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Abstract

Retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) using the Collection 5 (C005) algorithm provides large-scale (10 

× 10 km) estimates that can be used to predict surface layer concentrations of particulate matter 

with aerodynamic diameter smaller than 2.5 μm (PM2.5). However, these large-scale estimates are 

not suitable for identifying intraurban variability of surface PM2.5 concentrations during wildfire 

events when individual plumes impact populated areas. We demonstrate a method for providing 

high-resolution (2.5 km) kernel-smoothed estimates of AOD over California during the 2008 

northern California fires. The method uses high-resolution surface reflectance ratios of the 0.66 

and 2.12 μm channels, a locally derived aerosol optical model characteristic of fresh wildfire 

plumes, and a relaxed cloud filter. Results show that the AOD derived for the 2008 northern 

California fires outperformed the standard product in matching observed aerosol optical thickness 

at three coastal Aerosol Robotic Network sites and routinely explained more than 50% of the 

variance in hourly surface PM2.5 concentrations observed during the wildfires.

1. Introduction

A combination of drought conditions and a large number of lightning strikes started more 

than 1000 wildfires in northern California on 20–21 June 2008. These wildfires emitted 

significant amounts of smoke and had a dramatic impact on air quality throughout northern 

and central California over the next 2 months. The fires occurred in the mountainous 

areas that surround California’s Central Valley, including the Sierra Nevada Mountains, the 

Klamath Mountains, and the North Coast Range. Analysis of the fires indicated that between 

1.5 and 2 million acres were burned, producing approximately 540,000 to 725,000 t of 

primary particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) [Reid et 

al., 2009]. Meteorological conditions conducive to smoke accumulation led to unhealthful 

air quality and a large number of exceedances of the National Ambient Air Quality 
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Standards throughout the region [California Air Resources Board, 2012]. Metropolitan 

regions including Sacramento (population 2.5 million), Fresno (0.9 million), and the San 

Francisco Bay Area (7.5 million) were impacted by the smoke. During the 8 week event, 

meteorological conditions led to repeated multiday episodes of intense smoke separated 

by one or more relatively clean days. Forty monitoring sites recorded PM2.5 observations 

in central and northern California during the fire events. Hourly observations routinely 

exceeded 100 μg/m3 at monitoring sites on 23–27 June 2008 and 9–10 July 2008.

Phase modulation (PM) derived from biomass burning has been associated with a variety of 

health outcomes, including respiratory morbidity [Delfino et al., 2009; Künzli et al., 2006; 

Naeher et al., 2007; Schreuder et al., 2006; Sood et al., 2010], but public health impact 

assessments of large wildfire events are hampered by the paucity of air quality data. Unlike 

typical regional pollution episodes, wildfire events can produce distinct plumes of dense 

smoke with high PM2.5 concentrations (>200 μg/m3) within a few kilometers of areas where 

PM2.5 concentrations remain at background levels [Castanho et al., 2008; Wu et al., 2006]. 

For epidemiological studies to evaluate health effects associated with these wildfire events, 

the spatial and temporal distribution of PM2.5 concentrations in the smoke plumes must be 

accurately characterized.

Surface PM2.5 monitoring stations in central and northern California have limited spatial 

coverage, but satellite measurements of aerosol optical depth (AOD) have the potential to 

augment the surface monitoring network observations. The Moderate Resolution Imaging 

Spectrometer (MODIS) AOD data have been used in a variety of studies in recent years to 

estimate surface PM concentrations [e.g., Castanho et al., 2008; Engel-Cox et al., 2004a, 

2004b; Gupta et al., 2006; Liu et al., 2007; Oo et al., 2010; Wu et al., 2006]. Initial 

studies compared standard AOD products provided by the National Aeronautics and Space 

Administration (NASA) to surface concentrations over the eastern United States [Engel-Cox 

et al., 2004a, 2004b; Liu, 2004].

The standard MODIS Collection 5 AOD algorithm product provided by NASA is typically 

used to characterize global aerosol loading. Several aspects of the standard AOD product 

limit its usefulness for estimating surface PM2.5 concentrations during wildfire episodes. 

First, the standard AOD product is provided at relatively low spatial resolution (10 × 

10 km). Higher spatial resolution AOD is highly desirable for characterizing intraurban 

aerosol variability, as is preferable for epidemiological studies. Second, methods used by 

the standard AOD product algorithm underestimate the surface reflectance ratio between 

the visible and shortwave infrared channels in urban areas [Oo et al., 2010]. Because 

urban surface brightness is heterogeneous over short spatial scales, surface reflectance ratios 

must be produced at high resolution to avoid underpredicting surface brightness [Castanho 

et al., 2007, 2008; Li et al., 2005; Oo et al., 2010]. Underestimating surface brightness 

ratios results in significant overprediction of AOD retrieved from top-of-atmosphere (TOA) 

reflectance [Castanho et al., 2007]. This is especially problematic for areas of the western 

United States where dry surface conditions lead to bright surfaces [Engel-Cox et al., 2004a, 

2004b]. This contributes to the poor performance of MODIS AOD as a predictor of surface 

PM2.5 concentrations in the western United States under nonwildfire conditions [Engel-Cox 

et al., 2004a, 2004b; Green et al., 2009; Hu, 2009]. Third, the clean background aerosol 
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optical model currently used for the western United States in the standard AOD product 

algorithm is not appropriate for smoke events [Omar et al., 2005; Remer et al., 2009]. A 

biomass burning aerosol optical model is more representative of regional aerosol scattering 

and absorption properties during smoke events. Finally, the cloud mask algorithm used in 

the standard AOD product screens thick smoke plumes as clouds. It is necessary to relax the 

standard product cloud filters to retain valid smoky pixels that are typically screened in the 

standard AOD product.

