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The pervasiveness of viral infectious agents, capable of parasitizing living organisms all along

the evolutionary spectrum, has obligated hosts to evolve defense mechanisms that control viral

infection. Elucidation of host–pathogen interactions in model organisms has been fundamen-

tal to the translational understanding of human antiviral immunity. Lower organisms such as

unicellular prokaryotes and eukaryotes have been shown to act as viral hosts and, in many

cases, overcome infection via primitive immune mechanisms. The most widely studied exam-

ple of this is the CRISPR/Cas system—a restriction mechanism in bacteria and archaea against

highly specific viruses known as bacteriophages [1]. This seminal discovery has led to impor-

tant advances in genetic engineering and has increased interest in viruses that infect unicellular

organisms, notably those that are pathogenic to humans, and has led to an emerging role of

viruses in this triangular host–pathogen interaction [2].

ViralAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:infection of lower eukarya: Introduction to endosymbiotic

interactions

The first unicellular eukaryotic virus was discovered fortuitously in Entamoeba histolytica,

after several reports of viral-like particles in electron micrographs of protist ultrastructure

[2,3]. Since this discovery, a remarkable variety of viruses has been reported in all major sub-

groups of unicellular eukaryotic microorganisms [2].

Studies in lower organisms have been key to our current understanding of viral infectious

agents. The discovery of nucleocytoplasmic large double-stranded DNA viruses in the amoeba

Acanthamoeba, for example, shifted the definition of viral genomes to account for increased

complexity and genomic plasticity [4].

To enable their survival, pathogens have 2 effective options for infection: The first is to kill

their host and spread rapidly, while the second is to coexist within their host. This introduces

the novel concept that not all viruses are deleterious to their hosts [5,6]. In fact, many lower

eukaryotic viruses are recognized as endosymbionts, often either existing neutrally within

their host organisms or providing them with greater resistance to environmental stressors.

The mutualistic host–pathogen interaction between the eukaryotic cell and its virus can there-

fore provide an evolutionary advantage to both organisms, explaining in part the ubiquity of

such infections [6]. This mutualism can be illustrated by the yeast Saccharomyces cerevisiae,
which utilizes toxins of viral endosymbiotic origin to eliminate competing yeast colonies,

while being protected through competitive inhibition by its preprotoxin [7]. Thus, the yeast

gains a fitness advantage provided by the virus, while the virus can utilize translational
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machinery [6]. Similar instances of virus-enabled gain of function are omnipresent throughout

the biosphere, yet, many of these interactions remain uncharacterized.

Double-stranded RNA viruses of protozoan parasites: Drivers of pathology

The recent advancement of imaging, molecular, and sequencing technologies has enabled

researchers to systematically search for, then characterize, endogenous viruses or virus-like

particles in a wide array of unicellular protozoa (Table 1) [8]. This group of parasites is of par-

ticular interest as it encompasses several neglected tropical diseases, accounting for millions of

new infections, deaths, and disability-adjusted life years worldwide [9].

Cryptosporidium, for example, the causative agent of the severe parasitic diarrhoeal infec-

tion cryptosporidiosis, can be infected by a bi-segmented double-stranded RNA (dsRNA) viral

agent coined Cryspovirus (CspV1) that has been positively correlated to parasitic fecundity,

underscoring a potential role of the virus in the apicomplexan’s fitness [10].

Among viruses, Totiviridae seem to be of particular importance as it encompasses most

viral endosymbionts identified in pathogenic protozoa. This viral family has evolved signifi-

cant diversity, with closely related viruses identified in almost all genera of yeasts, fungi, and

protozoa studied [5]. This can be explained, in part, by their circumvention of a lytic infectious

phase, in favor of long-term symbiotic persistence [21]. Viruses of this family are non-envel-

oped and contain uncapped dsRNA genomes. Intriguingly, viral endosymbionts of the Totivir-
idae family have been associated to exacerbated pathology in the context of parasitic infection,

despite being noninfectious to mammalian hosts [21].

This phenomenon was first observed in Trichomonas vaginalis, the protozoon responsible

for the sexually transmitted infection trichomoniasis. Infection of the parasite with Trichomo-
nas vaginalis virus (TVV) has been shown to induce differential expression of parasitic viru-

lence factors, notably an increase of the major surface immunogenic virulence factor P270,

which aids in evasion of the host immune response [11,12]. TVV has also been reported to

induce mammalian host Toll-like receptor 3 (TLR3) proinflammatory signaling, causing

exacerbation of trichomoniasis lesions—associated to preterm birth and HIV susceptibility

Table 1. Viral endosymbionts of protozoa can affect parasitic pathogenesisAU : AbbreviationlistshavebeencompiledforthoseusedinTable1andFig1:Pleaseverifythatallentriesarecorrect:.

