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Abstract

In many practical situations, there is an interest in modeling bounded random variables in the

interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continu-

ous models to deal with the uncertainty involved by variables of this type. This paper proposes

a new quantile regression model based on an alternative parameterization of the unit Burr XII

(UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score

functions and observed information matrices. We use the maximum likelihood method to esti-

mate the parameters of the regression model, and conduct a Monte Carlo study to evaluate

the performance of its estimates in samples of finite size. Furthermore, we present general

diagnostic analysis and model selection techniques for the regression model. We empirically

show its importance and flexibility through an application to an actual data set, in which the

dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use

a statistical learning method for comparing the proposed model with the beta, Kumaraswamy,

and unit-Weibull regressions. The results show that the UBXII regression provides the best fit

and the most accurate predictions. Therefore, it is a valuable alternative and competitive to

the well-known regressions for modeling double-bounded variables in the unit interval.

1 Introduction

University dropout is a problem with academic, social, and economic implications due to the

high cost it inflicts on the students, their families, universities, and the country’s growth [1].

Thus, it is necessary to extract relevant information to enable higher education institutions

(HEIs) to understand this phenomenon and minimize the dropout proportion of their courses.

In that idea, several authors studied how aspects of the organizational structure of universities

affect student outcomes. See [2, 3], for instance. However, it is essential to look at appropriate
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classes of regressions to model the dropout proportion, such as those based on distributions

that lie on the standard unit interval.

The Beta [4] and Kumaraswamy [5, 6] regressions are the most widely used for modeling

unit outcomes. The beta regression is useful to understand the influence of covariates on the

response’s mean. The Kumaraswamy is the classical alternative to the beta and allows modeling

the quantile of a response in the unit interval. However, the search for alternative unit regres-

sions has attracted many researchers’ attention, especially those based on quantile approaches.

For example, [7] introduced the unit-Weibull quantile regression. [8, 9] proposed the unit Burr

XII and reflected unit Burr XII, respectively. Other quantile regressions were introduced by

[10, 11], and [12]. One may also see [13–16] for unit regressions applied to educational mea-

surements. These authors focus on comparing indicators from different countries, including

educational attainment percentage, and school living conditions. However, to the author’s

knowledge, there is still a lack of information concerning the phenomenon of student dropout.

Under the above information, the goal of this paper is to propose a new alternative for unit

quantile regression applied to the dropout proportion of undergraduate courses. We use an

approach based on the unit Burr XII (UBXII) distribution, which was pioneered [8] by apply-

ing the transformation method in a Burr XII (BXII) random variable. Their choice was based

on the versatility of the baseline, which has been applied in reliability analysis [17], regression

modeling [18], generalized distributions [19, 20], and several other disciplines. Let Y be a unit

random variable having the UBXII distribution. The cumulative distribution function (cdf)

and probability density function (pdf) of Y are

FYðy; c; dÞ ¼ ð1þ logc y� 1Þ
� d
; 0 < y < 1; ð1Þ

and

fYðy; c; dÞ ¼ c d y� 1logc� 1 y� 1ð1þ logc y� 1Þ
� ðdþ1Þ

; ð2Þ

respectively, where c> 0 and d> 0 are shape parameters. The quantile function (qf) of Y fol-

lows by inverting Eq (1), namely

QYðtÞ ¼ exp ½ � ðt� 1=d � 1Þ
1=c
�; 0 < t < 1: ð3Þ

Henceforth, if Y is a random variable with pdf (2), we write Y*UBXII (c, d). For c = 1, the

UBXII distribution reduces to the unit Lomax distribution [21]. By taking d = 1, it is a special

case of the unit log-logistic distribution [22]. Those models recently appeared in the literature,

and the unit Lomax has not been studied in a regression context.

Our proposal is based on new reparametrization on Y by inverting its quantile function. We

provide at least four motivations for this work. First, we propose a new reparametrization on Y
and derive some useful statistical quantities that were not explored by [8]. Our investigation

includes the computation of the score function and observed information matrix for distribu-

tion and also for the regression. Second, we consider a regression structure for the new quantile

parameterby assuming that it can be expressed as a function of covariates and, hence, a more

general class of regressions is obtained. The third motivation is to use a statistical learning tool

for comparing the prediction performance of non-nested models and selecting the most suit-

able for the data at hand. The fourth motivation is referring to the usefulness of the new regres-

sion for modeling the dropout proportion of undergraduate courses. The motivating data set

concern to Brazilian undergraduate animal science courses. This course has received attention

in the literature; see, for instance, [23], who sought to identify demographic variables as well as

their relation to students’ performance and interest areas, and factors associated with enroll-

ment in an introductory animal sciences course.
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The rest of paper is outlined as follows. Section 2 proposes an alternative quantile parame-

terization for the UBXII distribution and investigates some of its mathematical and statistical

properties. We obtain the maximum likelihood of the parameters in Section 3. We provide a

simulation study in Section 4 to evaluate the performance of the estimators. In Section 5, we

define a quantile regression model based on the new parameterization of the UBXII distribu-

tion. In addition, we discuss the estimation of the parameters, present some diagnostic analysis

methods and regression selection criteria, and conduct simulation studies. In special, we pres-

ent a statistical learning tool (cross-validation approach) to compare non-nested regressions.

In Section 6, we perform an application of the new regression to dropout in Brazilian under-

graduate animal sciences courses. We offer some conclusions in Section 7. Finally, we provide

the observed matrix for the new distribution and Fisher’s observed information matrix, and

information about data’s extraction used in application; see S1 Appendix and Supporting

Information, respectively.

2 A new UBXII parametrization

Distributions with direct interpretation parameters are desirable in empirical applications, and

for this purpose, several authors have adopted reparameterizations on well-known distribu-

tions; see [4, 7, 24, 25]. These reparameterizations generally seek to allow modeling of the ran-

dom variable’s mean, as in the [4]; and [25] proposal. However, the mean is an outlier-

sensitive measure, and the UBXII distribution does not have a closed-form expression for it.

Thus, modeling the quantiles is an interesting approach for asymmetric data because they can

be outlier-resistant measures [24], besides being a smart alternative since the qf of Y (3) has a

closed-form, and any quantile can be computed in explicit form. Further, one of the parame-

ters of the UBXII distribution (under a quantile-parameterization) can be interpreted as the

τth quantile of Y. Thus, we shall reparameterize Eq (1) in terms of the τth quantile q = QY(τ).

By inverting (3) and solving for d, we have

d ¼ log t� 1=logð1þ logc q� 1Þ: ð4Þ

By replacing (4) in Eqs (1) and (2), the cdf and pdf of the UBXII distribution (under this

parametrization) have the forms

FYðy; q; cÞ ¼ ð1þ logc y� 1Þ
log t=logð1þlogc q� 1Þ

; 0 < y < 1; ð5Þ

and

fYðy; q; cÞ ¼
log t� clogc� 1 y� 1

y logð1þ logc q� 1Þ
ð1þ logc y� 1Þ

log t=logð1þlogc q� 1Þ� 1
; ð6Þ

respectively. Henceforth, we denote a random variable with density (6) by Y* UBXII (c, q).

