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Over the past years, pituitary hormones and their receptors have been shown to have non-traditional actions that allow them to by-
pass the hypothalamus-pituitary-effector glands axis. Bone cells—osteoblasts and osteoclasts—express receptors for growth hor-
mone, follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, 
oxytocin, and vasopressin. Independent skeletal actions of pituitary hormones on bone have been studied using genetically modified 
mice with haploinsufficiency and by activating or inactivating the receptors pharmacologically, without altering systemic effector 
hormone levels. On another front, the discovery of a TSH variant (TSH-βv) in immune cells in the bone marrow and skeletal action 
of FSHβ through tumor necrosis factor α provides new insights underscoring the integrated physiology of bone-immune-endocrine 
axis. Here we discuss the interaction of each pituitary hormone with bone and the potential it holds in understanding bone physiolo-
gy and as a therapeutic target.
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INTRODUCTION

The pituitary gland, often called the “master gland” orchestrates 
multiple effector hormonal organs and other glands by secreting 
various tropic hormones, namely growth hormone (GH), follicle 
stimulating hormone (FSH), luteinizing hormone (LH), thyroid 
stimulating hormone (TSH), adrenocorticotrophic hormone 
(ACTH), prolactin, oxytocin (OXT), and vasopressin. It is well-

known that effector hormones, particularly thyroid hormone, 
cortisol, insulin-like growth factor 1 (IGF1), and sex hormone 
(i.e., estrogen and testosterone) play a significant role in skeletal 
modeling and remodeling. We have learned over the past de-
cade that pituitary hormones also directly exert skeletal actions. 
The reciprocal relationship with pituitary and effector hormones 
poses a significant challenge in differentiating direct from indi-
rect actions of pituitary hormone, but sophisticated genetic 
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modification and small molecule intervention without altering 
systemic levels of effector hormone levels has allowed us to ex-
amine the direct skeletal role of these glycoproteins. These non-
traditional skeletal effects of pituitary hormones will be dis-
cussed in this review. 

UBIQUITOUS EXPRESSION OF PITUITARY 
HORMONE RECEPTORS 

The hypothalamic-pituitary-endocrine (i.e., adrenal, thyroid, 
and ovaries/testis) feedback axis is truly fascinating physiology 
that establishes the central concept of endocrinology. The physi-
ology of endocrine system and pathological changes from the 
imbalance—hormonal excess or insufficiency and their skeletal 
complication are well studied. 

Over the past years, it has become increasingly clear that the 
pituitary tropic hormones also exert non-traditional actions by-
passing the endocrine axis. Many studies have now documented 
the ubiquitous expression of the G-protein coupled receptors 
(GPCRs) for pituitary hormones, establishing that these recep-
tors are not solely localized to endocrine organs. For example, 
in mammals, the TSH receptors (TSHRs) are expressed in the 
pituitary gland, thymus, testis, kidney, brain, adipose tissue, 
bone and heart albeit at lower levels [1,2]. The genetically mod-
ified mice with replacement of exon 1 of the TSHR with green 
fluorescent protein (GFP) visualized non-thyroidal expression 
of TSHR [3,4]. TSHR expression has been documented previ-
ously in osteoblast-like rat osteosarcoma cells (UMR106 cells), 
rodent calvaria-derived primary osteoblasts, pre-osteoblastic 
MC3T3-E1 cells, human osteoblast-like cells, osteoclast precur-
sors, and mature osteoclasts [2,5-9].

Likewise, apart from their expression in granulosa cells of the 
ovary and Sertoli cells of the testis [10-12], FSH receptors 
(FSHRs) are present on bone, fat and the nervous system [4,13-
15]. In the human female reproductive tract and placenta, FSHR 
is expressed in vascular endothelial cells, endometrial glands, 
cervical glands and stroma, stromal cells and muscle fiber, and 
interstitial macrophage from testis [16,17]. Furthermore, in en-
dothelial cells of various cancer tissues (i.e., breast, colon, pan-
creas, kidney etc.), FSHR expression was much higher than go-
nadotropin cells [18]. Also, chondrocyte-like ATDC5 cells ex-
pressed functional FSHRs [19]. Interestingly, our data using 
RNAscope showed FSHR expressions in cerebral cortex and 
hippocampus, particularly in granular layer and pyramidal tract 
[13]—this suggested a role for FSH-FSHR interactions in cog-
nition. An FSHR type 2 isoform without exon 9 is found in hu-

man monocytes and osteoclasts at a lower levels compared with 
ovarian cells. Of note, FSHR has 10 exons with the first 9 exons 
encoding extracellular domain and exon 10 expressing trans-
membrane domain [20-22].