We developed a high-resolution (2.5 × 2.5 km) AOD product capable of producing reliable 

estimates of surface PM2.5 concentrations during wildfire episodes. We combined methods 

pioneered by numerous other studies [Castanho et al., 2007; Drury et al., 2008; Omar 

et al., 2005; Oo et al., 2010; van Donkelaar et al., 2011] with our own modifications 

to account for the unique topography, geography, and aerosol characteristics of the 2008 

northern California fires. We utilize the native resolution (500 m in some channels) of the 

MODIS instrument and perform all processing on a 500 m resolution analysis grid. The 

final AOD values are then smoothed by using a trimmed mean over a 2.5 km kernel. This 

spatial smoothing is essential to reduce the influence of instrument noise on high-resolution 

estimates.

Our approach addresses important limitations of the standard AOD product by (1) 

developing high-resolution AOD capable of resolving distinct plumes of dense wildfire 

smoke, (2) developing high-resolution surface reflectance ratio maps to improve the 

characterization of surface brightness over urban areas, (3) relaxing the standard AOD 

product cloud mask to minimize false cloud detects in heavy aerosol, and (4) developing 

appropriate aerosol optical properties from biomass burning aerosol observed in California. 

This paper describes the methodology and its application to the 2008 northern California fire 

events. PM2.5 estimates for the 2008 fires are provided, along with potential implications for 

population exposure during the events.

2. Methods

To derive AOD at 0.55 μm (τ0.55) at high-spatial resolution over California during heavy 

smoke events, we employed a single-channel inversion following the method of Castanho et 

al. [2008]. The method used the observed TOA reflectance at 0.66 μm and sun-target-sensor 

angles, along with derived aerosol optical properties and surface reflectance at 0.66 μm. A 

cubic spline was used to fit a look-up table relating the 0.66 reflectance to AOD at 0.55 

μm for the given viewing conditions. All processing was performed on a 500 m resolution 

grid. Final AOD values were then smoothed by using a trimmed mean over a 2.5 km kernel. 

The Remer et al. [2009] cloud mask algorithm with relaxed screening criteria from van 

Donkelaar et al. [2011] was used to increase coverage of the AOD retrieval. The following 

subsections describe the key aspects of the MODIS data preparation and AOD processing 

algorithm. A schematic depiction of the method components is shown in Figure 1.

2.1. Data Acquisition and Preparation

Raw Level 1b MODIS radiance data and corresponding geolocation data from the Terra and 

Aqua satellites were obtained from the NASA Goddard Space Flight Center Level 1 and 
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Atmosphere Archive and Distribution System (http://ladsweb.nascom.nasa.gov/). Data from 

24 June to 31 July 2008 were acquired to cover the time period substantially impacted by 

the 2008 northern California wildfire outbreak. In addition, data from the same months of 

2009 were acquired to develop surface reflectance maps. Vegetation color was similar during 

the summers of 2008 and 2009, but atmospheric smoke loading was less prominent in 2009, 

providing additional clean atmosphere days for deriving surface reflectance values.

MODIS reflectance data contain atmospheric trace gas signals due to absorption by water 

vapor, ozone, and carbon dioxide. These signals must be removed prior to AOD estimation. 

Corrections for these gasses were applied to the raw Level 1b MODIS radiance data using 

the same correction methodology applied in the MOD04/MYD04 collection 5 L2 version 

2.0 aerosol algorithm [Remer et al., 2009].

Gas-corrected MODIS Level 1b reflectance data at the granule level were warped, subset, 

and spliced together to produce georeferenced images on a unified Universal Transverse 

Mercator analysis grid at 500 m resolution. These georeferenced images allowed for pixel-

level comparisons across days using standardized locations. The analysis grid covered 

most of California and included all regions impacted by the 2008 northern California 

wildfire outbreak. Solar and satellite angle data from their native 1 km resolution were also 

geoprocessed for the unified analysis grid to provide one-to-one correspondence between 

reflectance pixels and the sun-sensor angles. These daily gas-corrected MODIS reflectance 

data were the basis of subsequent analysis.

Water vapor and ozone data for the gas corrections were acquired from the Space Science 

and Engineering Center at the University of Wisconsin-Madison. Water vapor data were 

generated from the National Centers for Environmental Prediction 1° by 1° Global Data 

Assimilation System 6-hourly meteorological analysis [Derber et al., 1991], while column 

ozone data were generated from the National Atmospheric and Oceanic Administration 

Total Ozone Analysis using SBUV/2 and TOVS 1° by 1° daily global ozone analysis 

[Bhartia et al., 1996; Neuendorffer, 1996]. We used globally fixed CO2 optical depths 

prescribed in the MODIS Collection 5 operational AOD code. Data gaps were filled using 

climatology for first guess profiles.