Some UBXII densities (for τ = 0.5) are displayed in Fig 1, which reveal different shapes such

as decreasing, increasing, reverse J-shaped, U-shaped, reverse tilde-shaped (decreasing-

increasing-decreasing), non-skewed, and skewed-left. It is noteworthy that the UBXII density

can accommodate several skew-left shapes and has a reverse tilde-shaped, which is not pre-

sented by classical unit distributions.

The qf of Y on the new parameterization has the form

QYðuÞ ¼ expf� ½ulogð1þlogc q� 1Þ=log t � 1�
1=c
g; 0 < t < 1: ð7Þ

So, the UBXII quantiles can be obtained from (7) by setting u values. Further, we can gener-

ate occurrences for this distribution using (7) by the inversion method.
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Alternatively, the flexibility of the new distribution can be displayed from the Bowley skew-

ness and Moors kurtosis formulas, namely

B ¼
QYð3=4Þ � 2QYð1=2Þ þ QYð1=4Þ

QYð3=4Þ � QYð1=4Þ

and

M ¼
QYð7=8Þ � QYð5=8Þ þ QYð3=8Þ � QYð1=8Þ

QYð3=4Þ � Qyð1=4Þ
;

respectively, where QY(�) is the qf given by (7). These measures provide a simple way to figure

out the skewness and tail shapes of the distribution. Fig 2 displays plots for both measures B
and M which show that they are sensible to variations of c and q for fixed τ = 0.5.

Fig 1. Plots of the UBXII density (with τ = 0.5).

https://doi.org/10.1371/journal.pone.0276695.g001
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3 Estimation

Various methods can be used to estimate the parameters of a distribution. The maximum like-

lihood (ML) method is the most commonly used. In what follows, we shall use this method for

estimating the parameters of the UBXII distribution.

Let y1, . . ., yn be a random sample of size n from the UBXII distribution, the parameter vec-

tor θ = (c, q)>, and a known τ 2 (0, 1) specified. Based on this sample, the log-likelihood func-

tion for θ, ℓ(θ;y)� ℓ(θ), has the form

‘ðθÞ ¼ n logðlogt� cÞ � n logflog½tðqÞ�g �
Xn

i¼1

log yi þ ðc � 1Þ
Xn

i¼1

logðlog y� 1

i Þ

� 1þ
log t� 1

log½tðqÞ�

� �
Xn

i¼1

log½tðyiÞ�;

ð8Þ

where t(x) = 1 + logc x−1.

Eq (8) can be maximized either directly by using well-known plataforms such as the R
(optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or by solv-

ing the nonlinear likelihood equations from the differentiation of ℓ(θ). By maximizing (8), we

obtain the MLE θ̂ of θ.

Graphically, it is possible to show local maxima of the log-likelihood function (θ̂) and that

it is unimodal. Plots that illustrate this are constructed in four steps. First, we simulate data

from UBXII(c, d), where c = 1.5 and d = 3.4 with n = 100. Second, we evaluate the log-likeli-

hood function obtained from the pdf of Eq (2) in a range covering the respective ML estimate,

that is, c 2 (0, 9) for d fixed at 3.4. After, the same is done for d 2 (0, 9) by fixing c at 1.5.

Finally, we plot the log-likelihood function against the values range of the parameters c and d.

Fig 3 displays the plots obtained. As expected, both log-likelihood functions are unimodal and

their maxima points (ML estimates) are achieved on the true values of c and d, respectively.

Fig 2. The Bowley skewness and Moors kurtosis of the UBXII distribution.

https://doi.org/10.1371/journal.pone.0276695.g002

PLOS ONE Another unit Burr XII quantile regression model

PLOS ONE | https://doi.org/10.1371/journal.pone.0276695 November 3, 2022 5 / 25

https://doi.org/10.1371/journal.pone.0276695.g002
https://doi.org/10.1371/journal.pone.0276695


The components of the score vector from Eq (8) are U(θ) = [Uc(θ), Uq(θ)]>, where Uc(θ) =

@ℓ(θ)/@c and Uq(θ) = @ℓ(θ)/@q. Setting these components to zero and solving them simulta-

neously gives θ̂. The score components are

UcðθÞ ¼
n
c
þ
Xn

i¼1

logðlog y� 1

i Þ �
n logðlog q� 1Þ½tðqÞ � 1�

tðqÞ log½tðqÞ�
�
Xn

i¼1

½tðyiÞ � 1� logðlog y� 1
i Þ

tðyiÞ

�
log t� 1 log½tðqÞ�

log2
½tðqÞ�

Xn

i¼1

½tðyiÞ�
� 1
½tðyiÞ � 1� logðlog y� 1

i Þ

þ
logt� 1½tðqÞ � 1� logðlog q� 1Þ

tðqÞlog2
½tðqÞ�

Xn

i¼1

log½tðyiÞ�;

and

UqðθÞ ¼
n c logc� 1 q� 1

q tðqÞ log½tðqÞ�
�
log t� c logc� 1 q� 1

q tðqÞ log2
½tðqÞ�

Xn

i¼1

log½tðyiÞ�:

The MLE of θ can not be expressed in closed-form by setting UðθÞjθ¼θ̂ ¼ 0. However, for

fixed c, we note that a MLE semi-closed form of q follows by taking UqðθÞjq¼q̂ ¼ 0. Hence, it is

Fig 3. Plots of the log-likelihood function against the parameters c and d.

https://doi.org/10.1371/journal.pone.0276695.g003
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the solution of

q̂ðcÞ ¼ exp � exp
1

n
log t� 1

Xn

i¼1

log½tðyiÞ�

" #

� 1

( )1=c
0

@

1

A:

By replacing q by q̂ðcÞ in Eq (8), we obtain the profile log-likelihood function

‘ðcÞ ¼ � n þ n logðlog t� cÞ �
Xn

i¼1

log yi �
Xn

i¼1

log½tðyiÞ� þ ðc � 1Þ
Xn

i¼1

logðlog y� 1

i Þ

� n log
1

n
log t� 1

Xn

i¼1

log½tðyiÞ�

( )

:

ð9Þ

We can compute the score function for c from (9)

UcðcÞ ¼
n
c
þ
Xn

i¼1

logðlog y� 1

i Þ �
Xn

i¼1

½tðyiÞ � 1� logðlog y� 1
i Þ

tðyiÞ
�

n
Pn

i¼1

½tðyiÞ � 1� logðlog y� 1
i Þ

tðyiÞPn
i¼1

log½tðyiÞ�
:

However, it is necessary to use a nonlinear optimization method to maximize numerically the

profile log-likelihood function (9). Typically for the numerical computation of the MLEs, the

quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is

adopted.