ACTH receptor (MC2R), one of five melanocortin receptors 
(MC1R–MC5R), is expressed predominantly in the adrenal 
glands and required for adrenal gland development and ste-
roidogenesis [23], is also expressed in bone cells—osteoblast-
like cells (MG63), SaOS2 cells, and normal human osteoblasts 
(NHOS). ACTH and other proopiomelanocortin (POMC)-de-
rived peptides increased cyclic adenosine monophosphate 
(cAMP) levels in NHOS [24]. Interestingly, immune cells, 
namely macrophages, splenic B and T-cytotoxic (CTL) cells 
were capable of secreting ACTH [25], and osteoclasts, which 
are differentiated from hematopoietic stem cells, not only ex-
pressed and processed POMC and secreted ACTH, but also ex-
pressed MC2R [24], suggesting possible autocrine or paracrine 
actions of ACTH in bone remodeling.

Other pituitary hormones also have their receptors expressed 
in bone and bone cells. The findings of prolactin receptors on 
osteoblasts in cell culture and bone tissue suggested possible di-
rect effect of prolactin in bone remodeling independently of 
concomitant hypogonadism in the setting of hyperprolactinemia 
[26-28]. OXT and vasopressin, which are secreted from posteri-
or pituitary gland, also have their receptors expressed in osteo-
blasts and osteoclasts [29]. The functional relevance of the pitu-
itary hormone receptor expression in skeletal tissue and bone 
cells will be reviewed in the following section. 

HIGH FSH AND BONE LOSS

FSH was first isolated from sheep pituitary gland and FSH in-
jection increased the size of ovarian follicles in hypophysecto-
mized rats suggesting its reproductive role [30]. Likewise, after 
receiving partially purified FSH preparation, amenorrheic 
women showed increased urinary estrogen levels and increased 
the size of the uterine cavity and ovaries [31]. Subsequently, it 
was shown that FSH-containing cells are present in the pituitary 
gland. A negative feedback loop between FSH and estradiol was 
subsequently documented [32-35].

Our group first described an effect of FSH in skeletal remod-
eling using genetically modified FSHR and FSHβ mice. Haplo-
insufficient mice for both the ligand and receptor had normal 
estrogen levels and developed an intact uterus—yet they 
showed higher bone mass compared with wild-type mice, es-
sentially separating the action of FSH from that of estrogen [36]. 
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Knock-out mice were also protected, but in Fshr−/− mice, this 
protection due to absent FSHR signaling was confounded by 
the associated hyperandrogenemia [37]. A recent study per-
formed µCT analysis of distal femurs from male and female 
Fshb+/+, Fshb+/−, and Fshb−/− mice at 8 months of age and 
showed higher bone volume and less trabecular spacing in the 
absence of Fshβ [38].

Using interventional approaches, lowering FSH in the ovari-
ectomized rat by gonadotropin-releasing hormone (GnRH) ago-
nist (leuprolide) decreased the number of osteoclasts and bone 
loss area in alveolar bone [39]. Likewise, blocking the FSH ef-
fect using anti-FSHβ antibodies decreased osteoclast differenti-
ation up to approximately 20% [40]. More importantly, block-
ing with anti-FSHβ antibody attenuated ovariectomy-induced 
bone loss [4,14,15,40]. Furthermore, we found that the skeletal 
effect of FSH was independent of other hormones, including es-
trogen, testosterone, inhibin, or activin. This finding was consis-
tent with a recent study where humanized monoclonal anti-
FSHβ antibody (MS-Hu6) treatment reduced osteoclast forma-
tion, and did not alter LH, GnRH, or testosterone levels [41]. 
Complementing these data, it was shown that an FSH-glutathi-
one-S-transferase (GST) fusion protein prevented ovariectomy-
induced bone loss in rats [42].