2.2. Cloud Mask Relaxation

Identifying cloud-contaminated pixels is an important part of the AOD retrieval, since AOD 

inversion is not possible in the presence of clouds. The cloud mask algorithm implemented 

for MOD04 and MYD04 leaves residual cloud contamination, and masking clouds without 

masking heavy aerosol remains a difficult challenge [Remer et al., 2009]. We analyzed failed 

AOD retrievals over California from the MODIS AOD product and found they were often 

triggered by false cloud contamination, even in clean, cloudless conditions. We also found 

that the current cloud mask mistakes thick aerosol plumes for clouds, as did van Donkelaar 

et al. [2011].

The MODIS AOD product cloud mask is a combination of brightness and spatial variability 

tests at 0.47 and 1.38 μm, as described by Remer et al. [2009]. Van Donkelaar et al. [2011] 

relaxed this cloud mask algorithm to increase coverage of the AOD retrieval for studying 
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the 2010 Moscow, Russia, wildfire smoke events. We applied the same modifications to our 

cloud mask for this study of California wildfire smoke. First, the maximum allowed spatial 

variability of 0.47 μm was relaxed from 0.0025 to 0.005 to reduce the number of heavy 

aerosol pixels masked as cloud. Second, if the 0.47 μm threshold of 0.005 was exceeded but 

the 2.12 μm was less than 0.025, a pixel was classified as aerosol, as fine mode aerosol is 

transparent at 2.12 μm relative to cloud or dust [Kaufman and Fraser, 1997]. This relaxed 

cloud mask improved the coverage of our AOD retrievals for California wildfire events, 

while reducing spurious false cloud retrievals over highly textured land surfaces.

2.3. Surface Reflectance Ratio Adaptation

The determination of the aerosol contribution to TOA reflectance requires subtraction of the 

signal coming from surface reflectance. We derived the surface reflectance at 0.66 μm using 

the TOA reflectance at 2.13 μm and a 0.66/2.13 surface reflectance ratio (ξ0.66). As reported 

in Oo et al. [2010], we found that the method used by the MOD04 Collection 5 algorithm 

underestimates ξ0.66 in the urban areas of our domain, resulting in an overestimation of 

AOD. Therefore, we applied an approach developed by Drury et al. [2008] to calculate 

ξ0.66 over our study domain and season (June–July). On clean (i.e., low PM) days when the 

atmosphere is optically thin, nadir-scaled atmospheric reflectance varies linearly with AOD. 

This allowed us to use a linear equation of the form y = mx + b, where x is the 2.13 μm 

nadir-scaled reflectance and y is the 0.66 μm nadir-scaled reflectance. Under this approach, 

a scatterplot of y versus x for multiple days and view angles for the same location has a 

lower envelope with a slope (m) of ξ0.66. Details of the derivation are provided in Drury et 

al. [2008].

To determine ξ0.66 from the scatterplots, we first binned the 2.13 μm nadir-scaled 

reflectances (x) into sequential groups of five and retained the lowest two values in each bin. 

We then applied a reduced major axis regression on the remaining values to calculate the 

slope. Because our time period of interest (June–August 2008) was dominated by pervasive 

high-smoke aerosol loadings, we used MODIS data from the same season in 2009 to develop 

the scatterplots and derive surface reflectance ratios. Figure 2 shows a map of the derived 

ξ0.66 values. Our values range from 0.3 to near 1, with the lowest values occurring in 

areas of sparse vegetation and the highest values in coastal forests and the Sierra Nevada 

Mountains. The ξ0.66 of urban areas is between 0.65 and 0.9. The dynamic range of these 

values is greater than those used in the MOD04 Collection 5 algorithm.

2.4. Aerosol Optical Model Development

We localized the AOD algorithm by developing a set of aerosol optical properties using 

Aerosol Robotic Network (AERONET) [Holben et al., 1998] sun photometer measurements 

from 2003 to 2007 for five sites in California: La Jolla, University of California at Los 

Angeles, Santa Barbara, Table Mountain, and Fresno. AERONET provides retrievals of 

aerosol optical properties such as size distribution, complex index of refraction, single 

scattering albedo, and phase functions by inverting the sun photometer radiance data 

[Dubovik and King, 2000]. We used Level 2.0-validated AERONET data, which are cloud 

screened and quality controlled.
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We performed a cluster analysis on AERONET data from the five selected sites, following 

the method presented in Omar et al. [2005], to identify unique clusters of aerosol data. 

Aerosol optical properties from the five AERONET sites fell into two dominant and distinct 

clusters: aerosol typical of polluted air in California (called typical), and a biomass burning 

aerosol (called biomass).

Figure S1 in the supporting information shows a comparison of average aerosol size 

distributions from the California AERONET sites with the global aerosol models currently 

incorporated in MODIS standard aerosol products that most resemble California. In the 

global MODIS-processed data, the rural/background aerosol model is used for the entire 

western United States (“Omar Western”). The size distribution of the biomass aerosol from 

California is different from the size distribution in the Omar et al. biomass model. Compared 

to aged biomass aerosols, fresh biomass aerosols are dominated by smaller particles, and 

the days identified as biomass dominated in our California data generally included fresh 

emissions from nearby fires. Differences in size distributions between fresh and aged 

biomass aerosol have also been observed in Amazonia fires [Martins et al., 1998].

2.5. AOD Retrieval

AOD retrieval is based on the single-channel inversion method of Castanho et al. [2008]. 