Approximate confidence intervals and hypothesis tests for θ can be constructed by consid-

ering its asymptotic distribution of the MLEs. For large samples, θ̂ � N ð0; I� 1ðθÞÞ approxi-

mately assuming that standard regularity conditions (SRCs) hold, where I(θ) is the expected

information matrix defined by

IðθÞ ¼ IE �
@‘ðθÞ
@θ

@‘ðθÞ
@θ>

� �

:

The computation of I(θ) may be cumbersome. Nevertheless, when the SRCs are valid, it fol-

lows that IðθÞ ¼ IE[J(θ)], where J(θ) = −@2 ℓ(θ)/@θ@θ> is the observed information matrix. For

the UBXII distribution, we can write J(θ) as

JðθÞ ¼ �
UccðθÞ UcqðθÞ

UqcðθÞ UqqðθÞ

" #

;

where Ucc(θ) = @2 ℓ(θ)/@c2, Uqq(θ) = @2 ℓ(θ)/@q2, and Ucq(θ) = @2 ℓ(θ)/(@c@q) = Uqc(θ). The ele-

ments of the matrix J(θ) are given in S1 Appendix.

[26] proved that the estimated observed information matrix Jðθ̂Þ is a consistent estimator

of I(θ) when the sample size is large. It is then possible to obtain the standard errors (SEs) of

the MLEs by computing the square roots of the diagonal elements of Jðθ̂Þ� 1
. For instance, we

can do large sample inference by building asymptotic confidence intervals with 100%(1 − α)

nominal coverage for θ making θ̂ � z1� a=2SEðθ̂Þ, where z1−α/2 is the 1 − α/2 standard normal

quantile.

4 Simulation study

A Monte Carlo simulation study is carried out in the R programming language to evaluate the

performance of the MLEs of the UBXII parameters that index the distribution. The Optim
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routine (with BFGS quasi-Newton nonlinear optimization algorithm and analytical derivative)

is used for maximizing (9). The profile log-likelihood function involves a more straightforward

numerical maximization than using (8) since it depends only on the parameter c. We start the

root-finding algorithm using c = 1 for the shape parameter.

Different values for the parameter vector θ are considered according to those presented in

Fig 1. Therefore, various combinations of skewness and kurtosis coefficients and density

shapes are contemplated. A total of six scenarios is considered for the sample size n 2 {25, 75,

150, 300}. The inversion method is employed for generating observations, i.e., the qf (7) is eval-

uated in u � Uð0; 1Þ, being QY(u) = y and, hence, a sample of size n from Y*UBXII (c, q) is

generated. Each one of the sample sizes is replicated R = 10, 000 times. We compute quantities

as percentage relative bias (RB%) and root mean squared error (RMSE) of the MLEs.

Table 1 reports results from the simulation schemes. As expected, the consistency property

of the MLEs holds, i.e., the RMSEs tend to decrease when the sample size increases. Also, it

can be noted that the RB%s are smaller for sample size higher, thus indicating that the overall

performance of the MLEs is appropriate, as well as they are more accurate and less biased

when n increases. Notice that the biggest RB%s for ĉ and q̂ are less than 7.38 and 1.62, respec-

tively, even with n = 25. In general, the estimate q̂ is more accurate when compared with ĉ. In

the scenarios two to six, all the RB%s of q̂ are below of 0.84 in absolute value.

Table 1. RB%s and RMSEs from the UBXII distribution.

Scenario c q n RB% RMSE

ĉ q̂ðĉÞ ĉ q̂ðĉÞ

1 1.5 0.3 25 7.3773 1.6170 0.3682 0.0751

75 2.3671 0.8954 0.1823 0.0440

150 1.1971 0.5372 0.1251 0.0310

300 0.6399 0.3746 0.0872 0.0225

2 0.9 0.7 25 5.1296 −0.8436 0.1598 0.0758

75 1.6937 −0.2415 0.0845 0.0434

150 0.7708 −0.1126 0.0585 0.0311

300 0.4013 −0.0741 0.0409 0.0221

3 1.1 0.4 25 6.3920 0.6669 0.2370 0.0967

75 2.1153 0.6017 0.1216 0.0569

150 1.1037 0.3580 0.0833 0.0402

300 0.6429 0.3446 0.0583 0.0290

4 2.0 0.4 25 6.0735 0.2902 0.4203 0.0541

75 1.9732 0.1424 0.2169 0.0313

150 0.8997 0.0865 0.1496 0.0224

300 0.4774 0.0212 0.1049 0.0159

5 1.7 0.6 25 5.0479 −0.1864 0.2940 0.0481

75 1.6641 −0.0366 0.1555 0.0276

150 0.7552 −0.0085 0.1075 0.0198

300 0.3920 −0.0157 0.0755 0.0140

6 3.5 0.5 25 5.0270 0.0122 0.5975 0.0262

75 1.6559 0.0203 0.3157 0.0150

150 0.7520 0.0171 0.2182 0.0108

300 0.3894 0.0012 0.1532 0.0076

https://doi.org/10.1371/journal.pone.0276695.t001
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Fig 4 displays boxplots from the first 100 Monte Carlo replications (to favor easy viewing)

of the eight current scenarios. We can note that, in most cases, the presence of outliers overes-

timates the estimates for small sample sizes. However, this fact is attenuated when n increases.

Besides, the dispersion of the estimates decreases, and the precision is achieved for larger sam-

ple sizes.

Fig 5 contains plots of total absolute RB% and total RMSE versus sample sizes for all these

scenarios. These quantities are obtained from the sum of the RB% and RMSE of both parame-

ters for each sample size and scenario. Note that those measures decay to zero when n increases

Fig 4. Boxplots of the first hundred estimates of the Monte Carlo simulation for some sample sizes.

https://doi.org/10.1371/journal.pone.0276695.g004
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in the six scenarios. This shows that the properties of the MLEs (such as asymptotically unbi-

ased and consistent) are held.

5 The UBXII regression

Let Y1, . . ., Yn be n independent random variables, where Yi*UBXII (qi, c) for i = 1, . . ., n
with shape parameter c and quantile parameter qi (both unknown) for 0< τ< 1 assumed

known. We propose the UBXII regression imposing that the quantile qi of Yi satisfies the func-

tional relation

η ¼ gðqÞ ¼ Xβ; ð10Þ

where Z ¼ ðZ1; . . . ; ZnÞ
>
2 IRn is the n-dimensional vector of linear predictors, q = (q1, . . .,

qn)> is the vector of quantiles with qi 2 (0, 1), b ¼ ðb1; . . . ; bkÞ
>
2 IRk is a k-dimensional vec-

tor of unknown regression coefficients (k< n), X ¼ ðx>
1
; . . . ; x>n Þ

>
is the n×k full column rank

matrix, x>i ¼ ðxi1; . . . ; xikÞ denotes the ith observation on k covariates which are assumed

known, and xi1 = 1, 8i. Finally, we shall assume that g(�) is a strictly monotonic and twice dif-

ferentiable link function which maps (0, 1) into IR. By inverting each component of (10), we

Fig 5. Total absolute RB%s and total RMSE of the MLEs from UBXII distribution with different sample sizes.

https://doi.org/10.1371/journal.pone.0276695.g005
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can write

qi ¼ g � 1
Xk

j¼1

xijbj

 !

¼ g � 1ðZiÞ:

There are various possible choices for the link function g(�) such as

• logit: g(qi) = log[qi/(1−qi)];

• probit: g(qi) = F−1(qi), where F−1(�) is the qf of the standard normal random variable;

• complementary log-log: g(qi) = log[−log(1−qi)];

• log-log: g(qi) = −log[−log(qi)];

• Cauchy: g(qi) = tan[π(qt−1/2)].