FSH acts on the bone FSHR isoform that is coupled to the G-
protein Gi2α, and in doing so, increases osteoclastogenesis and 
bone resorption and suppresses bone formation [20,36,40,43]. 

FSH also enhances RANK expression and indirectly promotes 
osteoclastogenesis by stimulating the release (or enhancing the 
receptor expression) of tumor necrosis factor α (TNFα), inter-
leukin (IL)-1β, and IL-6 [20,21,44-46]. FSH-induced osteoclast 
differentiation is also abolished in bone marrow macrophages 
from mice lacking immunoreceptor tyrosine-based activation 
motif (ITAM) adapters (Fig. 1) [47].

FSH negatively regulates osteoblastic bone formation. FSHRs 
are expressed on mesenchymal stem cells (not mature osteo-
blasts), and FSH antibody treatment yields greater osteoblast 
precursor colony counts similar to mesenchymal cells isolated 
from Fshr null mice [20,43]. MS-Hu6 antibody treatment also 
showed increased bone formation with increased mineralization 
apposition rate (MAR) and up-regulated osteogenic genes (Alpl, 
Col1a1, and Runx2) [41]. 

Supporting the mouse studies, multiple observational studies 
have examined associations between bone parameters and se-
rum FSH. Notably, bone mineral density (BMD) of lumbar 
spine (LS), femur, and forearm show a negative correlation with 
an increase in serum FSH level, although these findings were 
limited due to the reciprocal relationship of FSH and E2 (High 
FSH and low E2) [48,49]. Other studies have attempted to ex-
amine the association after controlling for the estrogen effect. A 
study that sub-categorized the peri- and post-menopausal 
healthy women with irregular menstruation by FSH levels 
showed that participants with high FSH (>40 mIU/mL) had 

Fig. 1. Follicle stimulating hormone (FSH) receptors are expressed in osteoclasts and mesenchymal stem cells. FSH/FSH receptor (FSHR) 
isoform binding activates nuclear factor κB (NFκB) and mitogen-activated protein kinase (MAPK), upregulates tumor necrosis factor α 
(Tnfα), and results in increased osteoclastogenesis and decreased osteoblast differentiation. 
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lower BMD compared with subjects with lower FSH levels 
(<40 mIU/mL) [50]. FSH increase by 1 standard deviation (SD) 
was associated with a 5% decrement in LS BMD in pre-, peri-, 
and post-menopausal women when E2 levels were similar in 
pre- and peri-menopausal women, but 2-fold higher FSH levels 
in the latter [51]. Bone turnover markers (BTMs) (i.e., urinary 
deoxypyridinoline [D-Pyr], urine N-terminal telopeptide [NTx], 
urinary C-terminal telopeptide [CTX], serum osteocalcin, and 
bone alkaline phosphatase) were shown to correlate with FSH 
positively, suggesting high bone turnover with elevated FSH 
levels [51-53].

Comparing skeletal changes in patients with hypothalamic 
functional amenorrhea versus hypergonadotropic amenorrhea 
provided another line of evidence for a direct FSH effect. In pa-
tients with premature ovarian failure who were younger than the 
age of 40, those with hypergonadotropic amenorrhea (FSH >40 
IU/L) had lower LS BMD than patients with hypogonadotropic 
amenorrhea despite having other risk factors for low BMD, 
such as nutritional deficit and underweight [54].

