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Abstract

In this paper, we propose a portmanteau test for whether a graph-structured network data-

set without replicates exhibits autocorrelation across units connected by edges. Specifically,

the well known Ljung-Box test for serial autocorrelation of time series data is generalized to

the network setting using a specially derived central limit theorem for a weakly stationary

random field. The asymptotic distribution of the test statistic under the null hypothesis of no

autocorrelation is shown to be chi-squared, yielding a simple and easy-to-implement proce-

dure for testing graph-structured autocorrelation, including spatial and spatial-temporal

autocorrelation as special cases. Numerical simulations are carried out to demonstrate and

confirm the derived asymptotic results. Convergence is found to occur quickly depending on

the number of lags included in the test statistic, and a significant increase in statistical power

is also observed relative to some recently proposed permutation tests. An example applica-

tion is presented by fitting spatial autoregressive models to the distribution of COVID-19

cases across counties in New York state.

Introduction

Graphical network structures are sometimes encountered by scientists in which sampling

units can be regarded as vertices of a graph and units are possibly connected by edges. When

independent and identically distributed (i.i.d.) replicates are observed from the graph and

Gaussian assumptions are being made, the network structure can be inferred by studying the

precision matrix which is the inverse of a covariance matrix. However, in many applications,

replicates are unavailable and only one realization is observed on the network. A simple exam-

ple is time series data in which measurements are observed through time and the measure-

ments from two neighboring time units are connected. Typically, only a single measurement is

observed at each time point and this type of data is distinguished from longitudinal data with

replicates at each time point. The focus of this paper is on network data without replicates, and

we avoid making explicit comparisons with methods for network data with replicates that have

a vast literature. For a comprehensive discussion on graphical models with replicates, their
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applications and related statistical methods we refer the reader to [1, 2], while a background of

multivariate dependencies in the network setting may be found in [3].

In the case of networks representing spatial relations, spatial autocorrelation might be

observed in a variety of different disciplines from both the social and physical sciences. Specifi-

cally, it is common for measurements that are collected by researchers to display both serial

and spatial autocorrelations; observations of a given measurement unit tend to be correlated to

past measurements of that unit (serial autocorrelation) along with other closely related mea-

surement units (spatial autocorrelation). The latter type might refer directly to the geographic

proximity of two measurement units, but it could also refer to some other latent network struc-

ture. While an abundance of literature exists on testing for serial autocorrelation [4–8], com-

paratively few works consider the problems of testing spatial and network autocorrelation [9–

11]. In this paper, we consider the problem of autocorrelation in graphical structures; that is,

autocorrelation that exists in a network embedded in an undirected graph represented by ver-

tices and edges, for which both serial and spatial autocorrelation can be viewed as a special

case. It should be emphasized here that the network setting we explore is quite general; on one

hand, it can represent abstract relationships such as those observed between profiles on social

networking sites, and on the other hand, it can also represent a tangible spatial structure such

as states or counties that directly border each other. The framework we propose should there-

fore find practical use in both the social and physical sciences.

Tests of no autocorrelation have been studied for some specific network structures. For

time series data, Ljung and Box [12] proposed a test for serial autocorrelation which has a chi-

squared asymptotic distribution under the null hypothesis of no serial autocorrelation. In the

spatial statistics literature, non-parametric tests with test statistics based on Moran’s I coeffi-

cient are commonly used [13, 14], and this has also motivated researchers to investigate the

asymptotic distribution of Moran’s I [15–17]. In addition, some recent works have explored

non-parametric approaches to testing for spatial autocorrelation using alternative test statistics

[18–21]. However, non-parametric tests generally yield smaller power than their model-based

counterparts. There is also a growing recognition for the importance of accounting for net-

work correlation, and that network and spatial data share a similar structure. For instance, Lee

and Ogburn [22] used Moran’s I to test if the network data without replicates from the well

known Framingham heart study are correlated over social network ties and whether this may

lead to spurious associations if independence is assumed.

In this paper, we generalize the Ljung-Box test for serial autocorrelation to the network set-

ting. As in the traditional Ljung-Box test, the asymptotic distribution of our test statistic is

shown to be chi-squared with degrees of freedom equal to the number of lags that are included

in the test statistic. The proposed network framework also immediately yields tests for spatial

and spatial-temporal autocorrelation as special cases. We present comprehensive numerical

simulations showing the convergence of our test statistic to the limiting chi-squared distribu-

tion, and also compare its statistical power to both the traditional non-parametric test based

on Moran’s I and the non-parametric expected similarity and similarity entropy tests recently

proposed by Farber et al. [19]. Our results demonstrate that the proposed network Ljung-

Box test yields a significant improvement in terms of statistical power over that of Farber et al.

[19], and a marginal improvement compared to the test based on Moran’s I. An example appli-

cation is presented to county-level COVID-19 case figures in which we test whether the error

terms arising from fitting spatial autoregressive models still exhibit network autocorrelation,

which demonstrate the goodness-of-fit test of such models.

This paper is outlined as follows. First, we outline the notation and derive a central limit

theorem (CLT) for estimated autocovariances associated with a network represented by an

undirected graph. Second, we derive a network extension of the popular Ljung-Box test for

PLOS ONE Testing network autocorrelation without replicates

PLOS ONE | https://doi.org/10.1371/journal.pone.0275532 November 3, 2022 2 / 18

https://doi.org/10.1371/journal.pone.0275532


serial autocorrelation. A numerical study of the type-I error and power of the test statistic is

given to demonstrate the efficacy of the proposed test in relation to existing alternatives.

Third, an application of the test in practice is presented by fitting spatial autoregressive models

to COVID-19 case figures in New York counties. Finally, concluding remarks are given.

A network central limit theorem

In this section, the notation, problem setting and a CLT for estimated network autocorrelation

are presented. First, it should be emphasized that in order to parsimoniously model the net-

work autocorrelation of a dataset, it is necessary to impose some type of structure upon it.

