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Municipal waste disposal behaviors in Regina, the capital city of Saskatchewan, Canada have significantly
changed during the COVID-19 pandemic. About 7.5 year of waste disposal data at the Regina landfill was col-
lected, verified, and consolidated. Four modeling approaches were examined to predict total waste disposal at
the Regina landfill during the COVID-19 period, including (i) continuous total (Baseline), (ii) continuous fraction,
(iii) truncated total, and (iv) truncated fraction. A single feature input recurrent neural network model was
adopted for each approach. It is hypothesized that waste quantity modeling using different waste fractions and
separate time series can better capture disposal behaviors of residents during the lockdown. Compared to the
baseline approach, the use ofwaste fractions inmodeling improves both result accuracy and precision. In general,
the use of continuous time series over-predicted total waste disposal, especially when actual disposal rates were
less than 50 t/day. Compared to the baseline approach, mean absolute error (MAE), mean absolute percentage
error (MAPE), and mean square error (MSE) were reduced. The R value increased from 0.63 to 0.79. Comparing
to the baseline, the truncated total and the truncated fraction approaches better captured the total waste disposal
behaviors during the COVID-19 period, probably due to the periodicity of the weeklong data set. For both ap-
proaches, MAE and MAPE were lower than 70 and 22%, respectively. The model performance of the truncated
fraction appears the best, with anMAPE of 19.8% and R value of 0.92. Results suggest the uses of waste fractions
and separated time series are beneficial, especially if the input set is heavily skewed.
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1. Introduction

1.1. Modeling of waste generation and disposal rates

Waste quantity modeling plays an important role in day-to-day
waste management planning and operation (Vu et al., 2019a;
Smejkalova et al., 2020), as well as the overall design and implementa-
tion of any circular economy (Magazzino et al., 2021; Zhang et al., 2021).
Municipal solid waste (MSW) generation, recycling, and disposal be-
haviors are complex and related to various socioeconomic (Bruce
et al., 2016; Chowdhury et al., 2017), geographical, and demographic
factors (Younes et al., 2015; Coskuner et al., 2020). Due to its practical
importance and environmental significance, studies on waste quantity
modeling and forecasting have beenwidely studied and reported across
the globe. Traditionally, quantitative waste forecasts and identification
of causal factors were conducted using time series and regression anal-
ysis techniques. Rimaitytė et al. (2012) used various regression models
to forecast weeklywaste generation in Kaunas, Lithuania and found that
waste forecasts were sensitive to various social-economic indicators.
Denafas et al. (2014) applied time series analyses and successfully esti-
mated monthly generation of MSW and 11 waste fractions in 4 cities in
East European countries using selected social-economic factors. Ghinea
et al. (2016) adapted prognostic tools, regression analysis, and time se-
ries analysis to obtain regression equations for 6 waste fractions in
Romania, and found that the S-Curve trend model accurately predicts
MSW generation with a mean percentage error of 2%. Regression tech-
niques were performed by Grazhdani (2016) to predict annual waste
generation in Prespa Park, Albania. Grazhdani (2016) reported a signif-
icant correlation between higher education level and lower per-capita
waste generation, among various social-economic factors.

Recently, there has been an increase in the use ofmachine-based ap-
proaches for waste quantity modeling globally (Xu et al., 2021). For ex-
ample, artificial neural network (ANN) time series with multi-variate
features were successfully applied tomodel weekly solid waste genera-
tion in the Middle East (Noori et al., 2010; Shahabi et al., 2012), North
America (Kontokosta et al., 2018), and Europe (Cubillos, 2020). ANN
and other neural network models are useful for mapping complex
non-linear problems, and are particularly suitable forwaste quantity es-
timation with a larger dataset. For example, Azadi and Karimi-Jashni
(2016) applied a multi-variate features ANN to predict seasonal waste
generation rates in 20 Iranian cities and reported a mean percentage
error ranging from 6% to 17%. Kannangara et al. (2018) used regression
trees and neural networks to predict residential waste generation in 220
cities inOntario, Canada,withmeanpercentage errors varying from19%
to 34% in the testing stage.Wuet al. (2020) conducted a large-scale ANN
waste modeling study using regional data in China and reported prom-
ising model performance, with root mean square error over 0.94 in all
regions.