The choice of the logit link function is the most common by practitioners since the inter-

pretation of the regression parameters becomes quite interesting. Consider increasing the jth
regressor at one unit, while the others are kept constant. Let q� be the quantile of Y under the

new value of xj, whereas q denotes the quantile of Y under the original value of this regressor.

It can be shown that with the logit link function, we have βj = log{q�(1−q�)/[q(1−q)]}, i.e., βj is

the log odds ratio [4]. In this context, we will consider the logit link function for g(�) in the

UBXII regression. Then, the ith quantile of Yi is qi ¼ eZi=ð1þ eZiÞ.

5.1 Estimation

The parameters estimation in the UBXII regression can also be performed by the ML method.

Let θ = (β>, c)> be the vector of k + 1 unknown parameters to be estimated. The log-likelihood

function based on a sample of n independent observations having the UBXII distribution, i.e.,

Yi* UBXII (qi, c), can be expressed as

‘ðθÞ � ‘ðβ; cÞ ¼
Xn

i¼1

‘iðqi; cÞ; ð11Þ

where ℓi(qi, c) is the logarithm of fY(yi;qi, c) given in Eq (6). Hence,

‘iðqi; cÞ ¼ logðlog t� cÞ � log yi þ ðc � 1Þlogðlog y� 1
i Þ � log½tðyiÞ� � logflog½tðqiÞ�g

�
logt� 1log½tðyiÞ�

log½tðqiÞ�
:

The score vector, obtained by differentiating the log-likelihood function (11) with respect

to the unknown parameters βj, j = 1, . . ., k, and c, is expressed as U = [Uβ(β, c)>, Uc(β, c)]>.

The components of U can be written in matrix notation. For doing this, we now define some

quantities.
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Let q?i ¼ logc� 1q� 1
i =fqi tðqiÞlog½tðqiÞ�g, qyi ¼ logt� 1logc� 1q� 1

i =fqi tðqiÞlog
2
½tðqiÞ�g,

y?i ¼ log½tðyiÞ�, and

y]i ¼
1

c
þ logðlog y� 1

i Þ �
logðlog q� 1

i Þ½tðqiÞ � 1�

tðqiÞlog½tðqiÞ�
�
½tðyiÞ � 1�logðlog y� 1

i Þ

tðyiÞ

�
log t� 1log½tðqiÞ�½tðyiÞ�

� 1
½tðyiÞ � 1�logðlog y� 1

i Þ

log2
½tðqiÞ�

þ
log t� 1½tðqiÞ � 1�logðlog q� 1

i Þlog½tðyiÞ�

tðqiÞlog
2
½tðqiÞ�

:

Then, we have

Uβ � Uβðβ; cÞ ¼ cX>D ð q? � qy y?Þ; ð12Þ

and

Uc � Ucðβ; cÞ ¼ trðY]Þ; ð13Þ

where X is an n × k matrix whose ith row is x>i , D = diag {1/g0(q1), . . ., 1/g0(qn)},

q? ¼ ðq?
1
; . . . ; q?nÞ

>
, qy ¼ ðqy1; . . . ; qy1Þ

>
, y? ¼ ðy?

1
; . . . ; y?nÞ

>
, and Y] ¼ diagfy]1; . . . ; y]ng. We pro-

vide the calculations of the score components in S1 Appendix.

Again, the nonlinear Equations Uβjβ¼β̂ ¼ 0 and Ucjc¼ĉ ¼ 0 can not be expressed in closed-

form. Hence, a nonlinear optimization method must be used for maximizing the function (11)

and determine the MLEs ðβ̂>; ĉÞ>. We also provide the observed information matrix for (β>,

c)>.

To simplify the notation of its components, other quantities are defined as follows

mi ¼
c logcq� 1

i

qi tðqiÞ
þ

c logcq� 1
i

qi tðqiÞlog½tðqiÞ�
�
log q� 1

i

qi
�
ðc � 1Þ

qi

� �
c logc� 2q� 1

i

qi tðqiÞlog½tðqiÞ�
;

pi¼
ðc � 1Þ

qi log½tðqiÞ�
þ

log q� 1
i

qi log½tðqiÞ�
�

2 c logcq� 1
i

qi tðqiÞlog
2
½tðqiÞ�

�
c logcq� 1

i

qi tðqiÞlog½tðqiÞ�

� �
c log t� 1logc� 2q� 1

i

qi tðqiÞlog½tðqiÞ�
;

ri ¼ logc� 1q� 1
i þ

logc� 1q� 1
i

c logðlog q� 1
i Þ
�
log2c� 1q� 1

i

tðqiÞ
�

log2c� 1q� 1
i

tðqiÞlog½tðqiÞ�

� �
c logðlog q� 1

i Þ

qi tðqiÞlog½tðqiÞ�
;

ui ¼
2 log2c� 1q� 1

i

tðqiÞlog
2
½tðqiÞ�

þ
log2c� 1q� 1

i

tðqiÞlog½tðqiÞ�
�

logc� 1q� 1
i

c logðlog q� 1
i Þlog½tðqiÞ�

�
logc� 1q� 1

i

log½tðqiÞ�

� �

�
c logðlog q� 1

i Þlog t
� 1

qi tðqiÞlog½tðqiÞ�
;

si ¼
c log t� 1logc� 1q� 1

i

qi tðqiÞlog
2
½tðqiÞ�

and yyi ¼ logðlog y� 1

i Þ½tðyiÞ � 1�½tðyiÞ�
� 1
:

Therefore, the observed information matrix can be expressed as (see S1 Appendix)

J ¼ �
Jββ Jcβ

Jβc Jcc

 !

:
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The quantities Jββ� @
2 ℓ(β, c)/@β@β> and Jβ c ¼ J>c β � @

2
‘ðβ; cÞ=@c@β, and Jcc� @

2 ℓ(β, c)/@c2

are

Jββ ¼ X> ½ ðM þ PY?ÞD � c ðQ? � QyY?ÞT D>D �DX; ð14Þ

J>c β ¼ ðr � s yz þ u y?Þ>DX; ð15Þ

and

Jcc ¼ trðY�Þ; ð16Þ

where M = diag {m1, . . ., mn}, P = diag {p1, . . ., pn}, Q? ¼ diag fq?
1
; . . . ; q?ng,

Qy ¼ diag fqy1; . . . ; qyng, Y
? ¼ diag fy?

1
; . . . ; y?ng, T = diag {g0 0(q1), . . ., g0 0(qn)}, r = (r1, . . ., rn)>, s

= (s1, . . ., sn)>, yz ¼ ðyz1; . . . ; yznÞ
>

, and u = (u1, . . ., un)>.

As mentioned in Section 3, the matrix J is quite useful for interval estimation and hypothe-

sis testing inference. Assuming that the SRCs hold and the sample size is large,

β̂

ĉ

 !

� N kþ1

β

c

 !

; I � 1

 !