Absent a certain network structure, a dataset consisting of N measurements would require the

estimation of N × N covariance terms which is unachievable unless there are large numbers of

replicates. The network structure we impose is represented by an undirected graph consisting

of vertices and edges and the asymptotic regime we study is to let the number of vertices to

grow to infinity, while having a single observation at each vertex. In the discussion that follows,

the edges of the graph are assumed to be non-weighted to facilitate discussion; however, an

extension to weighted graphs is readily available by suitably modifying the distance measure,

which is discussed later in this paper.

Let G = (V, E) be an infinite undirected graph representing an appropriate super-popula-

tion, in which V ¼ fvkgk2Z denotes the set of vertices and E is the set of edges. Suppose that for

each vertex vi 2 V, there is an associated random variable Xi of the form

Xi ¼ gið�i� s; s 2 ZÞ; i 2 Z ð1Þ

where �i, i 2 Z, are a countable collection of i.i.d. random variables; gið�Þ; i 2 Z, are measurable

functions which could relate to the graph structure such as the connections between vertices.

Note that all of the results presented in this paper are valid when the vertices are assumed to be

located within a d-dimensional space and such a setting is frequently adopted in spatial statis-

tics, but nevertheless the indices are defined to be one-dimensional for notational simplicity.

Meanwhile, a special form of (1) could be Xi = g(�i, �i−1, � � �), which means that in this case Xi

does not depend on future innovations. This special form includes a variety of widely used

time series models such as ARMA and GARCH processes and all the results in this paper are

still valid in corresponding time series frameworks. However, we are not restricted by the net-

work setting to a particular ordering and connection pattern between vertices. We define the

distance between two vertices vi and vj, denoted by d(vi, vj), as the shortest possible path

between them.

To obtain a well-defined CLT in the network setting, it is necessary to define how a

sequence of subgraphs fGn : n 2 Nþg converges to the infinite graph G. This is particularly

important since this setting is fundamentally different from the more commonly studied tem-

poral and spatial settings equipped with an endogenous distance measure such as the Euclid-

ean distance; in particular, the distance measure is not defined by the relative positions of the

vertices, but instead by the underlying network structure. In this way, the convergence target

should be known when studying the associated asymptotic statistics.

Assume that there is a sequence of subgraphs Gn ¼ ðVn;EnÞn2Nþ ! G such that Vn� V,

En� E and |Vn| = n. That is, the set Vn is a finite subset of V with n vertices, and all the edges

in the subgraph Gn are a part of those edges in E. Without loss of generality, the vertices in Vn

are labeled as vni , i 2 Z, and the associated random variables labeled as Xn
i , i 2 Z, with the dis-

tance dðvni ; v
n
j Þ defined as the shortest possible path between the vertices vni and vnj according to

the graph Gn = (Vn, En). Based on the distance of two vertices, we define the following sets of
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k-distance pairs

Un
k ≔ fði; jÞ : ðvni ; v

n
j Þ 2 Vn; i � j; dðvni ; v

n
j Þ ¼ kg :

The cardinality jUn
k j of the set Uk

n is used to denote the number of such pairs in Gn, with

jUn
0
j ¼ n. If two vertices do not share any direct or indirect connections, then their distance is

infinite. The corresponding set of k-distance pairs is denoted as Uk in G and by construction

we necessarily have Un
k ! Uk.

In order to construct a network extension of autocorrelation measures and the Ljung-

Box test statistic, it is first necessary to derive a suitable CLT for the term Snk defined by

Snk ≔
X

ði;jÞ2Un
k

XiXj: ð2Þ

While the terms in the sum might be dependent, the dependence structure is also different

from common well-known m-dependence sequences [23]. To account for this dependence

structure, a dependence measure is first introduced following the procedure carried out in

[24]. To this end, f�0j : j 2 Zg are defined as i.i.d. copies of the random variables f�j : j 2 Zg,

and the coupled version Xðl;�Þi of Xi is defined as

Xðl;�Þi ≔ gið�
ðl;�Þ
i� s ; s 2 ZÞ

where

�
ðl;�Þ
j ¼

(
�j; if j 6¼ l

�0l; if j ¼ l

and X�i ≔Xð0;�Þi . Dependence conditions of this type are quite general and can verified in many

cases [23, 25, 26].

Definition 1 (Physical Dependence Measure) For p 2 (0,1) and Xi 2 L
p
, the physical

dependence measure is defined as

dl;p≔ sup
i2Z
kXi � Xðl;�Þi kp; p � 1:

Notice that if the function g = gi does not depend on i, which means that all Xi; i 2 Z, have a

common transformation formula of f�i : i 2 Zg, a simple expression can be obtained for the

dependence measure as dl;p ¼ kXl � X�l kp for p� 1. In the following, for the convenience of

presentation, we adopt this simplified form so that g = gk for all k 2 Z, though the general

form (1) also fits well within the following framework.

Definition 2 (Stability) The random field fXi : i 2 Zg of the form (1) is said to be p-stable if
Dp≔

P
i2Zdi;p <1:

As argued in [24], an input-output system can be used to interpret Eq (1) in which the i.i.d.

sequence f�i; i 2 Zg is the input, fXi; i 2 Zg is the output and g is the underlying data generat-

ing mechanism. The data-generating structure (1) is convenient for exploring the theoretical

asymptotic analysis of nonlinear stationary processes with weak dependence. The physical
dependence measure then naturally measures the degree of nonlinear dependence of the out-

puts on the i.i.d. inputs, precisely, �0 in the current setting and a general subset of f�i; i 2 Zg,
by applying the idea of coupling.
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We further define the following sets:

Gn
k ≔ fi : vi 2 Vn such that 9vj 2 Vn; i � j; and dðvi; vjÞ ¼ kg

Gk ≔ fi : vi 2 V such that 9vj 2 V; i � j; and dðvi; vjÞ ¼ kg

Xn
i;k ≔ fj : i 2 Gn

k such that j � i; and dðvi; vjÞ ¼ kg

Xi;k ≔ fj : i 2 Gk such that j � i; and dðvi; vjÞ ¼ kg:

In the above definitions, the sets Gn
k and Γk represent the vertices in Vn and V, respectively,

that have at least one k-distance partner vertex. Correspondingly, the sets Xn
i;k and Xi,k denote

the sets of vertices that are k-distance apart from at least one vertex in Gn
k and Γk, respectively.