Some waste studies compared ANN approaches with regression
techniques directly and reported superior model accuracy using ANN
approaches. Jahandideh et al. (2009) modeled hospital waste in Iran
using both ANN and multiple linear regression, and found that ANN
models were generally more accurate with an R2 of 0.99 for all four
types of hospital waste. Azadi and Karimi-Jashni (2016) compared
ANN and regression model performance on MSW generation using 5
different performance indicators and concluded that ANN was consis-
tently better. Similar results were reported by Sun and
Chungpaibulpatana (2017) in a MSW forecast study in Bangkok,
Thailand. Oliveira et al. (2019) compared ANN and regression analysis
on household packaging waste modeling, and concluded ANN model
performance using R2 was 34% higher than non-linear regression
models.

COVID-19 and the subsequent lockdowns have significantly im-
pacted MSW disposal behaviors (Kulkarni and Anantharama, 2020;
Fan et al., 2021; Richter et al., 2021b). Similar observations were re-
ported on food waste (Burlea-Schiopoiu et al., 2021), plastic wastes
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(Vanapalli et al., 2021), household wastes (Ikiz et al., 2021), and health
care wastes (Manupati et al., 2021). Simple regression models often
failed to address the non-linearity of the data, and it is hypothesized
that an advanced numerical model is required to fully capture the
waste disposal behaviors during the pandemic. Since COVID-related
regulations have impacted different waste streams differently (Richter
et al., 2021a; Richter et al., 2021b), an ANN-based study on modeling
of different waste fractions during the pandemic is of practical interest.

1.2. Modeling with different waste fractions and time scales

Some researchers have applied different ANN-based waste quantity
models on different waste fractions to improve modeling accuracy.
Batinic et al. (2011) adopted multi-variate features of multilayer
perceptron ANN to predict 6 waste fractions including organic waste,
paper, plastics, glass, metals, and other waste in Serbia, and obtained ac-
ceptable mean absolute percentage error. Coskuner et al. (2020) used
multi-variate features multilayer perceptron ANN to predict domestic,
commercial, and construction waste generation in Askar Landfill, the
Kingdom of Bahrain. Using different social, demographic, economic, geo-
graphical, and touristic factors, Coskuner et al. (2020) reported satisfactory
model accuracy, especially with respect to commercial waste modeling.

ANN-based modeling has also been applied on different time scales.
Younes et al. (2015) identified the key factors to predict annual waste
generation inMalaysia using an adaptive neuro-fuzzy inference system.
Abbasi and El Hanandeh (2016) explored various intelligent system al-
gorithms, includingANN, to forecastmonthlywaste generation in Logan
city, Australia. They concluded that allmodels have good prediction per-
formance and could be applied to conduct accurate municipal waste
forecasts. Ali and Ahmad (2019) applied an ANN time series model
with autoregressive technique to forecast themonthly solid waste gen-
eration in Kolkata, India, and reported satisfactory results in both train-
ing and testing stages. Moreover, ANNmodeling on waste quantity was
attempted with weekly (Vu et al., 2019a) and daily data (Nabavi-
Pelesaraei et al., 2017). The literature review suggests an ANNmodeling
approach is applicable to long-, medium-, and short-term waste
forecast.

1.3. Novelty, objectives, and practical implications

The ANN waste modeling studies discussed focus on either total
waste estimation or waste fractions prediction. However, there is no
study that explicitly considers the difference between thewastemodel-
ing approaches (total waste vs. total waste from fractions). Recent stud-
ies suggested that waste disposal behaviors of different waste streams
evolved differently during COVID-19 (Richter et al., 2021a; Richter
et al., 2021b), as such modeling individual waste fractions separately
and combining them for the total waste quantity is more advantageous
from a theoretical standpoint. It is hypothesized that waste quantity
modeling using different waste fractions and separate time series can
better capture disposal behaviors of residents during the lockdown.
The use of distinct time series on model accuracy is seldom reported
in the literature. Unlike other studies, this waste quantity study focuses
on the differences in modeling performance using the four modeling
approaches.

In this study, total waste disposal was computed and compared
using single feature long short-term memory (LSTM) recurrent neural
network (RNN) models with four different approaches including
continuous total, continuous fraction, truncated total, and truncated
fraction. The objectives of this short communication were to
(i) examine the potential benefits of waste fractions-based modeling
on MSW disposal rates during the COVID-19 period and (ii) examine
the effect of distinct time series on model accuracy. The results are
important and have significant practical implications on the planning
and operation of waste disposal sites during and after the pandemic,
or other emergencies.