The most relevant clinical correlations between elevated FSH 
and bone loss were noted in the Study of Women’s Health 
Across the Nations (SWAN), a longitudinal cohort of 2,375 per-
imenopausal women with diverse ethnic backgrounds. There 
was a strong positive correlation with serum FSH and NTx and 
osteocalcin independently of estrogen levels, and FSH was a 
stronger predictive marker for rapid bone turnover during peri-
menopausal period than estrogen [55]. Other large cohorts from 
China and Iceland (AGES-Reykjavik Study of Older Adults) 
also noted an inverse correlation between FSH and BMD [55-
57]. In addition, the National Health and Nutrition Examination 
Survey (NHANES) III cohort showed a strong negative correla-
tion between serum FSH and femoral neck (FN) BMD in peri-
menopausal women. In post-menopausal women, an incremen-
tal increase in FSH was associated with almost three-fold higher 
risk for osteoporosis, although the investigators used body mass 
index as a surrogate marker for estrogen status [58]. The bone 
turnover range of normality (BONTURNO) study similarly 
showed that women with high FSH levels (>30 IU/L) had high 
BTMs despite having regular menstruation [59]. Moreover, 
women with the activating FSHR polymorphism (rs6166) dis-
played lower bone mass and high resorption markers [60]. All 
of findings above suggest that the FSH surge during perimeno-
pausal period might itself drive high bone turnover and bone 
loss. The selective inhibition of FSH action using antibodies 
such as ours may allow a further delineation of the effects of 
high FSH versus low estradiol.

TSH AND BONE: NOT JUST THYROXINE

Multiple observational studies have documented an association 
between low TSH levels and a low bone mass. Again, the recip-
rocal relationship between TSH and thyroid hormone (T4/T3) 
poses a challenge in understanding the independent skeletal ef-
fect of TSH. Most studies therefore used healthy euthyroid or 
subclinical hyperthyroid subjects. 

Analysis of the Rotterdam study showed a positive correla-
tion between serum TSH levels and FN BMD among euthyroid 
subjects [61]. NHANES (1999 to 2002) showed similar results 
where low-normal TSH levels (0.39 to 1.79 mIU/L) were asso-
ciated with a higher risk of osteoporosis independently of thy-
roid hormone levels [62]. Studies from China and Korea also 
noted similar patterns of associations [63-65]. 

Associations of TSH levels with fracture risk is more chal-
lenging as fracture itself is a multi-factorial process with many 
confounding factors. The Osteoporosis and Ultrasound Study 
(OPUS) study showed a lower risk of fracture with higher TSH 
levels among euthyroid subjects [66]. However, other large epi-
demiology studies, namely the Tromsø study and the Rotterdam 
study did not find a clear correlation between TSH levels and 
fracture risk [61,67]. Lastly, a meta-analysis including thirteen 
studies of euthyroid adults showed an almost 1.25 times higher 
risk of hip fracture in a group with lower TSH levels (0.45 to 
0.99 mIU/L) compared with subjects with high-normal TSH 
(3.50 to 4.49 mIU/L) [68].

The negative skeletal effect of low TSH becomes more prom-
inent when examining subjects with subclinical hyperthyroid-
ism. The Study of Osteoporotic Fracture (SOF) showed that in-
creased risk of fracture with a lower titer of TSH; participants 
with serum TSH (≤0.1 mIU/L) had a three-fold higher risk of 
hip fracture compared with normal TSH levels (0.5 to 5.5 mIU/
L) [69]. The Odense Patient data Explorative Network Thyroid 
Status and Register Outcomes (OPENTHYRO) registry cohort 
also showed that low TSH levels (<0.3 mIU/L) was associated 
with a higher risk of hip fracture with 45% increase per 1 SD 
decrease of TSH [70]. Two separate meta-analyses summariz-
ing 13 and six studies, respectively, again showed the hip frac-
ture risk was significantly higher and BMD was lower in sub-
clinical hyperthyroidism [71,72]. In addition, several studies 
suggested that micro-skeletal structure was suboptimal in elder-
ly patients with subclinical hyperthyroidism and in patients un-
der TSH suppression treatment following thyroidectomy for 
thyroid cancer [73-75]. However, this correlation of TSH and 
bone mass was not as robust in subclinical hypothyroidism, pre-
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menopausal women or men as in post-menopausal women [76].
Several studies have also documented changes in BTMs after 

recombinant human TSH (rhTSH) injection. CTX and NTX 
levels dropped within days and procollagen type 1 N-terminal 
propeptide (P1NP), a marker of bone formation increased with-
out changes in thyroid homorne levels [77-79].