A radiative transfer model (RTM) was used to precompute a look-up table (LUT) of 

relationships between TOA reflectance at 0.66 μm and AOD at 0.55 μm (τ0.55) for 

our AERONET-based aerosol models at a variety of sun-sensor geometries and surface 

reflectances (Table 1). For this work, the LUT was based on over 2 million simulations 

using the “Second Simulation of a Satellite Signal in the Solar Spectrum” (6S) RTM version 

1.1 [Kotchenova and Vermote, 2007; Kotchenova et al., 2006]. The 6S RTM is based on 

the method of successive orders of scattering approximations [Vermote et al., 1997] and 

includes polarization effects through calculation of the four Stokes vector components. It 

has been extensively tested, and it currently underlies the MODIS operational atmospheric 

correction algorithm [Vermote et al., 2002]. Our simulations assume homogeneous, 

Lambertian, and nonpolarizing surface reflectance. Aerosol size distribution and refractive 

indices from both aerosol models were provided as input for one-time executions of the 6S 

Mie scattering code, which produced extinction coefficients, asymmetry factors, and aerosol 

phase functions used by the bulk RTM simulations.

Figure 3 shows a family of relationships between τ0.55 and TOA reflectance produced by 

a series of 6S RTM simulations with different surface reflectances for a typical MODIS sun-

sensor geometry. These curves are consistent with theoretical considerations discussed by 

Fraser and Kaufman [1985]. For dark surfaces, aerosol loading increases TOA reflectance, 

and the relationship between τ0.55 and TOA reflectance is well defined. For extremely bright 

surfaces, aerosol loading reduces TOA reflectance, and the relationship between τ0.55 and 

TOA reflectance is well defined. For moderately bright surfaces near the critical reflectance, 

aerosol loading has little impact on TOA reflectance, and the relationship between τ0.55 

and TOA reflectance is poorly defined [Fraser and Kaufman, 1985; Kaufman, 1987]. AOD 

estimation over surfaces near the critical reflectance is therefore difficult, and several tests 

are applied in the AOD inversion process to catch these occurrences. Most urban surfaces 
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in our analysis area fall below the critical reflectance and are therefore dark enough for 

accurate AOD inversion over a large portion of the analysis grid.

AOD is determined using TOA reflectance at 2.12 and 0.66 μm and the surface reflectance 

ratio computed from our Drury et al. [2008] analysis. Assuming that fine mode aerosol 

is approximately transparent at 2.12 μm relative to cloud or dust [Kaufman et al., 2002; 

Kaufman and Fraser, 1997], the surface reflectance at 0.66 μm can be derived by scaling the 

TOA reflectance at 2.12 μm by the reflectance ratio [Drury et al., 2008]. For water surface 

pixels, we use a baseline surface reflectance of 0.002 instead of deriving it from reflectance 

ratios, which are only applicable over land. LUT data from the RTM are interpolated to the 

proper sun-sensor geometry and 0.66 μm surface reflectance to generate a curve of τ0.55 as 

a function of TOA reflectance. This τ0.55 curve is fit to a cubic spline to determine AOD 

for the satellite TOA reflectance. AOD retrievals were rejected from curve fits that produced 

correlation coefficients smaller than 0.96 or total squared residuals greater than 0.25, as poor 

fits usually indicate proximity to the critical reflectance. If the modeled TOA reflectance was 

not a monotonic function of τ0.55, AOD retrieval was not attempted. AOD retrieval was also 

not attempted for bright surfaces with 0.66 μm surface reflectance greater than 0.25, as these 

surfaces were usually near the critical reflectance. AOD retrieval values were capped at 10 to 

avoid extrapolation effects on an asymptotic surface.

AOD was corrected for elevation using the simple adjustment applied in the MODIS 

Collection 4 processing. The Rayleigh optical depth was modified using an exponential 

profile of the Earth’s atmosphere to account for differences at high elevations, since the 

RTM calculations assume a surface at sea level.

We applied a skewed mean smoothing to the raw 500 m AOD product to generate the final 

AOD product with an effective resolution of 2.5 km. At each 500 m pixel, we computed a 

trimmed mean of a 5 × 5 pixel averaging box (up to 25 AOD values) surrounding the center 

pixel, assigned the result to that center pixel, and added an offset of 0.15 to the resulting 

value. The 0.15 offset value was an empirically determined value used to reduce the number 

of negative pixels from the raw AOD output; we suspect that this correction was necessary 

to adjust for the surface PM2.5 in the Central Valley on “clean” summer days (24 h average 

PM2.5 of 10–15 μg/m3 for summer 2009) influencing our surface ξ0.66 values. The trimmed 

mean was computed by screening out the top 36% and bottom 12% of AOD values in 

the averaging box. These screening criteria were identified as the best for this study after 

performing several comparisons of trimmed and normal means obtained for 1 × 1, 3 × 3, 5 

× 5, and 7 × 7 resolutions. The skewed means reduced the number of high AOD outliers that 

badly impact the relationship between AOD and PM. A 5 × 5 averaging box was chosen as it 

was the smallest sample that produced stable statistical results. The highest possible spatial 

resolution was desirable to examine intraurban variability. This smoothing filters out almost 

half of the data from the AOD analysis, yet retains a higher fraction of raw data than in the 

operational MODIS land AOD algorithm, which discards at least 70% of the raw reflectance 

data prior to the 10 × 10 km AOD inversion.
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2.6. AOD Validation and PM2.5 Predictions

AOD values from both our high-resolution product and the standard Collection 5 AOD 

algorithm product were compared to AERONET sun photometer measurements obtained 

during June and July 2008. Data from three coastal AERONET sites in central and 

northern California—Trinidad Head, Monterey, and UCSB (University of California, Santa 