H.L. Vu, K.T.W. Ng, A. Richter et al. Science of the Total Environment 789 (2021) 148024
1.4. Study area

Regina, the capital city of Saskatchewan, Canada was selected as the
study area. Thewaste disposal characteristics and distributionswere re-
ported in a previous study (Richter et al., 2021). According to the latest
census data fromStatistics Canada (2016), the population in Reginawas
236,500 in 2016. The average daily total waste disposed of at the Regina
landfill from2013 to 2020was about 555.08 t/day, including 349.35 t/day
of mixed waste, 194.93 t/day of construction and demolition (C&D)
waste, 8.64 t/day of treated bio-medical (TBM) waste, and 14.02 t/day
of grit and asphalt (City of Regina, 2020). The northern part of the Regina
landfill does not have an engineered liner (Pan et al., 2019a, 2019b), but
has a landfill gas management system (Bruce et al., 2017; Bruce et al.,
2018).

A provincial state of emergency was first declared on March 18th,
2020. In this study, COVID-19 period is defined from March 18th,
2020 to September 12th, 2020. Over 1709 COVID-19 positive cases
with 24 deaths were reported in Saskatchewan on September 12,
2020 (Government of Saskatchewan, 2020). The Regina landfill is the
sole municipal landfill in the area and receives wastes from nearby re-
gions. The landfill is open 7 days per week in summer and 6 days per
week inwinter (City of Regina, 2020), partly because of a higher amount
of yard and C&D wastes during summer months. Major maintenance
and construction projects for roads, drainage networks, andwastewater
facilities also occur during the summer months (City of Regina, 2021).

2. Methodology

2.1. Data collection and processing

About 7.5 years of daily waste disposal records of (i) mixed waste,
(ii) C&D waste, (iii) TBM waste, and (iv) grit and asphalt from January
1st, 2013 to September 12th, 2020 was collected from City of Regina.
The total waste is the sum of all waste types. Three separate time series
including week-long, weekday, and weekend sets were developed for
the total waste and the 4 waste fractions. The weekday set covers trun-
cated time series fromMonday to Friday, and theweekend set compiles
truncated time series from Saturday to Sunday. The week-long set is
from Monday to Sunday. The methodological flowchart is shown in
Fig. 1. To test the robustness of the four modeling approaches, no data
points were removed and all data were considered in the modeling.

2.2. Effects of waste fractions on total waste disposal predicted

Five single feature RNN-LSTM models were developed using
Tensorflow 2.0, using modified open-source code from Valkov (2019).
The ratio of training stage and testing stage was selected at 80:20
(Azadi and Karimi-Jashni, 2016; Kannangara et al., 2018; Wu et al.,
2020).

2.2.1. Approach 1 - continuous total waste disposal prediction
Approach 1 (continuous total) is a single feature RNN-LSTM model

for the estimation of total waste disposal during the COVID period
(Model 1a, Fig. 1). This also serves as the benchmark of the study.
Week-long total waste disposal data from the entire 7.5-year study pe-
riod was used as the input of Model 1a. The model consists of 2 hidden
layers with 600 neurons in each layer, and a lag time of 10 days. The
number of hidden layers, neurons, and lag time were determined
from the preliminary trials.

2.2.2. Approach 2 - continuous fraction prediction
In Approach 2 (continuous fraction), four RNN-LSTM models were

built including mixed waste (Model 1b), C&D waste (Model 1c), TBM
waste (Model 1d), and grit and asphalt (Model 1e) (Fig. 1). The input
for each model was the week-long continuous time series of each re-
spective waste stream. The results of the four models (Outputs 1b, c,
3

d, e) were then combined to estimate the total waste disposal. The re-
sults were compared to the baseline case (Output 1a). The structure of
the four models, the ratio of training to testing stages, lag times were
identical to the baseline (Model 1a).

2.3. Effects of distinct time series on total waste disposal predicted

Two approaches with 10 single feature RNN-LSTMmodels were de-
veloped to examine the effects of waste disposal fractions on the total
waste disposal predicted during the COVID-19 period, as discussed in
Sections 2.3.1 and 2.3.2.