These human correlations point to a direct effect of TSH on 
bone, which was first described by us using TSHR haploinsuffi-
cient (Tshr+/–) mice. They displayed significant bone loss, de-
spite intact thyroid follicles and normal thyroid hormone levels 
[2]. Homozygotic Tshr–/– mice were runted and had decreased 
BMD, which persisted despite thyroid hormone replacement 
from the birth [2,80]. The key characteristics of skeletal changes 
were summarized as increased bone turnover with predomi-
nantly increased osteoclast-driven bone resorption with focal 
sclerosis reminiscent of Paget’s bone disease [2]. In a later 
study, iatrogenic hyperthyroidism was induced by T4 pellet im-
plantation after pre-treatment with carbimazole. Greater bone 
turnover and bone loss followed in Tshr–/– hyperthyroid mice 
compared with hyperthyroid wild-type, suggesting that the ab-
sence of TSH signaling contributed further bone loss in the set-
ting of hyperthyroidism [81]. The skeletal phenotype of other 
genetically modified mice Tshrhyt/hyt with a loss-of-function mu-
tation in TSHR (TSHRP556L) and Pax8–/–mouse, which lacks a 
transcription factor for thyroid follicle development were sum-
marized in the recent reviews [76,82].

The skeletal effect of TSH arises from a direct action on os-
teoclast TSHRs, but also indirectly through TNFα [80,83], an 
osteoclastogenic cytokine that is known to cause bone loss [45]. 
Immune-mediated TSH action on skeleton was demonstrated 
by interventional studies using TNFα antibody and genetic 
modification. Mice with TSHR deficiency showed increased 
osteoclastogenesis with up-regulated TNFα expression, but 
without any change in receptor activator of NF-κB-ligand 
(RANKL) or macrophage-colony-stimulating factor (M-CSF), 
two important signals for osteoclastogenesis [2]. Moreover, 
treatment with an anti-TNFα neutralizing antibody or crossing 
Tshr–/– mice with Tnfa–/– mice reversed increased osteoclast dif-
ferentiation [2,80,83]. These findings are relevant to clinical ob-
servations, where patients with hyperthyroidism are accompa-
nied by elevated TNFα and soluble TNF receptor (TNFR) levels 
[84]. Mechanistically, TSH inhibits high-mobility group box 
proteins (HMGB) 1 and 2 expression and their binding to DNA, 
and suppresses JNK1/2 and IĸBα phosphorylation and c-jun 
and p65 nuclear translocation, all of which are critical steps in 
TNFα synthesis [2,85]. Likewise, TSHR overexpression de-

creases the activator protein (AP)-1 and nuclear factor κB 
(NFκB) binding in response to RANKL and TNFα/IL-1 [83]. 

An immune-skeletal-endocrine interaction of TSH is further 
supported by the identification of a splice variant of TSH (TSH-
βv) in bone marrow cells [86,87]. Bone marrow-derived murine 
and human macrophages, and CD11b+ and other immune cells 
were shown to express TSH-βv [87,88]. This finding, in part, 
explains how TSHR in skeletal tissue can be functional despite 
being expressed at low levels [7,8].

Interestingly, the regulation of TSH-βv does not follow tradi-
tional hypothalamic-pituitary-thyroid axis feedback. TSH-βv 
injection into mice increases serum T4/T3 levels, but TSH-βv 
expression in leukocytes was not increased or suppressed in re-
sponse to thyrotropin releasing hormone (TRH) or T3, respec-
tively [89]. Also, T4/T3 regulated TSH-βv expression positively 
at mRNA and protein levels rather than suppressing it [87,90]. 
In addition, pro-inflammatory cytokines suppressed pituitary 
TSH secretion [91], but at the same time, trafficked immune 
cells expressing TSH-βv to the thyroid glands [92]. These find-
ings indicate that immune cells such as macrophage in bone 
marrow might have the potential to attenuate the negative skele-
tal effects of low TSH and high T4/T3 in pro-inflammatory hy-
perthyroidism by secreting TSH-βv. This proposed TSH-related 
circuitry involving the bone-immune-endocrine axis needs fur-
ther study (Fig. 2).

Fig. 2. Skeletal-immune-endocrine interaction. Pro-resorptive ac-
tion of thyroid hormone (T4/T3) is counteracted by thyrotropin 
(TSH) from pituitary glands and TSH-βv from immune cells. 