Barbara)—were available for comparison. The average of the Terra and Aqua AOD values 

corresponding to AERONET locations was compared to daily average AERONET AOT 

values for each available day during the study period; results are shown in Figure 4. The 

high-resolution AOD product has an R2 of 0.53 and a slope of 0.63; the standard AOD 

product has an R2 of 0.08 and a slope of 0.27. By both measures in this limited data set, 

the high-resolution AOD is better at matching observed AOT. Additional comparisons of 

the high resolution and standard AOD product at all PM measurement sites are shown in 

the supporting information Figure S2. The average of the Terra and Aqua AOD values for 

individual 2.5 km pixels corresponding to surface measurement locations was compared to 

PM2.5 concentrations averaged from 10:00 A.M. to 2:00 P.M. LST (local standard time), 

corresponding to the typical satellite overpass times. Linear regression models were created 

in two ways: day specific and site specific.

In the day-specific model, each day’s average 10:00 A.M. to 2:00 P.M. PM2.5 surface 

observations was regressed against the Terra and Aqua average AOD value for all sites 

within the domain to produce day-specific PM2.5–AOD relationships. Daily regressions 

where the coefficient of determination (R2) values was below 0.35 were replaced with the 

bulk fit regression slope of 0.015 AOD/μg/m3.

For the site-specific method, regression models were run for AOD against 10:00 A.M.to 

2:00 P.M. PM2.5 surface concentrations for each individual monitoring site across the June 

24 to July 31 period to produce site-specific PM2.5–AOD relationships. For both methods, 

intercepts were forced through zero to avoid giving undue influence to high AOD values 

where surface PM2.5 concentrations were low. Outlier observations, defined as being at 

least three standard deviations from the mean, were removed, and ordinary least squares 

regression was run on the “outlier-free” data to generate PM2.5-AOD relationships. AOD 

values below zero were set to a PM2.5 value of zero, while predicted PM2.5 concentrations 

were capped at 300 μg/m3, corresponding with the highest observed midday average surface 

PM2.5 concentration during the 2008 fires. No data were withheld because of the need to 

maximize sample size for regression.

Finally, AOD-predicted PM2.5 values were regressed against surface PM2.5 concentrations to 

determine the goodness of fit. Ordinary least squares regression was used, no outliers were 

removed, and nonzero intercepts were allowed.

3. Results

Figure 5 shows a representative panel plot comparing the visual images of the smoke 

event, the operational MOD04 Collection 5 AOD product, and our high-resolution AOD 

product on (top) 27 June 2008 and (bottom) 10 July 2008. Both AOD products are 

displayed on the same scale. AOD predictions from this work were much more highly 
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resolved than predictions from the operational AOD algorithm, and this higher resolution 

allows identifying fine-scale aerosol exposure differences that occur during events that 

impact urban areas. For example, on 27 June 2008, predicted AOD values differed widely 

over the Sacramento metropolitan area, yielding AOD values from 1.5 to over 5 in the 

high-resolution product while the standard operational product smoothed these values. The 

standard algorithm cloud mask routinely screened out the areas of thickest smoke, especially 

obvious in the 10 July 2008, image. Note that the high-resolution product did include AOD 

values in the 27 June 2008 image that is impacted by clouds along the coast and east of the 

Sierra Nevada Mountains due to the relaxed cloud screen criteria; this product also displays 

significantly more negative AOD values along the Sierra Nevada Mountains. Moreover, 

the bright rim of the Central Valley shows a higher AOD, particularly noticeable in the 

Aqua image near Modesto on 27 June 2008. More accurate characterization of the surface 

reflectance values along these areas would be expected to reduce the bias associated with the 

bright surface.

A scatterplot of PM2.5 surface concentrations from sites between 36.5° and 41° latitude 

compared to average daily AOD values is shown in Figure 6. Multiple monitoring sites 

vulnerable to erroneously high AOD values were excluded from this comparison, including 

four sites near the ocean or bay in the San Francisco Bay Area, a site in a deep canyon 

in Yosemite Valley, a site in the eastern Sierra Nevada Mountains near Owens Lake, a site 

within 500 m of Lake Almanor, and a single site in the Central Valley in Tracy, California. 

For sites near the lakes, ocean, and bay, sun glint off the water and occasional coastal fog 

events that were not cloud masked resulted in spuriously high AOD values. The Yosemite 

site is in a narrow valley surrounded by high granite walls; AOD values returned at this site 

were routinely negative. Finally, the Tracy, California site is on the dry and bright rim of the 

Central Valley. The brightness of this surface resulted in spuriously high AOD values.

The main population centers in northern and central California are Sacramento (metropolitan 

population of 2.7 million), the San Francisco Bay Area (metropolitan population of 

7.5 million, including San Jose), and Fresno (metropolitan population of 0.9 million). 

Comparing across all hourly monitoring PM2.5 stations from June 23 to July 31, the highest 

average observed surface concentrations (55 μg/m3) were measured at Chico (population 

87,000) in the northeastern portion of the Central Valley. The second highest average PM2.5 

concentrations (49 μg/m3) were measured at Willows (population approximately 6000) on 

the northwestern edge of the Central Valley. Multiple sites cover the Sacramento area, but 

Sacramento del Paso is the most centrally located; average PM2.5 concentrations at this site 

were 35 μg/m3, and concentrations at other Sacramento area sites were similar or lower 

during this period. Concentrations in the metropolitan San Francisco Bay Area were much 

lower, with average concentrations at sites in Berkeley and San Jose averaging 18 and 17 

μg/m3, respectively, during this period.

