

, m
on

oc
yt

es
In

fl
am

m
at

io
n,

 f
ib

ro
si

s,
 A

L
D

, M
A

FL
D

, P
B

C

C
C

L
3

M
IP

-1
α

C
C

R
1,

 C
C

R
5

B
E

C
s

C
D

8 
T,

 N
K

, T
h1

H
C

V
, M

A
FL

D
, P

B
C

, f
ib

ro
si

s

C
C

L
4

M
IP

-1
β

C
C

R
1,

 C
C

R
5

B
E

C
s

C
D

8 
T,

 N
K

, T
h1

H
C

V
, M

A
FL

D
, P

B
C

, f
ib

ro
si

s

C
C

L
5

R
A

N
T

E
S

C
C

R
1,

 C
C

R
5

B
E

C
s,

 h
ep

at
oc

yt
es

, H
SC

s,
 K

up
ff

er
 c

el
l, 

m
ac

ro
ph

ag
es

, m
on

oc
yt

es
C

D
8 

T,
 H

SC
s,

 N
K

, T
h1

H
C

V
, M

A
FL

D
, P

B
C

, f
ib

ro
si

s

C
C

L
17

TA
R

C
C

C
R

4
–

T
re

gs
H

C
V

C
C

L
19

E
L

C
C

C
R

7
–

C
D

8 
T,

 D
C

s
H

C
V

C
C

L
20

M
IP

-3
α

C
C

R
6

B
E

C
s,

 h
ep

at
oc

yt
es

, H
SC

s,
 m

ac
ro

ph
ag

es
, 

m
on

oc
yt

es
gd

 T
, T

h1
7,

 H
SC

s
A

L
D

, f
ib

ro
si

s,
 H

C
V

C
C

L
21

SL
C

C
C

R
7

–
C

D
8 

T,
 D

C
s

H
C

V

C
C

L
22

M
D

C
C

C
R

4
–

T
re

gs
H

C
V

C
C

L
25

T
E

C
K

C
C

R
8

–
H

SC
s,

 m
ac

ro
ph

ag
es

, m
on

oc
yt

es
Fi

br
os

is

C
X

C
L

1
G

R
O

-α
C

X
C

R
2

H
ep

at
oc

yt
es

, K
up

ff
er

 c
el

l
N

eu
tr

op
hi

ls
, m

on
oc

yt
es

In
fl

am
m

at
io

n,
 A

L
D

, M
A

FL
D

C
X

C
L

2
G

R
O

-β
C

X
C

R
2

B
E

C
s,

 h
ep

at
oc

yt
es

N
eu

tr
op

hi
ls

, m
on

oc
yt

es
In

fl
am

m
at

io
n,

 A
L

D
, M

A
FL

D

C
X

C
L

5
E

N
A

-7
8

C
X

C
R

2
H

ep
at

oc
yt

es
N

eu
tr

op
hi

ls
A

L
D

, f
ib

ro
si

s

C
X

C
L

6
G

C
P-

2
C

X
C

R
1,

 C
X

C
R

2
H

ep
at

oc
yt

es
N

eu
tr

op
hi

ls
, m

on
oc

yt
es

A
L

D

C
X

C
L

8
IL

-8
C

X
C

R
1,

 C
X

C
R

2
H

ep
at

oc
yt

es
N

eu
tr

op
hi

ls
, m

on
oc

yt
es

In
fl

am
m

at
io

n,
 A

L
D

, M
A

FL
D

, P
B

C

C
X

C
L

9
M

IG
C

X
C

R
3

H
ep

at
oc

yt
es

, H
SC

s,
 L

SE
C

s
N

K
, T

h1
, T

h1
7

H
C

V
, f

ib
ro

si
s,

 P
B

C
, A

IH

C
X

C
L

10
IP

-1
0

C
X

C
R

3
H

ep
at

oc
yt

es
, H

SC
s,

 L
SE

C
s

N
K

, T
h1

, T
h1

7,
 H

SC
s

H
C

V
, M

A
FL

D
, f

ib
ro

si
s,

 P
B

C
, A

IH

C
X

C
L

11
I-

TA
C

C
X

C
R

3
H

ep
at

oc