TSH-βv

TSH-β

T4/T3

Positive regulation
Negative regulation
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Unlike the anti-osteoclastic effect, TSH effects on osteoblasts 
are not as straightforward. In bone marrow-derived primary os-
teoblast cultures, TSH suppressed colony forming units and os-
teoblast gene expression, which was associated with downregu-
lated vascular endothelial growth factor (VEGF) receptor FLK-
1 and the Wnt co-receptor LRP5 [2]. However, other studies us-
ing calvaria-derived osteoblast, UMR106 and SaOS2 cell lines, 
show that TSH can stimulate osteoblastogenesis [6,93] through 
the activation of protein kinase Cδ and upregulation of the non-
canonical Wnt components frizzled and Wnt5a [94]. In addi-
tion, co-culture of macrophages and osteoblasts enhanced os-
teoblastogenesis, which was attenuated in the presence of anti-
TSH-βv antibody—this reaffirmed local skeletal effect of TSH-
βv [87]. In vivo, intermittent low dose rhTSH injections induced 
bone formation and bone gain and recovered bone loss after 
ovariectomy [9]. Whether the anabolic action of TSH is depen-
dent on the dose or the frequency similarly to parathyroid hor-
mone needs to be further studied.

Furthermore, TSHR might interact with IGF1 receptor (IG-
F1R). TSH up-regulated IGF1 and IGF2 expression as well as 
stimulatory IGF-binding proteins [93]. TSHR and IGF1R syn-
ergistically increase osteopontin through crosstalk between the 
receptors in a signaling complex through β-arrestin 1, scaffolds 
linking G-protein-coupled receptors to extracellular signal-reg-
ulated kinases 1/2 (Erk1/2) signaling [95]. TSH induces β- 
arrestin-1 binding to TSHRs, β-arrestin then phosphorylates 
Akt1, p38, and Erk1/2 and upregulates Alp, Rankl, and Opn. In 
contrast, downregulation of β-arrestin 1 inhibits TSH-mediated 
osteogenic gene upregulation [93,95,96]. In all, it seems clear at 
least experimentally—with observational evidence from large 
epidemiologic cohorts—that the net bone loss in hyperthyroid-
ism is the result of interplay between components of the TSH-
skeletal-immune axis, mediated by selective actions of T4/T3, 
TSH, and TSH-βv.

ADRENOCORTICOTROPIC HORMONE 
AND BONE

ACTH directly effects bone bypassing glucocorticoid action. 
Our group showed that ACTH treatment in rabbit with methyl-
prednisolone-induced avascular osteonecrosis of femoral head 
(AVFN) reduced necrotic surface, which likely was mediated 
by upregulating VEGF expression [97]. VEGF upregulation by 
ACTH was also shown in a later study [98]. In addition, ACTH 
enhances protease inhibitor alpha-2-macroglobulin (A2M), 
which likely promotes osteoblastic differentiation through trans-

forming growth factor β induction (Fig. 3) [99]. These findings 
suggest that ACTH can be a therapeutic target for treating 
AVFN, which is often caused by vascular insufficiency from 
trauma, alcohol and more importantly, long-term steroid use 
[99,100]. However, patients with ACTH-dependent Cushing 
disease had less bone loss compared with those with ACTH-in-
dependent adrenal Cushing’s syndrome [101].

A later study using Mc2r−/− mice showed increased cortical 
bone thickness without a change in trabecular bone. Serum os-
teocalcin levels were high in the homozygotes, while urinary 
deoxypyridinoline (D-Pyr) was decreased. However, unfortu-
nately, the global knock-outs were confounded with adrenal in-
sufficiency with deficiencies in glucocorticoid, mineralocorti-
coid, and catecholamines [102]. The skeletal phenotype of bone 
cell specific MC2R deficient mice has not been reported yet. 