While the bulk of the surface PM2.5 and AOD data fall below 50 μg/m3 and an AOD of 0.75, 

there is a strong structure of high AOD and PM2.5 values well above 100 μg/m3, though the 

high AOD values do not always correspond with high PM2.5 and vice versa. This variability 

is highly dependent on day-specific overpass and PM2.5 values and can be explained by a 
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few specific physical phenomena associated with the California wildfires and topography, 

described in the discussion section.

A summary of regression fits using the day-specific model for all days is shown in Table 

2. Slope values were highly variable from day to day. Of the 38 days, 9 days had R2 

values greater than 0.5. Of the days where R2 values were less than 0.3, only 5 days had 

more than three sites where PM2.5 concentrations were above 50 μg/m3. In other words, 

when surface concentrations were not being affected by smoke from the fires, our method 

had no predictive power, as expected. Limiting the examination to the 18 days where at 

least three sites had midday average PM2.5 concentrations above 50 μg/m3, five had R2 

values below 0.2, four had R2 values between 0.2 and 0.5, and the remaining nine were 

all above 0.5. In other words, this method showed reasonable predictive capability for 

surface concentrations on approximately half of the days when smoke impacts were greatest. 

These results are relatively insensitive to the choice of aerosol optical model; California 

Typical optical model regressions gave very similar daily R2, slope, and intercept values. 

For comparison, day-specific regressions were also calculated using MOD04 Collection 5 

AOD. The R2 values for the MOD04-based regressions are also shown on Table 2. Table 

3 provides a summary comparison of average R2 values segregated by the number of 

surface sites exhibiting high PM2.5 values and therefore likely smoke impact. Neither AOD 

product is predictive on days with little smoke impact. As smoke impacts become more 

widespread, the AOD developed here exhibits higher R2 values. As aerosol load increases, 

surface characterization becomes less important in the AOD retrieval. The key differences 

that remain between the two methods during heavy smoke are the spatial resolution, aerosol 

optical properties, and the cloud mask.

Results of the site-specific regression model are shown in Table 4. Regression statistics 

at the site level have R2 values that range from 0.17 to 0.79 and average 0.46 with 11 

July included, and range from 0.17 to 0.82 and average 0.60 with 11 July excluded. The 

temporal regressions done on a site-specific basis have R2 values that are far higher and 

more consistent than the spatial regressions done on a day-specific basis.

Figure 7 shows time series of PM2.5 surface concentrations and midday average PM2.5 

predicted concentrations based on our high-resolution AOD product for four surface sites 

in Chico, Willows, downtown Sacramento, and downtown San Jose. Concentrations at 

the northernmost sites (Chico and Willows) were highly variable, with concentrations 

changing by over 100 μg/m3 within a few hours when major smoke plumes impacted the 

sites. Overall, the AOD-predicted PM2.5 concentrations track the midday concentrations 

relatively well at all of these sites, although there were multiple days when surface PM2.5 

concentrations were significantly overpredicted. For example, concentrations were slightly 

overpredicted at several sites in 25 June and greatly overpredicted at several sites in 8 and 

11 July (Figure 7). Inspection of visual images reveals thick plumes of smoke over most 

of the Central Valley on each of these days; the AOD predictions of surface PM2.5 are 

too high for some other reason. It is likely that vertical stratification of smoke from the 

high-elevation fires led to high column AOD that does not represent surface conditions. 

Buoyant smoke plumes emitted from high-elevation areas in the mountains may not mix 

down to the valley floor when winds are highest during frontal passages. Overall, though, 
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it is clear that the general shape of the episodes is captured well by this method and that 

predicted concentrations on many of the days of the episode are likely be representative of 

true exposures experienced during the events.

Given the general success of the method in reproducing general time series of midday 

PM2.5 concentrations at available surface monitoring sites during fire episode days when 

concentrations were elevated, we present a close-up of predicted PM2.5 concentrations 

for some of the key episode days in the Sacramento Valley when concentrations and 

potential exposures were highest. The panel plots in Figure 8 display the predicted PM2.5 

concentrations in 24 and 27 June, 9 and 10 July, and 23–26 July. These images demonstrate 

both the large PM2.5 impacts in the region and the spatial variability evident in the high-

resolution product.

4. Discussion

Previous attempts to predict surface PM2.5 concentrations over the western United States 

have found that MODIS AOD has poor correlation with 24 h average surface PM 

[Engel-Cox et al., 2004a, 2004b; Green et al., 2009; Hu, 2009]. Hu [2009] found that 

no sites in California had an annual average correlation coefficient greater than ~0.4; 

most monitors had regression coefficients between 0.1 and 0.2. Improved correlations of 

MODIS AOD with AERONET AOD measurements were shown by Drury et al. [2008] and 

Castanho et al. [2007] over the western United States and Mexico City, respectively, when 

surface reflectance ratios were improved. However, neither of these studies attempted to 

directly infer surface PM2.5 concentrations with their methods. Improvements to western 

U.S. surface PM predictions have been seen with the addition of Multiangle Imaging 

Spectroradiometer (MISR) multispectral AOD retrievals to account for particulate matter 

component optical properties, such as NO3 [Liu et al., 2007; van Donkelaar et al., 2010]. 