2.3.1. Approach 3 - truncated total waste disposal prediction
In Approach 3 (truncated total), 2 single feature RNN-LSTMmodels

(models 2.1a and 2.2a, Fig. 1) were developed to predict total waste dis-
posal during the COVID period. In this approach, “total waste disposal
weekday truncated time series” data from January 1st, 2013 to Septem-
ber 12th, 2020 was used as the input of Model 2.1a (weekday total
model) while the total waste disposal weekend truncated time series
data was used as the input of Model 2.2a (weekend total model). The
two models consisted of 2 hidden layers, with the number of neurons
of each hidden layer of 600, lag time of 10 days for the weekday total
model, and lag time of 2 weeks for the weekend total model, as deter-
mined by the preliminary trials. The result of the weekday total model
(Output 2.1a) for the COVID-19 period was combined with the result
of the weekend total model (Output 2.2a) to compute the final outputs.

2.3.2. Approach 4 - truncated fraction prediction
In Approach 4 (truncated fraction), eight RNN-LSTMmodels (Fig. 1)

were built, as discussed below.

• A weekdaymixed waste model (Model 2.1b) with the input of week-
day truncated time series of mixed waste, and a weekend mixed
waste model (Model 2.2b) with the input of weekend truncated
time series data of mixed waste.

• Aweekday C&Dwaste model (Model 2.1c) with the input of weekday
truncated time series of C&D waste, and a weekend mixed waste
model (Model 2.2c) with the input of weekend truncated time series
data of C&D waste.

• Aweekday TBMwastemodel (Model 2.1d)with the input ofweekday
truncated time series of TBMwaste, and aweekend TBMwastemodel
(Model 2.2d) with the input of weekend truncated time series data of
TBM waste.

• A weekday grit and asphalt waste model (Model 2.1e) with the input
of weekday truncated time series of grit and asphalt waste, and a
weekend grit and asphalt waste model (Model 2.2e) with the input
of weekend truncated time series data of grit and asphalt waste.

Each of the eightmodels consisted of 2 hidden layers, with the num-
ber of neurons of each hidden layer of 600, lag time of 10 days for the
weekday mixed waste, C&D waste, TBM waste, grit and asphalt waste
models and lag time of 2 weeks for those of weekend models. The re-
sults of the sub-models (Outputs 2.1b, 2.2b, 2.1c, 2.2c, 2.1d, 2.2d, 2.1e,
and 2.2e) were combined to compare with the baseline (Output 1a)
and other approaches.

2.4. Models' performance assessment

Common metrics to assess ANN model performance include mean
absolute error (MAE), mean absolute percentage error (MAPE), mean
square error (MSE), and correlation coefficient (R). Unlike the error
terms (MAE, MAPE, and MSE), the R value ranges from −1 to +1. The
closer R value to +1, the more accurate the results. These four metrics
were also adopted by others (Vu et al., 2019a, 2019b; Fallah et al.,
2020; Coskuner et al., 2020). The following equations were used to cal-
culate the model assessment metrics.
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where:

n: Number of data points
Ya: Actual mass of total waste disposal
Yp: Predicted mass of total waste disposal
Ya: The mean actual mass of total waste disposal
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Yp: The mean predicted mass of total waste disposal.

3. Results and discussion

3.1. Data characteristics and analysis

3.1.1. Week-long data set
Data skewness and distribution are first examined as they may im-

pact the performance of the predictive models. Table 1 shows the
range and variability of the daily disposal data at the Regina landfill.
The counts of the week-long set ranged 1324 (TBM waste) to 2602
(total waste), indicating TBM disposal is uncommon. Unlike other
waste streams, TBM was delivered to the landfill about 3 times per
week during the study period. For the week-long set, it is observed
that mixed and C&D wastes accounted for the largest portions of
waste disposed of at the landfill, representing 62.9% and 35.1%, respec-
tively. TBM waste, on the other hand, represents only about 1.6% of
total waste disposed. TBM waste disposal was less frequent and the



Table 1
Waste disposal data in Regina landfill in the period of Jan 1st, 2013 to Sep 12th, 2020.