THE MAIN PLAYER: GH OR IGF1

While GH directly acts on bone through a GPCR, its action pre-
dominantly occurs through IGF1 [103]. IGF1 is synthesized 
mainly in the liver and approximately 80% circulates bound to 
IGF-binding protein-3 (IGFBP3) and the acid labile subunit 
(ALS). Studies using GH, GH receptor (GHR) and IGF1 defi-

Fig. 3. Adrenocorticotropic hormone (ACTH), secreted by pituitary 
gland and immune cells (i.e., macrophage), acts on melanocortin 2 
receptor (Mc2r) on osteoblasts and upregulates vascular endothelial 
growth factor (VEGF) and alpha-2-macroglobulin (A2M), which 
induces transforming growth factor β (TGF-β). 
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cient mice provided evidence of independent and common ef-
fects of GH versus IGF1 on the skeleton. The double Ghr/Igf1 
knock-out mouse showed more severe growth retardation com-
pared with either GHR deficient or IGF1 deficient mice [104]. 
Studies using liver-specific IGF1 and bone-specific IGF1 mouse 
delineated the systemic and local effects of IGF1. Unlike com-
plete IGF1 knock-out mice, liver-specific IGF1-deficient mice, 
despite significant drop in circulating IGF1 (~75%), developed 
and grew normally, except displaying suboptimal cortical bone 
quality [105,106]. However, further lowering systemic IGF1 
level below ~10% in liver-specific IGF deficient mice by delet-
ing IGFBP3 and the ALS resulted in marked growth retardation 
[107,108]—this suggests that certain levels of systemic IGF1 
are required. On the other hand, bone-specific IGF1 deficient 
mice with normal circulating IGF1 level showed significant 
growth retardation, low bone mass, impaired bone formation 
and mineralization [109]. Together, GH, systemic IGF1, and lo-
cal IGF1 play concerted roles in postnatal skeletal growth, mod-
eling and remodeling.

PROLACTIN AND BONE MASS

Prolactin receptor deficient (Prlr–/–) mice, generated by deleting 
exon 5 of the Prlr gene showed lower BMD in both sexes. Dy-
namic histomorphometry showed decreased bone formation. Of 
note, estrogen levels in female Prlr–/– mice were significantly 
lower compared with wild-type littermates, but testosterone in 
males did not differ. These findings can thus partly be explained 
by hypogonadism, but interestingly osteoclast surfaces, a hall-
mark of hypogonadal bone loss, were not different in Prlr–/– 
mice compared using wild-type littermates [28]. In contrast, a 
gain-of-function study in which hyperprolactinemia was in-
duced by anterior pituitary transplantation in the setting of 
ovariectomy showed that prolactin stimulated bone turnover 
with net bone resorption. It was thought to be through decreased 
osteoprotegerin (OPG) expression in osteoblasts, which in-
creased RANKL/RANK and osteoclastogenesis [27].

Given its physiological role in lactation and procreation, the 
effect of maternal prolactin in embryonic skeletal development 
was examined. A study measured alkaline phosphatase as an in-
direct marker for bone turnover after prolactin administration 
during pregnancy. Newborn pups from treated dams showed al-
most ~30% decrease in alkaline phosphatase and reduced bone 
formation, without any change in calcium or parathyroid hor-
mone levels [26]. This in vivo finding was consistent with in vi-
tro osteoblast cell cultures using primary osteoblast and MG63 

cells, where Alp and Ocn were downregulated and alkaline 
phosphatase activity was suppressed after prolactin treatment 
[26,27]. Whether prolactin exerts a protective bone effect by 
downregulating bone turnover in the setting of excessive mater-
nal bone resorption needs to be further studied [110,111].

OXYTOCIN AND INTERGENERATIONAL 
CALCIUM TRANSFER

OXT is a nonapeptide that is synthesized in hypothalamus and 
released via the posterior pituitary gland. OXT mediates milk 
ejection and uterine contraction during parturition, and regulates 
social behavior centrally [112,113]—but we have shown that it 
plays a role in calcium homeostasis and bone remodeling. Func-
tional OXT receptors (OXTRs) are found in bone cells in both 
human osteoblasts [114] and osteoclasts [115].