Protozoon Viral

endosymbiont

Virus type Impact on parasite Effect on parasitic

pathogenesis

Proposed mechanism of action

Cryptosporidium
spp.

Cryspovirus

(Csp1) [10]

Partitiviridae

(dsRNA)

Up-regulation of parasitic fecundity

[10].

Increase Unknown

Trichomonas
vaginalis

TVV [11] Totiviridae

(dsRNA)

Modulation of parasitic metabolism

and immunogenicity [12].

Increase Interaction with host TLR3 proinflammatory

signaling [13]

Leptomonas
seymouri

Lepsey NLV1

[14]

Narnaviridae

(ssRNA+)

Unknown Unknown Unknown

Phytomonas spp. PserNV1 [15] Narnaviridae

(ssRNA+)

Unknown Unknown Unknown

Giardia spp. GLV [16] Totiviridae

(dsRNA)

Unknown None Unknown

Leishmania
(Viannia)

LRV1 [17] Totiviridae

(dsRNA)

Modulation of parasitic metabolism,

virulence, and immunogenicity.

[18,19]

Increase Interaction with host TLR3 proinflammatory

signaling and modulation of the NLRP3

inflammasome. [17]

Leishmania
(Leishmania)

LRV2 [20] Totiviridae

(dsRNA)

Unknown Unknown Unknown

dsRNA, double-stranded RNA; GLV, Giardia lamblia virus; LRV1, Leishmania RNA virus 1; LRV2, Leishmania RNA virus 2; NLV1, narna-like virus 1; PserNV1, Pser

Narna virus 1; TLR3, Toll-like receptor 3; TVV, Trichomonas vaginalis virus.

https://doi.org/10.1371/journal.ppat.1010910.t001
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[12,13]. Another example of an infected protozoon is Giardia, which causes the parasitic diar-

rhoeal infection giardiasis and its virus, Giardia lamblia virus (GLV) [16]. Similarly, this inter-

action is persistent, yet no correlation to pathogenesis has been observed.

Flagellates of the Trypanosomatiadae family seem to be particularly affected by RNA viral

infection, with genetically diverse RNA viruses, including several Totiviridae, characterized in

Leptomonas seymouri, Phytomonas spp., and Leishmania spp., among others [8,22–24]. While

little remains known as to the impact of viral infection on other trypanosomatids, the interac-

tion between Leishmania RNA virus (LRV) and Leishmania is a flagrant and clinically relevant

example of effective mutualism and viral-driven parasitic pathogenicity [2].

Leishmania and Leishmania RNA virus: Viral infection and

hyperpathogenesis

The vector-borne infection leishmaniasis is caused by the intracellular protozoan Leishmania.

Characterized as a neglected tropical disease, this sandfly-transmitted infection can present

clinically in 3 distinct forms. While cutaneous leishmaniasis (CL) presents as self-limiting der-

mal lesions, parasites can metastasize to the mucosa, marking progression to the destructive

mucocutaneous (MCL) pathological form [25]. Along with the life-threatening and systemic

visceral leishmaniasis (VL), these account for an overall annual burden of about 2 million clini-

cal infections and 30,000 deaths [26].

The cytoplasmic viral endosymbiont LRV, of the Totiviridae family, has been identified as a

major driver of leishmaniasis severity and has been associated to progression of CL to MCL,

drug treatment failure, and disease relapse [27,28]. The virus is also suspected to contribute to

treatment resistance in Leishmania/HIV coinfection [2]. Leishmania RNA virus 1 (LRV1) is

frequently identified in species of the Viannia subgenus, in particular in Leishmania v. guya-
nensis strains endemic to the amazon [29]. This subgenus has highly conserved RNA interfer-

ence pathways, which was initially thought help establish a balance between viral replication

and RNAi-mediated silencing, maintaining viremia under a threshold that would be detrimen-

tal to the parasite. However, the more recent discovery of the closely related Leishmania RNA
virus 2 (LRV2) within the Leishmania Leishmania subgenera, which lacks functional Argo-

naute and Dicer, has brought this mechanism into question [27,29,30].

In the absence of its viral endosymbiont, Leishmania establishes infection and chronicity

through immunogenic silence. With tropism towards macrophages, neutrophils, and dendritic

cells, the parasite inhibits NLRP3 inflammasome activation within host cells—an important

component of the antiparasitic response [25]. Leishmania parasites have evolved multiple syn-

ergistic mechanisms for immune evasion via inflammasome inhibition. These include the up-

regulation of the host protein A20, which is involved in the inhibition of pro-IL-1β maturation

and negative regulation of NF-kB [31]. This will then hinder downstream activation of the IL-

1 receptor and the MyD88 adaptor protein, both necessary for triggering parasitotoxic oxida-

tive stress [19]. Other mechanisms include GP63-dependent cleavage of inflammasome com-

ponents and down-regulation of inflammasome gene transcription, such as caspase-1, which

all contribute to the modulation of the host’s antiparasitic response [17,19,32]. Thus, Leish-
mania can circumvent the host immune response long enough to establish a high parasitic

load, resulting in tissue damage and lesion progression [25]. In fact, leishmaniasis severity is

inversely correlated to inflammasome activation [17].