;

where I−1 is the inverse of I � IEðJÞ is the expected information matrix. It can be estimated of

the consistent way by Ĵ , which is computed after replacing the unknown parameters (β>, c)>

by the corresponding MLEs.

5.2 Diagnostic measures and model selection

In order to check the goodness-of-fit and validate the UBXII regression assumptions, we adopt

some well-known diagnostic tools that are now discussed. Initially, we used quantile residuals.

These residuals verify if the model assumptions are satisfied and identify when the parameter

estimations are considerably affected by the presence of atypical observations in the response.

If the model is correctly specified, the quantile residuals are standard normally distributed. For

the UBXII regression, they are given by

ri ¼ F� 1½FYðyi; q̂i ; ĉÞ�;

where FY(�) is the UBXII cdf given in Eq (5).

An incorrect functional form specification of the regression and the covariates omission

can be identified through the RESET test. This test was initially introduced as a general misspe-

cification test for the normal linear regression. Afterward, variants of the RESET test for classes

of more general regressions were proposed by [27]. Thus, to determine whether a UBXII

regression is misspecified, we propose using a RESET-like misspecification test. Next, we

explain how this test can be performed.

The RESET-like test is carried out in two steps. Let q̂ be the predicted values vector

obtained after fitting a UBXII regression. First, we build testing variables matrix as

T ¼ ½q̂2 ; q̂3�, where the vectors q̂2 and q̂3 are formed by q̂ squared and cubed components,

respectively. We define the augmented regression

gðqÞ ¼ Xβþ Tδ; ð17Þ

where T is the n × 2 matrix of testing variables, and δ is a 2 × 1 vector of parameters. Second,

we estimate Eq (17) and test the null hypothesis H0 : δ ¼ 0 against the alternative hypothesis

H1 : δ 6¼ 0 by using the likelihood ratio (LR) statistic. We compute the LR statistic as o ¼
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2½‘ðθ̂ � ‘ð~θÞ�; where ℓ(�) is the log-likelihood function and θ̂ ¼ ðδ̂>; β̂>; ĉÞ> is the unrestricted

MLE of θ, and ~θ ¼ ð0>; ~β>;~cÞ> is the restricted MLE of θ under the null hypothesis. Under H0

and the SRCs, ω converge in distribution to chi-square, w2
n
, where ν is the number of testing

covariates added to the regression (ν = 2 in this case). The non-rejection of the null hypothesis

suggests that the regression is correctly specified.

The proportion of the response variable’s variability explained by a fitted UBXII regression

can be assessed using the generalized (pseudo) R-squared (R2
G) defined by [28] as

R2
G ¼ 1 � expf� 2=n ½‘ðθ̂Þ � ‘ðθ̂0Þ�g;

where ‘ðθ̂0Þ is the log-likelihood of the null regression, i.e., obtained from the modeling of the

response in the covariates absence, and ‘ðθ̂Þ is the log-likelihood of the full regression. A

regression with a higher value of R2
G provides a larger explanation power of the response vari-

able variation.

To select the more suitable model between several nested models, the information criteria

such as Akaike information criterion (AIC) and Schwarz information criterion (BIC) can be

considered. Both criteria are widely used in practical applications and they are defined by AIC

ð�Þ ¼ 2 ½ p � ‘ðθ̂Þ� and BIC¼ plogn � 2‘ðθ̂Þ, where p is the number of estimated parameters.

A way of selecting the best one between different non-nested regressions is to assess its per-

formance in the prediction of the response through statistical learning tools such as the cross-

validation approach. Let y = (y1, . . ., yn)> the vector of n observations of a response variable

and X the covariates matrix like in (10). In statistical learning methods, a training data set is

the observations set in which a model is initially adjusted. An accuracy measure is the test
error, that result from applying the model fitted to test observations that were not used in

training. For example, if we use (y, X) as training observations, the test error is IE½LðY0; ŷ0Þ�,

where L(�) is the loss function and ŷ0 is the predicted value using the fitted model from (y, X)

evaluated in the predictors x0
> (that does not belong to X). To estimate the test error with qua-

dratic loss, we consider the mean square error (MSE) defined as

MSE ¼
1

n

Xn

i¼1

ðyi � ŷiÞ
2
;

where ŷi is the ith predict value by the regression for the ith observation. This statistical mea-

sure is small if the predictions of the responses are very close to its true values, and it is large if

for some of the observations, the predicted and true responses differ substantially [29].

As cross-validation method, we propose the use of the leave-one-out cross-validation

(LOOCV). In this approach, we split the ith observation (ith row of a data set in which the

response and covariates are disposed by columns) of the other n−1 observations that represent

the training set whereas the row i is the validation set.

For each removed observation, we use the fitted model with the training set to predict the

ith observation of the validation set. After, we estimate the test error by computing the MSEi.
Repeating those procedure n times, we obtain MSE1, . . ., MSEn. The final estimate of the test

errors are computed through average of those n statistics as follows [29]

CVðnÞ ¼
1

n

Xn

i¼1

MSEi:

Hence, we select the regression which provides smaller values for CV(n).

Finally, we perform an influence analysis to detect possible influential points as outliers.

For this, the generalized Cook distance (GD) is considered. It is a measure of global influence,
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which proposes eliminating the ith observation (i = 1, . . ., n) to study its effect. The GD is com-

puted as

GDi ¼ ðθ̂ðiÞ � θ̂Þ>½Jðθ̂Þ�ðθ̂ðiÞ � θ̂Þ; ð18Þ

where θ̂ðiÞ is the MLE obtained when the ith observation is deleted, and Jðθ̂Þ is the observed

information matrix evaluated on the MLEs. We consider a general rule of thumb as a threshold

for determining highly influential points. The rule is the following if GDi> 4/n, then the obser-

vation is influential.

5.3 Simulation study

In this section, a Monte Carlo simulation study is conducted in order to numerically evaluate

the finite sample behavior of the MLEs of the UBXII regression’s parameters. The Monte

Carlo experiments are performed using the R programming language [30]. Maximization of

the log-likelihood function in (11) is carried out using the BFGS quasi-Newton nonlinear opti-

mization algorithm implemented at the optim function available in R. We consider the ordi-

nary least squares estimates (OLSEs) as an initial guess for β obtained from a linear regression

of the transformed responses: z = [g(q1), . . ., g(qn)]>, i.e., the initial point estimate of β is

~β ¼ ðX>XÞ� 1X>z. For the shape parameter c, we take the same initial guess in Section 4.

The simulations are based on the UBXII regression:

logitðqiÞ ¼ b1 þ b2xi2; i ¼ 1; . . . ; n: ð19Þ

The covariate x2 is randomly generated from a standard normal. We combine various values

of the parameter vector θ = (β1, β2, c)> at six different scenarios. The Monte Carlo replications

number adopted and the sample sizes considered are the same from Section 4. In each Monte

Carlo replication, the inversion method is used to generate n occurrences of a random variable

Yi* UBXII (qi, c). By assuming the regression structure defined in Eq (19), it follows that

qi ¼
expðb1 þ b2 xi2Þ

1þ expðb1 þ b2 xi2Þ
;

i.e., qi is equal to the logistic cdf evaluated at (β1+ β2 xi2). The statistical quantities computed

are also the same of Section 4.