Oxt–/– and Oxtr–/– male and female mice displayed reduced 
bone mass with decreased bone formation. OXT treatment in 
cell culture stimulated osteoblast differentiation by upregulating 
Bmp2, Schnurri-2 and -3, osterix, and Atf-4 [116]. It also stimu-
lated osteoclast formation by activating NFκB and mitogen-ac-
tivated protein kinase (MAPK) signaling and indirectly through 
RANKL. Osteoclast-driven bone resorption was counteracted 
through cytosolic Ca2+ releases and nitric oxide (NO) synthesis, 
resulting in net anabolic effect [116]. In line with the findings, 
OXT decreased RANKL levels and increased OPG levels re-
sulting in reduction in RANKL/OPG levels favoring net bone 
formation [117]. Osteoblast-specific Oxt–/–mice showed low 
bone mass, and osteoclast-specific Oxt–/– developed high bone 
mass, again confirming a stimulatory effect of OXT on osteo-
blastic bone formation and on osteoclast differentiation [118].

We believe that OXT might play a role in skeletal mobiliza-
tion through increased osteoclast formation during pregnancy 
and lactation [119]. Oxt–/– pups showed hypomineralized skele-
ton and Oxt–/– mom displayed reduced bone formation markers 
[119]. However, interestingly, pregnant, and lactating mice lack-
ing OXTRs in osteoblasts showed higher bone mass, suggesting 
elevated OXT inhibits bone resorption to keep a balance against 
excessive bone loss during pregnancy and lactation (Fig. 4) 
[118].

VASOPRESSIN AND BONE

Arginine vasopressin (AVP), a key regulator of serum osmolali-
ty and fluid status, has also been implicated in bone remodeling. 
AVPR-1a and -2a are expressed in the osteoblasts and osteo-
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clasts [120]. Vasopressin-deficient (AVPR-1a) mice displayed 
high bone mass due to increased bone formation and reduced 
bone resorption [29,120]. In addition, AVP administration to 
mice reduced osteoblast formation and increased osteoclast for-
mation. On the other hand, AVPR-1a antagonist (SR49059) in-
creased bone mass by promoting osteoblastogenesis and inhibit-
ing osteoclast-driven bone resorption, together suggesting that 
vasopressin negatively regulates skeletal remodeling [120]. In 
contrast, AVPR-2a does not seem to have any skeletal effect as 
AVPR-2a inhibitor tolvaptan did not show any skeletal pheno-
type [29]. Our finding might explain the bone loss and high risk 
of fracture in patients with chronic hyponatremia that is often 
accompanied by high vasopressin levels. 

CONCLUSIONS

The discovery of independent skeletal effects of pituitary hor-
mones highlights the power of integrative bone physiology as it 
relates to the remodeling of bone and maintenance of its integri-
ty. Bone interacts with not only closely situated organs—bone 
marrow, fat and muscle—but also with remote organs, such as 
the pancreas, brain, and kidney. The skeletal role of FSH ex-
plains, at least in part, the natural course of bone changes during 
the perimenopausal transition, together with its expanding func-
tion in the pathogenesis of obesity [14] and spikes of cognitive 
decline during this phase in a woman’s life [13]. Thus, we pro-
pose that FSH is an important aging hormone. Furthermore, the 
opposing skeletal actions of pituitary hormone and the induced 

master hormones suggest mutually compensatory effects to reg-
ulate skeletal homeostasis precisely. For example, hyperthyroid 
bone loss (low TSH and high T4/T3) could be counteracted by 
T4/T3-induced TSH-βv secretion from immune cells. In addi-
tion, effects of OXT and prolactin on the skeleton mark a poten-
tial role for the hormones during pregnancy and lactation. Like-
wise, the skeletal role of vasopressin suggests that sodium bal-
ance in the skeleton, which has not been studied well, also plays 
an important role in bone remodeling. In all, the exciting new 
out-of-the-box discoveries not only offer better understanding 
of bone biology, but also unmask potential therapeutic targets 
for osteoporosis.
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Fig. 4. Oxytocin increases bone turnover by increasing osteoblastic 
bone formation and osteoclastic bone resorption with net anabolic 
effect. However, high levels of oxytocin upregulates endothelial ni-
tric oxide synthase (eNOS) and inhibits osteoclastic bone resorption 
to counteract rapid bone loss in maternal skeleton during pregnancy 
and lactation. RANKL, receptor activator of NF-κB-ligand; OPG, 
osteoprotegerin.
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