It follows that LRVs themselves can modulate this immune suppression, capable of damp-

ening inflammasome activation by inhibition of caspase-1 and IL-1β cleavage, while inducing

proinflammatory cytokines such as TNFα and IL-12 [17]. Intriguingly, LRVs can simulta-

neously act as strong innate immunogens, with activation of host endosomal TLR3 signaling
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in response to the viral dsRNA genome. This triggers TRIF-dependent signaling that contrib-

utes to inflammasome inhibition and production of type I IFN, leading to host cell autophagy

[17]. In addition, IFN-β production inhibits superoxide-related killing of Leishmania, thus

conferring additional fitness to the parasite [33]. Therefore, it is LRV that causes the hyperin-

flammatory phenotype and increased parasitic resistance that is a hallmark of MCL [34].

LRV transmission and extracellular vesicles: Novel insight into host–

pathogen interaction and mechanisms of infection

Extracellular transmission of Totiviridae is rare, previously only documented in GLV, with

other viruses in the family presumed to be solely transmitted vertically during host cellular

division [33]. Recently, however, it has been shown that the viral endosymbiont LRV1 can be

horizontally transmitted between Leishmania parasites of the Viannia subgenus via the para-

site’s endosomal sorting complex required for transport (ESCRT) or exosomal pathway [18].

Although utilization of different aspects of the host exosomal pathway had previously been

reported in mammalian viruses such as HIV, EBV, and HCV, this discovery is the first of its

kind within protozoa [18].

Exosomes are nanosized extracellular vesicles, containing biologically active macromole-

cules (RNA, proteins, lipids), and are constitutively produced by eukaryotic cells, primarily for

intercellular communication [35]. Leishmania exosomes themselves have been reported to

play an important role in parasitic virulence, notably via their enrichment in the major surface

metalloprotease GP63, which influences several key secondary messengers, contributing to

pathology via aforementioned signaling cascades [19,35].

In the context of LRV1 infection, the virus hijacks the parasite’s exosomal pathway to

become encapsulated within an extracellular vesicle, creating a viral envelope that protects the

virion from hostile extracellular environments, and enables rapid endocytic uptake by sur-

rounding parasites [25]. Strikingly, viruses shed from the parasite through non-exosomal path-

ways in the flagellar pocket lack this envelope and are unable to infect other parasites,

highlighting the key role of leishmanial exosomes in LRV1 pathogenesis [18] (summarized in

Fig 1).

While the natural host of LRV1 is Leishmania (Viannia) guyanensis, the exosome-envel-

oped virus can, in fact, infect and persist within the closely related species Leishmania (Vian-
nia) panamensis, while it is rapidly eliminated from the species Leishmania (Leishmania)
mexicana [18]. The infection of Leishmania v. panamensis therefore provides a model by

which the roles of the virus and the parasite can be untangled in the context of Leishmania/

LRV1 coinfection. In fact, LRV1-infected Leishmania panamensis was shown to induce greater

severity of lesions within a murine model, comparatively to its uninfected counterpart,

highlighting the role of the virus in leishmanial hyperpathogenesis [25]. Evidence that LRV1

infection modulates the leishmanial translational machinery, effectively hijacking ribosomes,

indicates that the virus may play a much more complex role in the parasite’s virulence and fit-

ness [18]. Additionally, this same study showed that LRV1-infected Leishmania v. panamensis
has the capacity to control the virus to undetectable levels over a 10-week time span, suggesting

primitive immune machinery [18].

Future directions in the study of Leishmania and Leishmania RNA virus
While little is currently known surrounding the evolution of complex antiviral immunity,

studying protozoa infected by viral endosymbionts may provide insight ancestral immune

mechanisms that enable viral control.
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Additionally, increasing treatment resistance for different leishmaniases underscores the

need for novel therapies and/or prophylaxis for parasitic infection. Considering the significant

burden of LRV-positive Leishmania isolates—up to 70% in certain endemic regions—along

the virus’ association to treatment failure, LRVs are an obvious target [36]. A significant

decrease in leishmaniasis lesion swelling and parasitic load following the immunization of

C57BL/6 mice with LRV1 capsid proteins indicates the potential to target a viral endosymbiont

to decrease parasitic hyperpathogenicity and generate protective immunity [36]. Thus, this

novel vaccine strategy should be further explored as it could potentially be adapted for other

Totiviridae of pathogenic protozoa.

Overall, investigation of viral endosymbionts of lower eukarya is of utmost clinical and bio-

logical importance in the field of infectious disease.
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