We impose a weakly stationarity assumption that for any (i, j)2Uk, the joint moments of their

associated random variables are the same up to the fourth order, and we denote μk = E(XiXj)

for (i, j)2Uk. With these definitions, following the approach of [27], a suitable CLT for the

term Snk given in (2) can now be established.

Proposition 3 Let fXi : i 2 Zg be a weakly stationary random field defined of the form (1)

over the vertices V. Suppose that the following conditions hold:

(i). D̂k≔
P

ði;jÞ2Uk

ðdi;4 þ dj;4Þ <1;

(ii). s2
n≔E½ðSnkÞ

2
� ! 1 as n!1;

(iii). jGn
k j ! 1 as n!1.

Then it follows that

L
Snk � mkffiffiffiffiffiffiffiffiffi
jUn

k j
p ;N 0;

s2
n

jUn
k j

� �" #

� ! 0 ð3Þ

as n!1, where Lð�; �Þ is the Levy distance, and N ð0; s2Þ is the normal distribution with mean
0 and variance σ2.

Corollary 4 Assume conditions (ii) and (iii) in Proposition 3 hold. If Xn
i;k ¼ Oð1Þ and

P
i2Zdi;4 <1, then the conclusion of Proposition 3 holds.
The conditions of Proposition 3 are trivially satisfied for the special case where Xi are i.i.

d. random variables with finite fourth moment since in this case we can take Xi to be exactly

�i. We can also see from Corollary 4 that when each vertex in V has a finite number of k-dis-

tance partners, then the requirements in Proposition 3 are significantly simplified since in

this case, we no longer need to consider the graph structure of G and the conditions solely

relate to the dependence structure of the random field X ¼ fXi; i 2 Zg. With a suitable CLT

derived, we are now ready to present the network extension of the traditional Ljung-

Box test.

A network Ljung-Box test

In the traditional Ljung-Box test of serial autocorrelation, the test statistic T(K) for a times

series dataset of size n is defined in terms of the serial autocorrelations up to lag K as

TðKÞ≔ nðnþ 2Þ
XK

k¼1

r̂2
k

n � k
ð4Þ

where r̂k is the sample autocorrelation at lag k = 1, 2, . . ., K. It is therefore necessary to define

analogous terms which measure the network autocorrelation of a dataset that is associated
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with a network structure. Without loss of generality, let Xi be centered and have mean 0, and

define the terms rn,k by

rk;n≔

P
ði;jÞ2Un

k
XiXj

P
ði;iÞ2Un

0
X2

i

: ð5Þ

The test statistic Q(K) for the network Ljung-Box test, similar in form to T(K), is then defined

as

QðKÞ ¼
XK

k¼1

nðnþ l � 1Þ

jUn
k j

r2

k;n ð6Þ

where λ > 0 is a constant such that Q(K) is asymptotically chi-squared under the null

hypothesis of no network autocorrelation, i.e., that Xi is identical to �i which are i.i.d. ran-

dom variables. In this case, we can show that λ = E[(Xi)
4]/E[(Xi)

2]2 > 0, where the traditional

Ljung-Box test statistic given in Eq (4) has λ = 3 as it is derived under the assumption of nor-

mally distributed random variables. Note that in the following results we assume λ is known

for simplicity. In reality it would need to be estimated, however the following results will

hold for any consistent estimator l̂ following suitable applications of Slutsky’s theorem to

the summands in Eq (6). Further, the traditional Ljung-Box test is often used for model diag-

nostics by testing the absence of residual autocorrelation, where model-based residuals are

used to compute the test statistics. Following the same approach as the traditional Ljung-

Box test, we will show that the asymptotic distribution of Q(K) is chi-squared with K degrees

of freedom. This is done by establishing the asymptotic normality of (5) after a suitable

rescaling; indeed, the CLT of Proposition 3 is designed specifically with the numerator of (5)

in mind. This gives rise to the following asymptotic result concerning the network

autocorrelations.

Theorem 5 Let fXi : i 2 Zg be i.i.d. centered random variables with finite fourth moment
associated with the graph G = (V, E). Suppose that for k = 1, 2, . . ., K, jUn

k j=n
2 ! 0 as n!1.

Then for k = 1, 2, . . ., K,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ l � 1Þ

jUn
k j

s

rk;n!
d N ð0; 1Þ ð7Þ

and

QðKÞ!d w2

K ð8Þ

as n!1.

In a fully connected graph where there is an edge between every pair of vertices,

jUn
k j ¼ Oðn2Þ. The requirement that jUn

k j ¼ oðn2Þ is mild in the sense that it still allows the

number of k-distance pairs to grow with n but only at a smaller rate than a fully connected

graph.

Two important yet straightforward extensions of the proposed network Ljung-Box test

should be mentioned. First, if the network represents a spatial setting, then it is possible to also

test for temporal autocorrelation by suitably defining the distance measure to include both

time and spatial components. The second extension relates to weighted graphs; in reality,

many networks are better described by weighted graphs so that the distance between two

connected vertices can be taken into account. An extension for weighted graphs is readily

available by use of binning, by applying a modified distance measure ~dðvi; vjÞ such that
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~dðvi; vjÞ ¼ k if lk� d(vi, vj)<lk+ 1, where 0 = l0 < l1 < . . .< lK, for appropriate bin values l0,

l1, . . ., lK. Each vertex pair can be again described by a discrete distance which nevertheless still

takes into account the weighted edges.

Numerical study of type-I error and power

In this section, we present some simulation results to study the performance of the proposed

test, and compare it to existing non-parametric tests for network autocorrelation. Since the

proposed network Ljung-Box test can detect both positive and negative network autocorrela-

tion, we consider two-tailed tests in the numerical studies.