Table 2 presents the results of the Monte Carlo simulations. In general, the RB%s are

smaller for larger sample sizes. We can note that the most RB% is equal to 10.02 in scenario

four for the smallest sample size, and it refers to the estimate of c. For estimates of the parame-

ters β1 and β2, all RB%s are below 6.25. In addition, even for n = 25, the RMSE values are quite

low in any scheme.

Fig 6 displays plots for the total RB% and total RMSE versus sample sizes. They reveal that

the MLEs are consistent, and their biases quickly tend to zero when the sample size grows. Fur-

ther, the most RB% is about 20, but it decays to less than 5 to n = 75. Thus, as expected, the ML

asymptotic properties remain.

We also investigate the behavior of the proposed model competing with the Kumaraswamy

(Kw), unit-Weibull (UW) [7], and beta [4] regressions, which are well-known in the analysis

of limited data. We aim to compare the performance of the maximum likelihood estimator for

estimating the parameters and investigating their performance in case of misspecification of

the distribution. We also evaluate the behavior of the AIC and BIC as selection criteria for

models from different distributions.
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Let Y be a random variable Kw distributed under a median-dispersion parameterization

[5], say Y* Kw(ω, dp). The pdf of Y is

f ðy;o; dpÞ ¼
log 0:5

dp logð1 � o1=dpÞ
y1=dpð1 � y1=dpÞ

log 0:5=logð1� o1=dp Þ� 1
; y 2 ð0; 1Þ

where 0< ω< 1 is the median of Y and dp > 0 is a dispersion parameter.

The UW quantile regression was recently introduced by [7]. Let Y* UW(q, γ) be a random

variable having the UW distribution under the parameterization given in [7]. For y 2 (0, 1),

the random variable Y has density

f ðy; q; gÞ ¼
g

y
log t
log q

� �
log y
log q

� �g� 1

tðlog y=log qÞg ;

where 0< q< 1 is the τth quantile, γ> 0 is a shape parameter, and τ 2 (0, 1) is assumed

known. Here, it will be considered that τ = 0.5 in order to model the median of Y.

[4] pioneered the beta regression. Different parameterizations can be considered for the

beta distribution. We consider the mean-precision based parameterization. Let Y be a random

Table 2. RB%s and RMSEs for the UBXII regression.

Scenario β1 β2 c n RB% RMSE

b̂1 b̂2
ĉ b̂1 b̂2

ĉ

1 1.3 1.4 2.0 25 −0.3323 0.7091 9.4106 0.1760 0.1499 0.4270

75 −0.0978 0.3527 2.7208 0.0929 0.0913 0.1975

150 −0.0392 0.1676 1.2937 0.0644 0.0570 0.1323

300 −0.0068 0.1248 0.6621 0.0455 0.0451 0.0918

2 0.7 0.4 1.3 25 −1.6493 2.8842 7.8287 0.2680 0.2073 0.2504

75 −0.1791 1.5523 2.5257 0.1462 0.1397 0.1246

150 −0.0765 0.8871 1.1396 0.1043 0.0902 0.0843

300 −0.0671 0.3218 0.5765 0.0732 0.0637 0.0584

3 −0.2 −0.6 1.8 25 6.2548 3.7917 9.8991 0.2599 0.1545 0.4274

75 1.0153 0.9514 0.1454 0.1454 0.1264 0.1900

150 0.0641 0.5987 1.3144 0.1001 0.0951 0.1324

300 0.3399 0.2976 0.6825 0.0724 0.0590 0.0898

4 −0.7 0.4 2.3 25 1.7725 3.1922 10.0246 0.2625 0.2104 0.5838

75 0.3187 2.0428 3.1417 0.1391 0.1240 0.2780

150 0.0243 0.7296 1.4848 0.0979 0.0777 0.1894

300 −0.0512 0.1449 0.7751 0.0691 0.0603 0.1317

5 1.2 −0.5 1.6 25 −0.1732 2.9301 7.9394 0.1860 0.1217 0.3028

75 −0.0054 0.7715 2.5134 0.1039 0.1069 0.1470

150 0.0099 0.3839 1.1571 0.0748 0.0663 0.0992

300 −0.0200 0.2634 0.5976 0.0529 0.0486 0.0687

6 0.4 1.2 2.6 25 −1.4705 0.9087 9.6420 0.1666 0.1364 0.5731

75 −0.2535 0.4271 2.7730 0.0854 0.0776 0.2673

150 −0.0936 0.1443 1.3345 0.0597 0.0543 0.1779

300 0.0397 0.0499 0.6723 0.0431 0.0417 0.1237

https://doi.org/10.1371/journal.pone.0276695.t002
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variable that follows a beta distribution, say Y* Beta(μ, ϕ). For y 2 (0, 1), the Y density is

f ðy; m; �Þ ¼
Gð�Þ

Gðm�ÞGðð1 � mÞ�Þ
ym�� 1ð1 � yÞð1� mÞ�� 1

;

where 0< μ< 1 is the mean of Y, ϕ> 0 is a precision parameter and GðaÞ ¼
R1

0
xa� 1e� xdx is

the complete gamma function. Under this parameterization the variance of Y is V(μ)/(1+ ϕ),

with V(μ) = μ(1 − μ).

The regression structure for the Kw, UW, and beta distributions is analogous to (19). The

main differences are the assumptions under the random components and modeled location

parameters. To get the Kw regression, q must be replaced by the median (ω) in Eq (19) and

supposed that Yi* Kw(ωi, dp). The UW regression is obtained by considering the structure

(19) and assuming that Yi* UW(qi, γ). In the beta regression, the location parameter is the

mean (μ). Hence, in Eq (19), q must be replaced by μ and supposed that Yi* Beta(μi, ϕ). Thus,

considering these regression structures, the simulation was performed in the following steps.

1. We generate a sample with n = 100 observations for each regression. The parameter values

were selected from Scenario 1 in Table 2, replacing c for the respective shape parameter.

Fig 6. Total absolute RB%s and total RMSE of the MLEs from UBXII regression with different sample sizes.

https://doi.org/10.1371/journal.pone.0276695.g006
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2. We fit the true regression and the UBXII regression for each generating scheme. When the

UBXII is the true model, we fit all the competitors.

3. We compute the MSE, AIC, and BIC for all fitted models.

4. For each scenario considered, 5,000 replications were performed.

5. For the MSE, we compute the average of all replications. For the AIC and BIC, the frequen-

cies (%) of correct model selection are computed.

Table 3 displays the performance of the UBXII model when compared with the existing

ones. The estimate θ̂ is ĉ for UBXII, d̂p for Kw, ĝ for UW, and �̂ for beta regression. We

observe that the estimates obtained with the Beta and KW differ from those from the UBXII

and UW distributions. The last two present estimates are close to each other. It shows that the

traditional beta and Kw densities were not suitable to describe the data generated from the

UBXII. The UW is the most competitive model but still presents a worse performance for fit-

ting UBXII random variables. Concerning the model selection approaches, all measures were

able to select the correct model. The results for AIC and BIC were very similar, their success

rates exceeding 92% for all generating schemes. Thus, the information criteria are reliable for

model selection among the considered competitive models.