However, MISR observes any given section of our domain only about once every 9 days, 

yielding insufficient coverage during fire events to be useful for this purpose.

Additionally, a few previous studies have explored the possibility of providing a high-

resolution AOD product [Castanho et al., 2007, 2008; Li et al., 2005]. Castanho’s 

2007 study demonstrated the possibility of using the technique over Mexico City and 

demonstrated high correlations between 1.5 × 1.5 km AOD and sun photometers when 

surface reflectance ratios were corrected. Similarly, Li et al. [2005] demonstrated a 1 × 1 km 

MODIS AOD product and found that their product had predictive power for surface PM10 

measurements over 3 days (September 15–17) with R values of 0.86, 0.55, and 0.68, which 

correspond to R2 values of 0.70, 0.30, and 0.46, respectively.

Multiple factors were found to influence the final results. Of these, the ones that were found 

to have the most importance in terms of predicting PM2.5 concentrations at the surface 

included the vertical stratification of smoke, temporal variability in PM2.5 concentrations, 

surface reflectance ratio values, and differences in mixing heights within the study domain. 

The vertical stratification of smoke layers above the planetary boundary layer is the most 

important factor influencing individual day results for predicting PM2.5 concentrations. 

California’s Central Valley is a large basin with elevations ranging from a few meters above 
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sea level to 80 m above sea level. In contrast, elevations in the Sierra Nevada Mountains 

east of the valley are between 1500 and 2700 m and the North Coast mountain ranges west 

of the valley are typically above 300 m. Fires in both mountain ranges burned at elevations 

hundreds to thousands of meters above the valley floor. Buoyant smoke plumes from active 

fires can be lofted above the planetary boundary layer [e.g., Kahn et al., 2007,2008]. Val 

Martin et al. [2010] found that between 4% and 12% of the smoke plumes from the 

California fires were injected above the boundary layer, with the greatest heights occurring 

in June–July. Further, they found a positive relationship between plume heights and fire 

intensity, as measured by MODIS total fire radiative power. Given the combination of high 

elevations and intense fires, it is likely that some of the smoke from the fires was lofted 

above the Central Valley’s boundary layer or did not completely mix to the surface. Multiple 

observations of low PM2.5 concentrations at the surface and high AOD values produce poor 

correlations between surface PM2.5 and AOD on individual days. We believe that results for 

26 June, 8 July, 11 July, and 22 July show significant evidence of at least five sites where 

AOD values were high and surface PM2.5 concentrations were very low on both absolute and 

percentage bases. Each of these days also corresponds with a major frontal passage initiating 

or ending an episode of higher smoke concentrations. The high winds on these days may 

have caused incomplete mixing to the surface. Moreover, dense smoke can prevent radiative 

heating of the surface, thus leading to a more stable planetary boundary layer, lower mixing 

heights, and a further induction of vertical stratification of smoke from buoyant plumes 

[Stone et al., 2008].

Aerosol backscatter data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO) satellite can provide information on the vertical profile of smoke 

plumes when the satellite passes directly over the plume. Unfortunately, the narrow 

CALIPSO footprint precludes assessment on most days during the event. An overpass in 

9 July did pass through the domain. Figure 9 is the browse image of the 532 nm channel 

total attenuated backscatter from the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) instrument on board CALIPSO. This transect suggests that aerosol near the 

fires in the Sierra Nevada Mountains was injected to 5 km but was well mixed within 

the boundary layer by the time it reached the Sacramento Valley to the south. The gap in 

observed backscatter between the surface and the main plume at higher elevations may be 

evidence of decoupling between AOD and surface PM2.5, as suggested by the low PM2.5 

concentrations at the Chico site that day, but the gap may also be due to signal saturation.

Another factor that makes the prediction of PM2.5 surface concentrations complicated 

is the large variation in observed concentrations when plumes impact monitoring sites. 

Concentrations in the 5 h overpass window (10:00 A.M. to 2:00 P.M. LST) had standard 

deviations greater than 20 μg/m3 in approximately one out of every seven occurrences when 

the overpass mean was greater than 15 μg/m3. Some of this structure can be seen in the time 

series of PM2.5 concentrations in Figure 6. Similarly, the coefficient of variance (standard 

deviation divided by the mean) exceeded 0.4 more than 1 out of 6 times for the same subset 

of data. When 15% of the PM2.5 measurements have highly variable concentrations within a 

5 h window due to the effects of local smoke plumes, it is much more difficult to predict the 

domain average concentrations accurately with an average of two overpass snapshots of the 

local conditions.
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The accurate characterization of surface reflectance ratio values was problematic for some 

of the monitoring sites within the study domain. Our method used surface reflectance ratio 

values from 2009 to estimate what the values were during the 2008 fire season. We could 

not use 2008 because of the influence of the smoke and because California’s Central Valley 

spectral signature can change rapidly from green to brown during the summer dry season. 

A comparison of Central Valley temperature and precipitation patterns for 2009 and 2008 

indicated that 2009 patterns were generally similar, although slightly wetter in the spring. 

This may have resulted in underprediction of surface reflectance ratios for 2008, especially 

in areas free of irrigation or human landscaping (such as the brown ring around the valley 

seen in Figure 5). Sites along this ring would be most affected, and information from one 

site (Tracy) was so consistently poor that it was not used for the regression analysis. This 

surface reflectance ratio issue has been seen in the western United States and in urban areas 

in previous work [Castanho et al., 2007; Engel-Cox et al., 2004a, 2004b; Oo et al., 2010]. 