We use the network structure from the immuno dataset from the R package igraphdata,

which is an undirected network of interactions in the immunoglobulin protein, as the underly-

ing network structure, and generate data based on that structure. In total, the immuno dataset

consists of 1, 316 vertices and 6, 300 edges. We generate a sequence of increasing subgraphs

from the same parent graph, i.e., the immuno dataset graph, so that the behavior observed

from increasing the number of vertices is not due to changes in the underlying network

structure.

Let GI denote the graph corresponding to the complete immuno dataset, and let AI denote

its corresponding 1316 × 1316 adjacency matrix. For a given sample size n, we then construct a

subgraph GI
n by taking the first n rows and columns of the adjacency matrix AI; the resulting

n × n submatrix AI
n is then defined as the adjacency matrix of the desired subgraph GI

n. By

repeating this procedure for different n, we obtain a sequence of subgraphs fGI
ngn. The sub-

graph GI
25

that is obtained using this procedure is given in Fig 1 as an example.

For a given subgraph, to study the null distribution, the set of associated random variables

Xi are independently generated from a standard normal N ð0; 1Þ distribution after the sub-

graph GI
n has been obtained. Simulations detailing convergence of the null distribution can be

found in S1 Appendix, which clearly shows convergence to the asymptotic chi-squared distri-

bution for K = 1, 2, 3, 4, 5, and we instead focus on the type-I error and statistical power of the

test in this section. Equivalently, consideration of the statistical power will also provide insights

into the type-II error rate. However, we note that convergence to the asymptotic distribution

occurs faster for smaller values of K, as shown in S8 Fig. To provide some context on the rough

number of K-distance interactions that these subgraphs generate, the immuno dataset with

n = 50 yields jU50
1
j ¼ 160, jU50

2
j ¼ 180, jU50

3
j ¼ 180, jU50

4
j ¼ 156, jU50

5
j ¼ 137 and

jU50
6
j ¼ 124.

We examine the statistical power and type-I error of the network Ljung-Box test, and com-

pare the results with three existing non-parametric tests. The first test is a two-tailed test based

on Moran’s I statistic, implemented using the moran.test function from the R package spdep,

which calculates the Moran’s I statistic for a given weight matrix W and returns a p-value

based on an estimated Z-score. More information on the test can be found in the online spdep

package documentation. We consider three different weight matrices: (i) W1 is the adjacency

matrix for the network; (ii) W2 has entries wð2Þij ¼ 1; 0:5 if vertices vi, vj are distances d(vi, vj) =

1, 2 apart, respectively, and wð2Þij ¼ 0 otherwise; and (iii) W3 has entries wð3Þij ¼ 1; 0:5; 0:25 if

vertices vi, vj are distances d(vi, vj) = 1, 2, 3 apart, respectively, and wð3Þij ¼ 0 otherwise. The

remaining two non-parametric tests considered are those based on expected similarity and

similarity entropy [19].

To numerically estimate the power and type-I error of each test, we generate random vari-

ables �j independently from a standard normal distribution, for j = 1, 2, . . ., n, and consider
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the transformed random variables

Xj ¼ �j þ b

P
k2Xj

�j

jXn
j j

ð9Þ

as our associated random variables, where Xn
j is the set of vertices in the immuno subgraph GI

n

that are neighbors of vertex j. Clearly, b = 0 corresponds to network independence, and

increasing (resp. decreasing) b leads to stronger positive (resp. negative) network autocorrela-

tion between the random variables defined by (9). For each n and b considered, we generate 5,

000 replications of the above sets of random variables and test for network autocorrelation

using network lags K = 1, 2, 3, 4 for the network Ljung-Box test that we propose, weight matri-

ces W1, W2 and W3 for the Moran’s I test, along with the expected similarity and similarity

entropy tests proposed by Farber et al. [19]. The tests are conducted at the 5% level of signifi-

cance, i.e., network independence is rejected if the resulting p-value is less than 0.05. The statis-

tical power and type-I error of each test is then estimated as the proportion of those 5, 000

generated samples that reject the null.

Although the expected similarity and similarity entropy tests are primarily designed for dis-

crete or categorical variables, Farber et al. [19] proposed it be extended to continuous variables

by binning according to certain quantiles. We therefore implement these non-parametric tests

by assigning labels to the random variables Xi according to which of the following bins they

belong to: [−1, −0.67), [−0.67, 0), [0, 0.67) and [0.67,1). Note that these bins were chosen so

as to correspond to the quantiles of the standard normal distribution. A similarity relation is

Fig 1. An example subgraph. The subgraph GI
25

obtained from the immuno dataset using the outlined adjacency

matrix procedure.

https://doi.org/10.1371/journal.pone.0275532.g001
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then defined on the network by saying two neighboring vertices are similar if their associated

random variables lie within the same bin, while the test statistics are the sample expected simi-

larity and the sample similarity entropy; readers are referred to [19] for details on these non-

parametric tests, test statistics, and the background discussion. Within each of the 5, 000

generated samples, the two-tailed p-values for the permutation tests are obtained using 1,000

permutation resamples.

To examine the type-I error, we set b = 0 so that there is no network autocorrelation in the

generated sets of associated random variables. The resulting type-I error rates for all tests are

summarized in Table 1 and shown in S1 Fig of the online supplementary material. For the net-

work Ljung-Box test, we find that the type-I error is close to 0.05 for K = 1, but increases non-

negligibly with the number of network lags K. However, as n increases, the type-I error

approaches 0.05 for even the higher order lags. Importantly, even for small n, the type-I error

is still reasonably close to the nominal value. As expected, the type-I error of the non-paramet-

ric tests are also close to 0.05 for all K and n.

We next investigate how the statistical power varies with both the number of vertices n and

the parameter b that controls the strength and sign of the network autocorrelation. First, we fix

b = 0.5 to investigate the case of positive network autocorrelation and calculate the statistical

power of each test for different values of n, as summarized in Table 2 and shown in S2 Fig of

Table 1. Type-I error rates. Type-I error rates of tests for different values of K and n.