6 Application

In this section, we assess the UBXII regression performance on real data. The analysis is car-

ried out using the R statistical computing environment [30]. We fit the UBXII regression and

compare it with the Kw, UW [7], and beta [4] regressions, which are well-known in the analy-

sis of limited data and were also considered in the simulation experiment. The R codes of the

simulation studies and application are available at https://github.com/tatianefribeiro/UBXII_

regression. We get the data from the higher education census conducted yearly by the Brazilian

National Institute for Educational Studies and Research “Anı́sio Teixeira”. We are interested

in the dropout proportion for animal sciences courses and factors associated with their enroll-

ment and organizational structure. However, the response variable is not directly obtained

from the original data set, and we use mining data techniques to obtain it from other reported

variables. After preprocessing and cleaning steps, we select 40 covariates as possible predictors.

A detailed description of the data mining tools employed and the final data set are available in

Supporting information.

Table 3. Results of Monte Carlo simulations for Scenario 1 (β1 = 1.3, β1 = 1.4, and c = 2.0), with n = 100 and R = 5000 replications and MSE mean, AIC and BIC fre-

quencies (%) of correct model selection.

Simulation UBXII(qi, c) Kw(ωi,dp) UW(qi, γ) Beta(μi, ϕ)

Par./Meas. UBXII Kw UW Beta UBXII Kw UBXII UW UBXII Beta

b̂1
1.2984 0.7471 1.2972 0.9241 2.0396 1.3267 1.3238 1.2986 3.2141 1.2071

(0.0802) (0.4013) (0.0949) (0.1798) (0.3435) (0.2944) (0.0752) (0.0732) (0.3661) (0.1245)

b̂2
1.4040 1.0398 1.5873 1.2794 0.9411 1.4311 1.3597 1.4034 2.4634 1.2125

(0.0670) (0.2549) (0.1246) (0.2181) (0.2664) (0.2545) (0.0624) (0.0603) (0.3905) (0.1105)

θ̂ 2.0441 1.9806 1.3982 6.7714 0.4688 1.9139 2.1814 2.0451 0.4025 1.9896

(0.1647) (3.9387) (0.3370) (2.2466) (0.0542) (0.3801) (0.1777) (0.1661) (0.0463) (0.3092)

AIC (%) 92.1600 0.0000 7.8400 0.0000 0.0400 99.9600 3.6600 96.3400 0.0200 99.9800

BIC (%) 92.1600 0.0000 7.8400 0.0000 0.0400 99.9600 3.6600 96.3400 0.0200 99.9800

MSE 0.0053 1.0608 0.0136 0.3587 4.6296 1.0705 0.0044 0.0035 1.5143 0.0209

https://doi.org/10.1371/journal.pone.0276695.t003
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The UBXII, Kw, UW, and beta regressions also are used as data mining tools to select a sub-

set of predictors that properly fits the dropout proportion. We test several combinations of

predictors using the measures described in Section 6.3. to define the final regressions on each

class. In what follows, we describe the response variable and predictive covariates used in our

regression analysis.

The response variable is the dropout proportion from 2009 until 2017 of 77 Brazilian

undergraduate animal sciences courses. For each course i (i = 1, . . ., 77), we consider three

covariates as follows: i) quantity of vacancies offered in the morning shift, denoted by xi2; ii) a

dummy variable that equals one if the course guarantees conditions of accessibility for people

with disabilities, and zero otherwise, denoted by xi3; and iii) a dummy variable, denoted by xi4,

that equals one if the course works on the night shift, and zero otherwise.

Let y = (y1, . . ., y77)> be the vector of the response variable and X = (x1, . . ., x4) the covari-

ates matrix, where x1 is a vector column with 77 ones and xj = (x1j, . . ., x77j)
>, with j = 2, . . ., 4.

Table 4 provides a descriptive summary of the response variable (y) and quantitative covariate

(x2), revealing that y has negatively skewed distribution and lighter tails than a normal distri-

bution. Further, its mean is close to the median, the standard deviation (SD) is low, and the

values range is sizeable because the minimum and maximum are 0.1077 and 0.9714, respec-

tively. The covariate x2 presents different degrees of variability, skewness, and kurtosis.

To study the covariates’ effects on the median dropout proportion, we set τ = 0.5 and spec-

ify the UBXII regression as

logitðqiÞ ¼ Zi ¼ b1 þ b2 xi2 þ b3 xi3 þ b4 xi4;

For comparison purposes, we also fit the Kw, UW, and beta regressions considering the same

covariates combination and link function.

Table 5 brings some goodness-of-fit measures such as AIC, BIC, and R2
G, the p-values of the

Anderson-Darling test (AD) [31] to validate the null hypothesis that errors are normally dis-

tributed, the p-values from RESET-like test (RES), and the statistic obtained from the LOOCV

approach (CV(77)) that allows assessing the prediction performance of the fitted regressions.

We consider α = 0.05 as a significance level for all performed hypothesis tests. According to

the RESET-like tests, all models are correctly specified. Similarly, the p-values from Anderson-

Darling tests indicate is reasonable supposing normality of the errors at each class. It is note-

worthy that most of some goodness-of-fit measures suggest that the UBXII regression is more

suitable to fit the dropout proportion in the Brazilian zootechnics course between 2009 and

Table 4. Descriptive statistics from the response variable and quantitative covariates.

Var. Statistics

Mean Median SD Skewness Kurtosis Min. Max.

y 0.5736 0.5965 0.1818 −0.3449 0.0854 0.1077 0.9714

x2 13.7532 0.0000 29.5449 2.0533 3.2902 0.0000 120.0000

https://doi.org/10.1371/journal.pone.0276695.t004

Table 5. Goodness-of-fit measures and LOOCV statistic for the fitted regressions.

Regression AIC BIC R2
G AD RES CV(77)

UBXII −55.8423 −44.1233 0.2348 0.8229 0.4334 0.0259

Kw −48.8064 −37.0873 0.1898 0.2765 0.8354 0.0260

UW −52.6329 −40.9139 0.2565 0.2795 0.5764 0.0266

BETA −52.0595 −40.3405 0.2235 0.5433 0.8383 0.0285

https://doi.org/10.1371/journal.pone.0276695.t005
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2017 than other considered class of regressions. Moreover, the CV(77) estimate for the fitted

UBXII regression is the smallest among all other fitted regressions. This means that the pro-

posed regression leads to better predictions than the classical regressions used in the context of

restricted response to the unit interval. Indeed, in Fig 7 it is possible to note that the UBXII

regression provides the best fit for this data set since about 97% of the points are under the red

line in the QQ-plot of fitted UBXII regression’s residuals.