Errors in estimating surface reflectance ratios across the monitoring sites in the domain 

will result in more variable day-specific regression uncertainty, whereas the site-specific 

regressions will be systematically biased in a way that can be accounted for in the regression 

statistics.

Another potentially important issue with the method is differences in mixing heights within 

the study domain on individual days. Previous work has shown that mixing heights during 

the summer ozone season can vary dramatically across the Central Valley. During an ozone 

episode in early August 1990, mixing heights were determined to change by more than 

a factor of three within the valley, ranging from approximately 300 to 1200 m in height 

during the same day in different parts of the valley [Blumenthal et al., 1997]. Differences 

in mixing heights across the valley may be sufficient to introduce significant differences 

in predicted concentrations on individual episode days during a fire event. Also, these 

intravalley differences may be exacerbated by the smoke-albedo feedback, leading to even 

larger differences in mixing heights between the smoke-covered areas and those portions of 

the valley with less dense smoke. Thus, the goal of capturing differences in mixing heights 

that affect AOD-PM2.5 relationships on a daily basis may be somewhat confounded by the 

differences in mixing heights exhibited within the Central Valley.

Using an air quality model to help tie mixing height and aerosol properties to satellite data 

is a promising method for capturing daily differences [van Donkelaar et al., 2011]. However, 

the complex topography and meteorology would complicate model evaluation at the surface 

sites closest to the fires (e.g., Chico). Additionally, the resolution of the air quality model 

would need to be at a comparable spatial scale to the high-resolution AOD product created 

in this exercise. To our knowledge, no attempts have been made to link high-resolution 

satellite AOD products with high-resolution air quality model output.

5. Conclusions

We estimated midday surface-level PM2.5 concentrations during the 2008 Northern and 

Central California wildfires using a high-resolution MODIS AOD product. On days 

when PM2.5 concentrations were high and smoke was well mixed vertically, the high-

resolution AOD product routinely captured more than 50% of the variance in surface PM2.5 
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concentrations. On days with widespread smoke observed at ground-based monitors, the 

high-resolution AOD product was better correlated to PM2.5 than MOD04 Collection 5. 

However, it was also determined that spatial and vertical variability in PM2.5 concentrations 

from the smoke events resulted in very poor predictions of surface PM2.5 on some 

days. The temporal correlation of AOD and outlier-free PM2.5 at 26 sites showed strong 

relationships (mean R2= 0.60, 0.17 ≤R2 ≤ 0.82). On days when basic assumptions regarding 

vertical mixing of smoke are met, the high-resolution AOD product can be used to predict 

midday PM2.5 concentrations in cities at an effective resolution of 2.5 km, yielding useful 

information for epidemiological exposure studies for fire events. The three significant 

scientific advancements in this work are the ability to make PM2.5 concentration estimates 

from MODIS satellite data (1) with high-spatial resolution (2.5 km), (2) during wildfires, 

and (3) in areas with bright land surfaces (e.g., the western United States). Because the 

general population may receive their highest PM exposures of any given year during wildfire 

events, the development represents a significant improvement in characterizing exposure 

more accurately.
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Figure 1. 
Schematic of the algorithm components for creating a high-resolution AOD product.
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Figure 2. 
Average clean day surface reflectance ratios (ξ0.66) calculated using Terra satellite data 

from June to August 2009.
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Figure 3. 
TOA reflectance at 0.66 μm modeled by the 6S RTM as a function of aerosol optical depth 

at 0.55 μm for surface reflectances ranging from 0.04 to 0.40 using optical properties of the 

biomass burning aerosol for solar zenith of 12°, view zenith of 18°, and relative azimuth of 

132°.
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Figure 4. 
Comparison of AERONET daily average AOT from the UCSB, Monterey, and Trinidad 

Head to high-resolution product AOD (open diamonds) and standard MOD04 Collection 5 

AOD (open squares). The 1:1 line is also shown.
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Figure 5. 
Comparison of visible images and AOD products from this work (experimental AOD) and 

the standard operational algorithm (operational AOD) on 27 June 2008 (top) and on 10 July 

2008 (bottom).
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Figure 6. 
Comparison of 10:00 A.M. to 2:00 P.M. average PM2.5 concentrations (μg/m3) with average 

daily AOD values at surface monitoring sites in central and northern California from 24 June 

to 31 July 2008.
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Figure 7. 
Time series of surface PM2.5 concentrations (μg/m3)and predicted midday PM2.5 

concentrations based on kernel-smoothed 5 × 5 pixel comparisons at Chico (top left), 

Willows (top right), Sacramento del Paso (bottom left), and San Jose (bottom right). Note 

that the scale of PM2.5 concentrations changes for each time series, especially San Jose.
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Figure 8. 
Maps of predicted PM2.5 concentration (μg/m3) for key episode days based on Terra 

and Aqua averaged AOD. Blank pixels indicate that both satellite overpass values were 

invalidated or cloud screened.
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Figure 9. 
Annotated browse image of the 532 nm total attenuated backscatter from the CALIPSO 

satellite overpass on 9 July 2008. The red bars represent the approximate bounds of the 

study domain. The star and diamond between latitude 35.94 and 41.99 show the locations 

for Chico and Sacramento, respectively. Image source: Vaughan et al. [2004].
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