Type-I Error (b = 0)

Moran’s I Farber et al. (2015) Network Ljung-Box Test

W1 W2 W3 Expected Similarity Similarity Entropy K = 1 K = 2 K = 3 K = 4

n = 25 0.051 0.049 0.047 0.045 0.050 0.049 0.059 0.069 0.074

n = 50 0.043 0.041 0.040 0.051 0.050 0.049 0.053 0.062 0.068

n = 75 0.050 0.049 0.049 0.047 0.049 0.050 0.054 0.061 0.070

n = 100 0.044 0.044 0.045 0.051 0.056 0.047 0.053 0.061 0.068

n = 125 0.051 0.047 0.048 0.050 0.058 0.048 0.055 0.060 0.066

n = 150 0.044 0.044 0.040 0.049 0.047 0.049 0.050 0.060 0.067

n = 175 0.044 0.043 0.039 0.049 0.049 0.043 0.054 0.058 0.063

n = 200 0.050 0.048 0.048 0.047 0.046 0.054 0.058 0.057 0.063

n = 225 0.046 0.051 0.047 0.054 0.051 0.051 0.053 0.056 0.063

n = 250 0.050 0.044 0.041 0.046 0.051 0.049 0.050 0.053 0.060

https://doi.org/10.1371/journal.pone.0275532.t001

Table 2. Statistical power for positive network autocorrelation. Statistical power of tests for different values of n and K with b = 0.5.

Statistical Power (b = 0.5)

Moran’s I Farber et al. (2015) Network Ljung-Box Test

W1 W2 W3 Expected Similarity Similarity Entropy K = 1 K = 2 K = 3 K = 4

n = 25 0.308 0.284 0.275 0.137 0.091 0.344 0.330 0.337 0.352

n = 50 0.464 0.394 0.394 0.204 0.129 0.508 0.471 0.469 0.472

n = 75 0.517 0.429 0.423 0.215 0.131 0.546 0.515 0.503 0.504

n = 100 0.579 0.449 0.437 0.233 0.151 0.615 0.578 0.558 0.555

n = 125 0.684 0.526 0.516 0.283 0.162 0.696 0.656 0.625 0.614

n = 150 0.745 0.598 0.565 0.329 0.176 0.775 0.725 0.696 0.688

n = 175 0.819 0.643 0.603 0.381 0.207 0.834 0.798 0.775 0.757

n = 200 0.835 0.672 0.628 0.403 0.230 0.853 0.816 0.793 0.781

n = 225 0.889 0.727 0.677 0.451 0.242 0.898 0.864 0.845 0.831

n = 250 0.917 0.769 0.723 0.502 0.272 0.926 0.899 0.884 0.868

https://doi.org/10.1371/journal.pone.0275532.t002
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the supplementary material. The statistical power of the network Ljung-Box test, for all lags

and for all values of n, is found to be significantly higher than both the expected similarity and

similarity entropy tests. Specifically, the powers of the network Ljung-Box test for the network

lags K = 1, 2, 3, 4 are between 0.330 and 0.344 for n = 25, compared to just 0.137 and 0.091 for

the expected similarity and similarity entropy tests, respectively. This gap in power is main-

tained, and indeed widens slightly, as we increase the number of vertices n. The network

Ljung-Box test with lag K = 1 also has higher power than the Moran’s I tests for all values of n,

though the difference is marginal when the weight matrix W1 is used; given the large discrep-

ancy in power between W1 and W2, W3, the performance of Moran’s I test appears more

dependent on the choice of weight matrix, whereas the network Ljung-Box test maintains high

power for multiple lags K. For small sizes of n there does not appear to be any marked differ-

ence in power across the values of K considered; however, as n increases, we observe that

smaller network lags K begin to demonstrate relatively higher power, with K = 1 and K = 4

yielding powers of 0.926 and 0.868 when n = 250, respectively. This discrepancy might be due

to the fact that the correlated random variables Xi defined by (9) depend directly only on their

immediate neighbors, and only indirectly on their K-distance neighbors for K> 1, so that

increasing the number of network lags does not meaningfully increase the information

included in the test statistic.

Equivalently, owing to the inverse relationship between power and type-II error, the results

in Table 2 show that the network Ljung-Box test with K = 1 has the lowest type-II error rate

among all of the tests considered. The reduction in type-II error is significant when compared

to the tests proposed in [19], but only marginal compared to Moran’s I with weight matrix W1.

We repeat the above simulation with b = −0.5 to separately investigate the case of negative

network autocorrelation. The results are summarized in Table 3 and shown in S3 Fig of the

supplementary material. We again find a significant increase in power compared to the

expected similarity and similarity entropy tests. For small n, this improvement in power is evi-

dent only for small network lags. However, this improvement in power increases significantly

as the numbers of vertices n is increased; for n = 250 the expected similarity and similarity

entropy tests have powers of just 0.346 and 0.163, respectively, while the network Ljung-

Box test with powers K = 1 and K = 4 have powers 0.974 and 0.719, respectively. While the net-

work Ljung-Box test with lag K = 1 again has higher power than the Moran’s I test for all values

of n, once again the improvement is marginal when using the weight matrix W1. As a result,

we conclude that while the proposed network Ljung-Box test does have higher power than the

Table 3. Statistical power for negative network autocorrelation. Statistical power of tests for different values of n and K with b = −0.5.