Count Min Mean Max Min/max STDEV STDEV/mean

Unit N/A (t/day) N/A (t/day) N/A

Week-long data
Total waste 2602 0.18 555.08 1444.13 0.00012 309.56 0.56
Mixed
waste

2576 0.04 349.35 886.96 0.00005 207.78 0.59

C&D waste 2579 0.18 194.93 822.65 0.00022 152.43 0.78
TBM waste 1324 0.05 8.64 25.34 0.00197 4.14 0.48
Grit and
asphalt

2156 0.04 14.02 115.00 0.00035 14.08 1.00

Weekday data
Total waste 2003 77.01 694.97 1444.13 0.05333 196.08 0.28
Mixed
waste

2003 77.01 440.46 886.96 0.08682 134.02 0.30

C&D waste 1990 0.73 237.85 822.65 0.00089 146.70 0.62
TBM waste 1023 0.05 8.90 25.34 0.00197 4.36 0.49
Grit and
asphalt

1739 0.04 15.73 115.00 0.00035 14.85 0.94

Weekend data
Total waste 399 22.31 131.36 461.97 0.04829 76.22 0.58
Mixed
waste

398 0.04 44.68 209.33 0.00019 32.01 0.72

C&D waste 392 0.72 74.99 338.61 0.00213 59.98 0.80
TBM waste 300 2.24 7.80 14.81 0.15125 3.09 0.40
Grit and
asphalt

272 0.13 10.63 58.99 0.00220 10.61 1.00
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average daily disposal rate was also the lowest (8.64 t/day). Mixed
waste disposal had the smallest min-to-max ratio value of 0.00005,
representing of the largest difference in the daily extreme values. Gen-
erally, more data variation is observed in grit and asphalt waste with a
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Fig. 2. Comparison between actual and predicted waste disposal at Regina landfill using a) App

5

coefficient of variation (CV = stdev / mean) of 1.00. The CV for total
waste (0.56) is less than the mixed and C&D wastes because of the
larger set.

The minimum total waste disposal was observed on Sunday Jun
11th, 2017 (0.18 t/day), and themaximum total waste disposal was ob-
served on Thursday May 15th, 2014 (1444.13 t/day), concurrently on
the date with the highest C&D disposal. The maximum disposal rate
for mixed and C&D waste were both observed on Thursdays (May
16th, 2013 and May 15th, 2014, respectively). On the other hand, min-
imumdisposal rates were generally observed on theweekend due to no
publicly funded collection service.

3.1.2. Weekday data set
The mean daily disposal rate of all waste streams disposed of during

theweekday (Monday to Friday) was higher than that of the week-long
data set (Table 1). This is due to the lower disposal rates during week-
end, as further discussed in Section 3.1.3. The min-to-max ratio for
TBM, grit and asphalt waste remained constant at 0.00197 and
0.00035, respectively. The min-to-max ratio for mixed waste, however,
increased significantly from the lowest among the waste streams to the
highest among the waste streams at 0.08682. Large differences in dis-
posal behaviors were observed for the mixed waste between weekday
and weeklong sets. With the exception of TBM waste, the CV of all
waste streams reduced compared to that of the week-long data set. It
appears the waste disposal behaviors at Regina landfill were much
more consistent on weekdays.

3.1.3. Weekend data set
Mean disposal rates of total waste, mixed waste, C&D waste, TBM

waste, and grit and asphalt for the weekend data set were 131.36,
44.68, 74.99, 7.8, and 10.63 t/day, respectively (Table 1). The mean dis-
posal rates of all waste streams in the weekend set were noticeably
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smaller. For example, themeanmixedwaste disposal rate was about 10
times lower than that of the weekday data set (440.46 t/day). This is
probably due to the successful publicly funded curbsidewaste collection
program operating onweekdays in Regina. Aminimalmin-to-max ratio
(0.00019) was again observed for the mixed waste. With the exception
of TBM, the CV of all waste streams increased from theweekday set, de-
spite a much lower data count (272–399). The results suggested that
truncated data sets may be able to improve predictive model perfor-
mance due to the significant differences in the characteristics of the
waste disposal sets.

3.2. Effects of waste fractions and distinct time series on total waste disposal
modeling

Fig. 2 shows the comparison of four approaches for total waste dis-
posal at the Regina landfill during COVID-19. The horizontal axis was
the actual total waste disposal and the vertical axis was the total waste
disposal predicted using the model. Fig. 2a demonstrates the comparison
of total waste predicted during the COVID-19 period using Approach 1
(the baseline approach). Approach 1 generally underpredicted total
waste disposed as there were some points under the 45-degree line
(Fig. 2a). Approach 2 (Continuous fraction) had a better prediction in
total waste disposal compared to the baseline, and the modeling results
are relatively more accurate and precise especially in mid- data range.
However, it has a tendency to over-estimate total waste disposal as
slightly more points were over the 45-degree line (Fig. 2b). Comparison
of Fig. 2a and b suggests (i) waste quantity modeling by fractions helped
to improve both accuracy and precision in mid-range, and (ii) both con-
tinuous models failed to capture true disposal rates when actual rates
were below 50 t/day. In lower disposal rates (i.e. during weekends), the
ratio of overprediction (predicted/actual) can reached over 40 (Fig. 2a,
b), undermining its usefulness as a predictive model.