yt

es
, L

SE
C

s
N

K
, T

h1
, T

h1
7

H
C

V
, f

ib
ro

si
s,

 A
IH

C
X

C
L

12
SD

F-
1

C
X

C
R

4,
 C

X
C

R
7

B
E

C
s,

 L
SE

C
s

H
SC

s,
 L

SE
C

s
Fi

br
os

is

C
X

C
L

13
B

C
A

-1
C

X
C

R
5

B
 c

el
ls

H
C

V

C
X

C
L

16
SR

PS
O

X
C

X
C

R
6

K
up

ff
er

 c
el

l, 
L

SE
C

s
N

K
T

 c
el

ls
H

C
V

, f
ib

ro
si

s 
(p

ro
 a

nd
 a

nt
i)

, A
IH

C
X

3C
L

1
FR

A
C

TA
L

K
IN

E
C

X
3C

R
1

H
ep

at
oc

yt
es

, H
SC

s,
 K

up
ff

er
 c

el
l

M
ac

ro
ph

ag
es

, m
on

oc
yt

es
H

C
V

, f
ib

ro
si

s 
(a

nt
i)

M
IF

N
/A

C
X

C
R

2,
 C

X
C

R
4,

 
C

X
C

R
7

B
E

C
s,

 h
ep

at
oc

yt
es

, m
ac

ro
ph

ag
es

, 
m

on
oc

yt
es

M
ac

ro
ph

ag
es

, m
on

oc
yt

es
, n

eu
tr

op
hi

ls
, N

K
T

 
ce

lls
A

L
D

, M
A

FL
D

, f
ib

ro
si

s 
(p

ro
 a

nd
 a

nt
i)

B
E

C
s,

 b
ili

ar
y 

ep
ith

el
ia

l c
el

ls
; L

SE
C

s,
 li

ve
r 

si
nu

so
id

al
 e

nd
ot

he
lia

l c
el

ls
; H

SC
s,

 h
ep

at
ic

 s
te

lla
te

 c
el

ls
; N

K
, n

at
ur

al
 k

ill
er

; T
re

g,
 r

eg
ul

at
or

y 
T

 c
el

l; 
D

C
s,

 d
en

dr
iti

c 
ce

lls
; N

K
T,

 n
at

ur
al

 k
ill

er
 T

; A
L

D
, 

al
co

ho
l-

as
so

ci
at

ed
 li

ve
r 

di
se

as
e;

 M
A

FL
D

, m
et

ab
ol

ic
-a

ss
oc

ia
te

d 
fa

tty
 li

ve
r 

di
se

as
e;

 P
B

C
, p

ri
m

ar
y 

bi
lia

ry
 c

ho
la

ng
iti

s;
 H

C
V

, h
ep

at
iti

s 
C

 v
ir

us
; A

IH
, a

ut
oi

m
m

un
e 

he
pa

tit
is

.

Dig Med Res. Author manuscript; available in PMC 2022 November 03.


	Abstract
	Introduction
	Methods
	Chemokine biology: structure and families
	Cell recruitment by chemokines in liver injury
	Monocytes and macrophages
	Neutrophils
	NK and NKT cells
	T lymphocytes
	Other granulocytes: mast cells and eosinophils

	Liver diseases associated with fibrosis
	Fatty liver diseases—ALD and MAFLD
	Infection-related hepatitis
	Hepatic autoimmunity

	Direct roles of chemokines in HSCs and fibrosis
	Chemokines and injury resolution in fibrosis
	Therapeutic targeting of chemokine axes in liver fibrosis
	Discussion/summary
	References
	Table 1
	Table 2