Statistical Power (b = −0.5)

Moran’s I Farber et al. (2015) Network Ljung-Box Test

W1 W2 W3 Expected Similarity Similarity Entropy K = 1 K = 2 K = 3 K = 4

n = 25 0.097 0.004 0.002 0.066 0.055 0.125 0.067 0.055 0.051

n = 50 0.259 0.044 0.036 0.114 0.072 0.316 0.149 0.091 0.069

n = 75 0.371 0.089 0.088 0.130 0.071 0.414 0.197 0.117 0.081

n = 100 0.502 0.126 0.122 0.145 0.081 0.522 0.286 0.179 0.114

n = 125 0.644 0.290 0.286 0.194 0.089 0.700 0.446 0.303 0.206

n = 150 0.764 0.435 0.418 0.225 0.111 0.801 0.566 0.405 0.287

n = 175 0.863 0.565 0.512 0.249 0.120 0.872 0.681 0.518 0.393

n = 200 0.890 0.649 0.575 0.271 0.124 0.907 0.768 0.620 0.487

n = 225 0.932 0.749 0.715 0.310 0.146 0.944 0.848 0.723 0.603

n = 250 0.966 0.848 0.828 0.346 0.163 0.974 0.917 0.824 0.719

https://doi.org/10.1371/journal.pone.0275532.t003
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widely used Moran’s I test for both positive and negative network autocorrelation, the

improvement appears marginal. On the other hand, the discrepancy in power between W1 and

W2, W3 again suggests that the Moran’s I test is sensitive to the choice of weight matrix,

whereas the network Ljung-Box test is comparatively more robust. For large n, larger network

lags K also yield a significant decrease in power. As in the preceding example with b = 0.5, we

note that the reduction in power as K increases might be caused by the fact that the trans-

formed variables Xi depend directly only on their immediate neighbors.

Similarly, Table 3 shows that when the network autocorrelation is negative, the network

Ljung-Box test with K = 1 again has the lowest type-II error rate. However, while there is a sub-

stantial reduction compared to the expected similarity and similarity entropy tests, the reduc-

tion is only marginal when compared to the Moran’s I test with weight matrix W1.

Next, to further understand how the statistical power changes with strength and sign of the

network autocorrelation, we fix n = 100 and vary the parameter b from −1.0 to 1.0. For each

value of b, the statistical power is estimated using the same simulation approach as outlined

above. The results are shown in Fig 2 and are summarized in Table 4. A striking asymmetry

between positive and negatives network autocorrelation is immediately evident. As we increase

b from 0 to 1.0, the power of the network Ljung-Box test increases significantly for small net-

work lags K, with all lags yielding significantly larger power than the expected similarity and

similarity entropy permutation tests. In contrast, as we decrease b from 0 to −1.0, the statistical

power again increases for all network lags K, but the difference widens markedly such that

smaller lags K yield noticeably higher statistical power. This asymmetry might be due in part

to the fact that under negative autocorrelation the network assumes a checkerboard pattern

with highly dissimilar values; the transitive nature of correlation would then lead even and odd

lags to tend to have opposite signs, such that including multiple lags effectively cancels each

other out in the test statistic. These results suggest that the choice of the number of network

lags K to include in the test statistic Q(K) might depend crucially on whether negative or

Fig 2. Statistical power vs. network autocorrelation. Statistical power of the network Ljung-Box test for network lags K = 1, 2, 3, 4

compared to expected similarity, similarity entropy and Moran’s I tests for n = 100 and −1.0� b� 1.0.

https://doi.org/10.1371/journal.pone.0275532.g002
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positive network autocorrelation is suspected; specifically, if negative autocorrelation is sus-

pected, then K should be kept small. Finally, we again find that the network Ljung-Box test

with lag K = 1 has marginally higher power than the Moran’s I test with weight matrix W1 for

most values of b.

The optimal choice of K will undoubtedly depend on the underlying correlation structure;

however, the results of this section do suggest a rule of thumb for choosing K. First, for all val-

ues of n considered, smaller values of K yielded higher power, for both positive and negative

network autocorrelation, and specifically K = 1 yielded the highest power. In addition, as dis-

cussed in S1 Appendix and shown in S8 Fig, convergence to the asymptotic chi-squared distri-

bution was faster for smaller values of K. Second, in the presence of negative network

autocorrelation, K = 1 performed significantly better than the other values of K considered.

Taken together, the results suggest that if little is known about the underlying correlation

structure, smaller values of K should be preferred, and specifically K = 1.

Although the network Ljung-Box test performed only marginally better than the Moran’s I
with weight matrix W1, we note there are several advantages to using the proposed test. First, it

is simple to implement and has a well-defined asymptotic null distribution, and this latter

point is particularly desirable for extremely large networks for which non-parametric random-

ization tests could be computationally intensive. Second, its relation to the well known Ljung-

Box test for serial autocorrelation provides a familiar framework for researchers. Third, as dis-

cussed in S1 Appendix, convergence to the asymptotic distribution occurred very quickly for

K = 1. Hence, the network Ljung-Box test could also be preferable for very small networks.

Finally, while our numerical results showed the performance of Moran’s I was sensitive to the

Table 4. Statistical power vs. network autocorrelation. Statistical power of tests for different values of b with n = 100.

Statistical Power (n = 100)