In Table 6, we provide the estimates of the parameters, standard errors, t statistic value, and

p-values for the UBXII regression. Results from other fitted regressions are given in Support-

ing information; see Table 2. The effect of the three considered covariates under the response’s

median is positive. Further, according to the estimate of β4, the covariate xi4 presents the most

impact on the median. That is, the odds ratio increases substantially if the course works on the

night shift. This result may be related to the fact that many of the night students need to work

during the day, making it challenging to persist [32]. However, the offer of night courses

results from conquests achieved by popular pressure to meet the requirements of a population

mainly consisting of workers [33]. Thus, our finding raises the discussion on the need to

Fig 7. QQ-plots of the UBXII, Kw, UW, and beta regressions’ residuals.

https://doi.org/10.1371/journal.pone.0276695.g007
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provide a better service to this public. For example, the low offer of extracurricular activities

for evening students is one of the problems reported by [33].

Fig 8 plots the GD for the UBXII regression. We can note that only observation 32 high-

lights the others. It corresponds to the Faculdade de Estudos Superiores de Minas Gerais and,

with dropout proportion of 0.8163, is upper the 3th quartile of the data set. However, it is not

potentially influential since the GD associated is smaller than 4/n. Fig 9 assesses the impact of

different τ values on the parameter estimates. We compute the 95% confidence intervals and

point estimates for the UBXII regression by considering τ 2 {0.1, 0.2, . . ., 0.9}. We observe that

the intercept estimates become higher as τ increases, and the other regression coefficients are

negatively related to the quantiles. It indicates that the covariates have a more substantial

impact on explaining smaller quantiles of the dropout proportion. Finally, ĉ does not seem to

be affected by variations of τ values. It is worth noting that similar behavior is reported by [7]

for the shape parameter of the UW regression.

Table 6. Fitted UBXII regression for the dropout proportion in the Brazilian zootechnics course.

Parameter Estimate Std. Error t value p-value

β1 −0.0509 0.1294 −0.3932 0.6953

β2 0.0082 0.0024 3.4429 0.0010

β3 0.5389 0.1560 3.4535 0.0009

β4 0.8310 0.2665 3.1183 0.0026

c 2.3780 0.2032 — —

https://doi.org/10.1371/journal.pone.0276695.t006

Fig 8. Generalized Cook distance for the UBXII regression.

https://doi.org/10.1371/journal.pone.0276695.g008
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7 Conclusions

We define a new unit quantile regression based on an alternative reparametrization for the

unit Burr XII (UBXII) distribution pioneered by [8]. A highlight of the proposed parametriza-

tion is that one of its parameters, q(τ), represents the τth quantile of the random variable. The

researcher defines the τ value and assumes a regression structure on q(τ). We investigated

some additional statistical quantities to those explored by [8], namely the score functions, and

observed information matrix. The maximum likelihood method is used for parameter estima-

tion, and Monte Carlo simulations show that its properties remain. We adapt several diagnos-

tic analysis and model selection techniques that can be employed to check the goodness-of-fit

of the estimated model.

The utility of the proposed regression is illustrated with an application that targeted to

explain the linear relation between the dropout proportion of Brazilian undergraduate animal

sciences courses and some factors associated with their enrollment and organizational struc-

ture. An essential aspect of quantile-based regression is the possibility of separately analyzing

the covariates’ marginal effect on each response’s quantile. That allowed us to find that the

effects of some factors, such as the number of vacancies, accessibility, and night shift, are more

Fig 9. Parameter estimates and the 95% pointwise confidence intervals for the UBXII regression by considering τ 2 {0.1, 0.2, . . ., 0.9}.

https://doi.org/10.1371/journal.pone.0276695.g009
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negligible on courses with fewer dropouts (those belonging to the lower quantiles). Another

notable result is the positive effect between courses with night shifts and the dropout rate. This

phenomenon is explained by the work carried out by the students during the morning shift,

which makes persistence difficult. This situation must be considered by those who make edu-

cational policies since the opening of vacancies in the night shift must also be complemented

by student attendance policies.

Additionally, we also fit the data set using other well-known regression models, such as the

Kumaraswamy, unit-Weibull, and beta. The fit of the UBXII regression is superior to all of

them since it provides better prediction performance. Thus, the UBXII regression is an alter-

native quite competitive for modeling data restricted to the unit interval and can be applied

when the classical regressions are not unsuitable. That feature of capturing the nature of dou-

ble-bonded variables makes the new model have a wide range of applications; for example, in

the educational area, it can be helpful for modeling educational indicators such as graduation

and persistence proportions of undergraduate and postgraduate courses. It may also be an

alternative to educational measurements from different countries, such as in the applications

[13–15], and [16] provided.

We end with some comments on possible future work. It should be noted that in conventional

regression modeling, the non-existence of serial correlation between errors is assumed. In that

sense, an extension of our proposal is the development of models that consider exogenous covari-

ates in the median response with an Autoregressive Moving Average structure to handle serial

dependence. It is important to highlight that the UBXII regression can be extended to the neutro-

sophic statistics analysis. This kind of analysis is applied when data or a part of it are indetermi-

nate; that is, data have uncertain observations. Recently, some studies have been done in this

context. [34] introduced the neutrosophic analysis of variance to test teaching methods using

data collected from university students. [35] proposed a new Z-test for uncertainty events under

neutrosophic statistics, which was applied to the Covid-19 data. In the regression context, [36]

concluded that it is preferable to use Neutrosophic multiple regression over the classical regres-

sion models since this method is the most efficient for forecast the uncertainty observation data.
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regressions to the dropout proportion of Brazilian animal science courses.
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S1 Data. Droupot proportion of Brazilian animal science courses data set. Data set used in

the application study in Section 7.
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14. Korkmaz MÇ, Chesneau C, Korkmaz ZS. A new alternative quantile regression model for the bounded

response with educational measurements applications of OECD countries. Journal of Applied Statistics.

2021; p. 1–24. https://doi.org/10.1080/02664763.2021.2001442

PLOS ONE Another unit Burr XII quantile regression model

PLOS ONE | https://doi.org/10.1371/journal.pone.0276695 November 3, 2022 24 / 25

https://doi.org/10.1371/journal.pone.0218796
http://www.ncbi.nlm.nih.gov/pubmed/31226158
https://doi.org/10.1057/jors.2016.15
https://doi.org/10.1057/jors.2016.15
https://doi.org/10.1177/10567879211023123
https://doi.org/10.1177/10567879211023123
https://doi.org/10.1080/0266476042000214501
https://doi.org/10.1007/s00362-011-0417-y
https://doi.org/10.1007/s00362-011-0417-y
https://doi.org/10.4310/SII.2017.v10.n3.a11
https://doi.org/10.4310/SII.2017.v10.n3.a11
https://doi.org/10.1080/02664763.2019.1657813
https://doi.org/10.1080/02664763.2019.1657813
http://www.ncbi.nlm.nih.gov/pubmed/35706917
https://doi.org/10.1007/s40314-021-01418-5
https://doi.org/10.1007/s40314-021-01418-5
https://doi.org/10.1007/s40314-021-01553-z
https://doi.org/10.1007/s40314-021-01553-z
https://doi.org/10.3390/math9212634
https://doi.org/10.3390/math9212634
https://doi.org/10.3390/sym13010117
https://doi.org/10.3390/sym13010117
https://doi.org/10.3390/math10091389
https://doi.org/10.1080/02664763.2021.2001442
https://doi.org/10.1371/journal.pone.0276695
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