Modeling waste disposal rates using separate time series requires
more work, however it appears a better modeling approach, at least
using waste disposal data in the current study. Comparing to the base-
line, approaches 3 (truncated total) and 4 (truncated fraction) better
captured the totalwaste disposal behaviors during the COVID-19 period
(Fig. 2c, d), probably due to the periodicity of the weeklong data set.
Both approaches 3 and 4 accurately predicted total waste disposal
rates in the full range. Substantial improvements in model performance
were observed below 50 t/day. Approach 4 appears slightly better, with
more points located directly on the 45-degree line (Fig. 2d).

Fig. 3 presents model performance indicators for the four ap-
proaches. It is obvious that the use of waste fractions helps to reduce
themodeling errors and increase R value. Compared to the baseline ap-
proach, the MAE of approach 2 decreased from 145.45 to 114.53, and
theMAPE decreased from625.92% to 391.54% (Fig. 3a). TheMSEwas re-
duced by 26.2% from 31,709 to 23,390 and R value increased from 0.63
to 0.79 (Fig. 3b). The results highlight the potential benefits of modeling
total disposal rate using different waste fractions.

Model performance of approaches 3 (truncated total) and 4 (trun-
cated fraction) were similar. Bothwere able to improvemodel accuracy
of waste disposal behaviors during COVID-19 at Regina. For both ap-
proaches, theMAE andMAPEwere lower than 70 and 22%, respectively.
The model performance of Approach 4 appears slightly better than that
of Approach 3 with an MAE of 66.7, MAPE of 19.8%, R value of 0.92. The
MSE of approach 4 was, however, slightly higher at 8483. Since error
was squared inMSE (Eq. (3)), the performance indicator wasmore sen-
sitive to outliers. In general, the use of waste fractions and separate time
series (approach 4) is recommended, especially if the continuous set is
heavily skewed, such as the distinct disposal behaviors observed be-
tween weekdays and weekends in Regina landfill. The input sets
(daily disposal records) are skewed in this study due to the publicly
funded waste collection program. Similar waste collection programs
are used in majority of industrialized nations. As such we believe the
findings reported are applicable to other cities and countries.
6

4. Conclusion

A previous study indicated that waste disposal behaviors in
Regina, the capital city of Saskatchewan, have changed significantly
during the COVID-19 pandemic. In this short communication, vari-
abilities of waste disposal data were first quantified using descriptive
statistics. A total of four modeling approaches were explored to pre-
dict total waste disposal in Regina, including (i) continuous total
(baseline), (ii) continuous fraction, (iii) truncated total, and (iv)
truncated fraction. A single feature input RNN model was adopted
for each approach. The result showed that the conventional ap-
proach (the baseline model) performed worst in modeling waste
disposal behaviors during COVID-19. The use of waste fractions in
modeling improves both model accuracy and precision compared
to the baseline approach. In general, the use of continuous time se-
ries over-predicted total waste disposal in this study, especially
when actual disposal rates were less than 50 t/day (i.e. during week-
ends). In some cases, the ratio of overprediction can reach over 40,
undermining its usefulness. Compared to the baseline approach,
MAE, MAPE, and MSE were reduced. The R value increased from
0.63 to 0.79. The results highlighted the potential benefits of model-
ing total disposal rates using different waste fractions.

Comparing to the baseline, the truncated total and the truncated
fraction better captured the total waste disposal behaviors during the
COVID-19 period, probably due to periodicity of the weeklong data
sets. Substantial improvements of model performance using separate
time series were observed for disposal rate below 50 t/day. For both ap-
proaches,MAE andMAPEwere lower than 70 and 22%, respectively. The
model performance of the truncated fraction appears the best, with
MAPE of 19.8% and R value of 0.92. In general, the use of waste fractions
and separated time series is recommended, especially if the input set is
heavily skewed.
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