Moran’s I Farber et al. (2015) Network Ljung-Box Test

W1 W2 W3 Expected Similarity Similarity Entropy K = 1 K = 2 K = 3 K = 4

b = −1.0 0.990 0.778 0.854 0.361 0.174 0.992 0.952 0.851 0.721

b = −0.9 0.970 0.680 0.750 0.319 0.155 0.982 0.894 0.749 0.595

b = −0.8 0.922 0.526 0.587 0.283 0.136 0.950 0.783 0.608 0.461

b = −0.7 0.833 0.362 0.389 0.238 0.113 0.871 0.629 0.454 0.317

b = −0.6 0.677 0.228 0.234 0.192 0.097 0.720 0.453 0.296 0.202

b = −0.5 0.502 0.126 0.122 0.145 0.081 0.522 0.286 0.179 0.114

b = −0.4 0.314 0.068 0.059 0.112 0.069 0.335 0.163 0.099 0.066

b = −0.3 0.170 0.033 0.026 0.085 0.063 0.179 0.086 0.056 0.036

b = −0.2 0.089 0.018 0.014 0.067 0.058 0.086 0.042 0.035 0.027

b = −0.1 0.048 0.020 0.018 0.057 0.053 0.046 0.037 0.039 0.040

b = 0 0.044 0.044 0.045 0.051 0.056 0.047 0.053 0.061 0.068

b = 0.1 0.092 0.093 0.094 0.058 0.060 0.100 0.100 0.114 0.118

b = 0.2 0.176 0.162 0.156 0.080 0.069 0.197 0.187 0.197 0.205

b = 0.3 0.301 0.244 0.242 0.116 0.090 0.333 0.333 0.308 0.313

b = 0.4 0.437 0.345 0.337 0.169 0.119 0.477 0.443 0.440 0.438

b = 0.5 0.579 0.449 0.437 0.233 0.151 0.615 0.578 0.558 0.555

b = 0.6 0.702 0.546 0.530 0.316 0.186 0.739 0.700 0.679 0.665

b = 0.7 0.801 0.634 0.617 0.400 0.228 0.828 0.803 0.780 0.768

b = 0.8 0.874 0.708 0.693 0.486 0.277 0.893 0.877 0.858 0.849

b = 0.9 0.923 0.775 0.759 0.565 0.326 0.939 0.927 0.910 0.905

b = 1.0 0.954 0.827 0.812 0.643 0.364 0.962 0.960 0.947 0.941

https://doi.org/10.1371/journal.pone.0275532.t004
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choice of weight matrix, the network Ljung-Box test was comparatively more robust to the

choice of K, particularly in the presence of positive network autocorrelation. Hence, unless the

underlying correlation structure is known and strongly suggests a particular weight matrix be

used, the network Ljung-Box test might be a more reliable test than Moran’s I.

Example: Spatial autoregressive models for COVID-19 cases

In this section, we present an example application of the proposed network Ljung-Box test

to COVID-19 case figures using data downloaded from the COVID-19 Data Repository by

the Center for Systems Science and Engineering at Johns Hopkins University, which original

sourced the data from the New York State Department of Health. In particular, we apply the

test to examine the goodness-of-fit of spatial autoregressive models, by testing whether the

model-based residuals are autocorrelated. We fit spatial autoregressive models to the natural

logarithms of cumulative COVID-19 case figures of the 62 counties in New York state, as of

February 1st, 2021, and test whether the resulting residual terms exhibit any spatial autocor-

relation. The results are similar if we choose a different date after June 2020, when the epi-

demic has spread to the rural areas of the state. In the supplementary material, to

demonstrate the ease at which our test can be extended to include a temporal component,

we also fit spatial-temporal autoregressive models to the natural logarithms of monthly con-

firmed COVID-19 case figures of the 62 counties in New York state, over the period from

June 2020 to January 2021, and test for the presence of any residual spatial-temporal

correlation.

Let Ci denote the number of confirmed COVID-19 case numbers of county i, for i = 1,

2, . . ., 62. We construct a graph by connecting two counties with an edge if they directly border

each other. We also define the index sets Xi,k, for i = 1, 2, . . ., 62, as the set of counties that are

exactly k distance from county i, i.e., all counties j such that d(vi, vj) = k. Then the spatial AR(p)

model that we consider is defined by

log Ci ¼ aþ
Xp

l¼1

bl

P
j2Xi;l

logCj

jXi;lj
þ xi; i ¼ 1; 2; � � � ; 62; ð10Þ

where xi � N ð0; s2Þ are random noise terms and α, β1, . . ., βp> 0. Note that we apply a loga-

rithmic transformation to confirmed case numbers owing to the geometric nature of disease

transmission. Let TðlÞ ¼ ½tðlÞij � denote the matrix with elements defined by

tðlÞij ¼
1

jXi;lj
1fj 2 Xi;lg;

where 1{�} denotes the indicator function. Then the model (10) can be expressed in matrix

form as

~C ¼~a þ
Xp

l¼1

blT
ðlÞ~C þ~x; ð11Þ

where~C ¼ ½log C1; . . . ; log C62�
>

,~x � N ð0; s2I62Þ and~a ¼ ½a; . . . ; a�
>

. Then we have

~C ¼ ðI62 �
Xp

l¼1

blT
ðlÞÞ
� 1
ð~a þ~xÞ;

so that the likelihood is multivariate normal. Maximum likelihood estimates are obtained

numerically using the Nelder-Mead method.
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The fitted models are given in Table 5. We consider the spatial AR(0), AR(1), AR(2) and

AR(3) models in our analysis, where the AR(0) model, including only the parameter α, does

not attempt to account for spatial autocorrelation. Using the fitted models, the residual terms

are then reconstructed as

x̂ i ¼ log Ci � â �
Xp

l¼1

b̂ l

P
j2Xi;l

log Cj

jXi;lj
; i ¼ 1; 2; � � � ; 62:

The frequency distributions for the residual terms under each of the spatial autoregressive

models are given in S4–S7 Figs of the supplementary material. The sample mean of the error

terms under each case is approximately 0. A skew is clearly evident in the distribution of the

AR(0) random noise terms, while the random noise terms of the AR(1), AR(2) and AR(3)

models are approximately symmetric, albeit with a slight skew, and approximately bell-curve

shaped. We calculate the ratio l̂ ¼ �X4=ð �X2Þ
2
, where �X2 and �X4 are the sample second and

fourth moments, respectively. This gives l̂0 ¼ 2:75, l̂1 ¼ 2:96, l̂2 ¼ 3:12 and l̂3 ¼ 3:17 for

the spatial AR(0), AR(1), AR(2) and AR(3) models, respectively, which we use when calculat-

ing the test statistic Q(K) defined by (6). For the AR(1), AR(2) and AR(3) models, the approxi-

mately bell-curved histograms in S5–S7 Figs of the supplementary material, combined with l̂i

being close to 3, appears to validate the assumption of Gaussian errors.

We conduct the network Ljung-Box test on the reconstructed error terms for each of the

spatial autoregressive models, and consider the spatial lags K = 1, 2, 3, 4, 5, 6. The observed test

statistics and their corresponding p-values are given in Table 6. For the AR(0) model, we find

that the network Ljung-Box test strongly rejects the null hypothesis that the error terms are

spatially independent at the 5% significance level for all spatial lags K considered, and thus

conclude that spatial correlation indeed exists in county-level COVID-19 case figures. In other

words, counties within close geographic proximity experienced similar severity outbreaks, sug-

gesting that cross-county migration might have played a role, along with other shared factors

between neighboring counties. In contrast, for the AR(1), AR(2) and AR(3) models, we find

Table 5. Fitted spatial autoregressive models. Fitted spatial AR(p) models to logarithms of confirmed COVID-19 cases in New York counties.

Fitted Autoregressive Models

â b̂1 b̂2 b̂3
ŝ AIC

AR(0) 8.798 – – – 1.505 230.639

AR(1) 2.626 0.702 – – 1.029 194.531

AR(2) 1.902 0.497 0.289 – 1.022 193.556

AR(3) 1.027 0.457 0.084 0.348 0.991 191.841

https://doi.org/10.1371/journal.pone.0275532.t005

Table 6. Goodness-of-fit for fitted spatial autoregressive models. Obtained p-values for error terms of the spatial AR(0), AR(1), AR(2) and AR(3) models (n = 62).

AR(0) AR(1) AR(2) AR(3)

Spatial lags Q(K) p-value Q(K) p-value Q(K) p-value Q(K) p-value

K = 1 37.043 p< 0.001 0.706 0.401 0.095 0.758 0.006 0.938

K = 2 54.616 p< 0.001 0.738 0.691 2.120 0.347 0.551 0.759

K = 3 68.956 p< 0.001 4.290 0.232 5.601 0.133 1.171 0.760

K = 4 71.117 p< 0.001 4.423 0.352 5.625 0.229 1.179 0.882

K = 5 71.348 p< 0.001 4.456 0.486 5.639 0.343 1.450 0.919

K = 6 74.773 p< 0.001 4.505 0.609 5.670 0.461 1.728 0.943

https://doi.org/10.1371/journal.pone.0275532.t006
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that spatial independence is accepted at the 5% significance level for all lags K = 1, 2, 3, 4, 5, 6.

This suggests that spatial autocorrelation in the data no longer persists after fitting spatial auto-

regressive models; indeed, referring to the power analysis results given in Table 2, the simula-

tions showed a high statistical power for positive spatial autocorrelation b = 0.5 at n = 50,

suggesting that acceptance is not necessarily due to having a small sample size of 62 counties.

According to AIC, the best fitting model is found to be the AR(3) model, while the worst fit-

ting, unsurprisingly, is the AR(0) model that does not account for any spatial autocorrelation.

Conclusion

In this paper, we have outlined a simple portmanteau test for network autocorrelation sup-

ported by a derivation of the asymptotic distribution of the test statistic which turns out to be

chi-squared provided certain mild conditions hold. Detailed simulations are given using a real

network graph which both confirm the asymptotic distribution and also demonstrate the rate

of convergence. Specifically, we find that convergence is achieved faster for a smaller number

of network lags due to the assumption of asymptotic independence underpinning the test.

Power analysis simulations are also given which demonstrate a significant improvement in

power using the proposed network Ljung-Box test compared to the expected similarity and

similarity entropy tests proposed by Farber et al. [19], and also a higher power than the widely

used Moran’s I test, the performance of which depends critically on a chosen weight matrix.

This improvement in power is observed to hold across a wide variety of sample sizes, and for

varying degrees and signs of network autocorrelation. Interestingly, it is found that the statisti-

cal power of the network Ljung-Box test with a large number of network lags depends strongly

on the sign of the network autocorrelation, such that a small number of lags should be

included when negative autocorrelation is suspected. Nevertheless, the power simulations

demonstrate the network Ljung-Box test can achieve high power for both positive and negative

network autocorrelation. Two important yet straightforward extensions of the proposed test

are also discussed; namely, the inclusion of a temporal component and the application of the

network Ljung-Box test to weighted graphs. Finally, an example application of the test to

COVID-19 case figures is given, which shows that the fitted spatial autoregressive models are

able to adequately account for the effect of transmission due to population flow between neigh-

boring counties.
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S3 Fig. Statistical power for negative network autocorrelation. Statistical power of the net-

work Ljung-Box test for network lags K = 1, 2, 3, 4 compared to expected similarity, similarity

entropy and Moran’s I tests for fixed b = −0.5.
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S4 Fig. Distribution of noise for spatial AR(0) model. Density histograms of the error terms

for the spatial AR(0) model.

(TIFF)

S5 Fig. Distribution of noise for spatial AR(1) model. Density histograms of the error terms

for the spatial AR(1) model.

(TIFF)

S6 Fig. Distribution of noise for spatial AR(2) model. Density histograms of the error terms

for the spatial AR(2) model.

(TIFF)

S7 Fig. Distribution of noise for spatial AR(3) model. Density histograms of the error terms

for the spatial AR(3) model.

(TIFF)

S8 Fig. Convergence of Q(K) to the chi-squared w2
K distribution. The KS distances between

simulated distributions of Q(K) and the asymptotic chi-squared distribution for different val-

ues of n.

(TIFF)

S9 Fig. Noise distribution for AR(1, 1) model. Density histogram of the reconstructed error

terms for the spatial-temporal AR(1,1) model.

(TIFF)

S10 Fig. Noise distribution for AR(2, 1) model. Density histogram of the reconstructed error

terms for the spatial-temporal AR(2,1) model.

(TIFF)

S11 Fig. Volatility of AR(1,1) model. Monthly sample standard deviations of the recon-

structed error terms for the spatial-temporal AR(1,1) model.

(TIFF)

S12 Fig. Volatility of AR(2,1) model. Monthly sample standard deviations of the recon-

structed error terms for the spatial-temporal AR(2,1) model.

(TIFF)

S1 Table. Kolmogorov-Smirnov distances for simulated test statistic distributions. KS dis-

tances between simulated Q(K) and w2
K distributions for different values of n and K using the

immuno dataset.

(PDF)

S2 Table. Fitted spatial-temporal autoregressive models. Fitted spatial-temporal AR(p,1)

models to logarithms of confirmed COVID-19 cases in New York counties.

(PDF)

S3 Table. Obtained p-values for spatial-temporal independence. Obtained p-values for error

terms of the spatial-temporal AR(p,1) model (n = 434).

(PDF)
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