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Diagnostic techniques for spinal pathologies have been developed in accordance with advances in technology. Ac-
curate diagnosis of spinal pathology is essential for appropriate management of spinal diseases. Since the devel-
opment of X-rays in 1895 and computed tomography (CT) in 1967, several diagnostic imaging modalities have been 
utilized for detecting spinal pathologies, including radiography, CT, magnetic resonance imaging, and radionuclide 
imaging. In addition to diagnostic imaging technologies, electrodiagnostic tests, including electromyography and 
nerve conduction studies, play a significant role as diagnostic tools, as spinal diseases are mostly profoundly as-
sociated with pathologies of the neural structures, such as the spinal cord and nerve root, and extent of injury at 
the structure cannot be adequately detected by conventional imaging techniques. In patient-specific treatment 
strategies, usage of diagnostic modalities is of great importance; thus, we should be aware of the basic details and 
approaches of the different diagnostic modalities. In this review, the authors discuss the details of the technologies 
that aid in the diagnosis of spinal pathologies.
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Introduction

The number of patients with spinal disease has gradu-
ally increased over time, and the burden related to spinal 
disease is challenging from economic, social, and others. 
Similar to other pathologies, the management and prog-
nosis of spinal disease are profoundly linked to accurate 
diagnosis [1].

With advances in technology, diagnostic techniques 
have been improved for the accurate diagnosis of spinal 
pathologies. Since the development of X-rays in 1895, 
bony structures of the spine have been confirmed, lead-

ing to the development of diagnostic approaches using 
imaging modalities. Although radiography technology 
has further developed, much of the information about 
the spine, particularly disc, spinal cord, and root patholo-
gies, cannot be identified due to the inherent limitations 
of radiography. In 1967, Sir Godfrey Hounsfield invented 
the first computed tomography (CT) scanner using X-ray 
technology [2]; in 1977, Raymond Damadian developed 
the first magnetic resonance imaging (MRI) machine for 
clinical use in human diseases [3]. The development of 
these novel technologies had a significant impact on the 
clinical diagnosis of all human diseases and the establish-
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ment of therapeutic guidelines. However, despite these 
novel developments in diagnostic imaging technologies, 
there exists paucity in the field of spinal disease diagno-
sis, as the spinal pathologies are profoundly connected to 
neural structures, including the spinal cord, cauda equina, 
and nerve roots, and the extent of injury at the neural 
structure cannot be detected by conventional imaging 
techniques. Thus, electrodiagnostic modalities, including 
electromyography (EMG) and nerve conduction studies 
(NCSs), have been utilized as spinal diagnostic techniques 
[4]. In addition to these technologies, modalities, includ-
ing bone scans, have been developed to better define spi-
nal pathologies.

Owing to these novel techniques, more accurate diag-
nosis and patient-specific treatment can be offered for 
spinal diseases. In this review, we provided detailed infor-
mation about the technologies that aid in the diagnosis of 
spinal pathologies.

Imaging Modalities

1. Plain radiography

Since the discovery and application of X-rays by Wilhelm 
Conrad Roentgen in 1895, they have been used as a first-
line modality for diseases of human tissues based on os-
seous anatomy [5]. In spinal pathology, X-rays rapidly 
became widely used as an invaluable diagnostic tool in 
spinal imaging. With the development of modern radio-
graphic technologies, advanced imaging modalities have 
been introduced. Nevertheless, plain radiograph remains 
the first and most widely used imaging modality for local-
izing suspected spinal symptoms, including pain, numb-
ness, and weakness [6]. Radiography aids intuitive recog-
nition of the patient’s condition since it provides overall 
information about each spinal segment and the entire 
vertebral column in a few images [7]. Notably, imaging 
is relatively artifact-free compared with other modalities 
considering that it is achieved in a very short time.

Plain radiography has a comparative advantage over 
complex modern imaging techniques, as it is possible to 
acquire images while freely adjusting the patient’s posi-
tion. Beyond static imaging, it has the advantage of being 
able to obtain an image wherein the actual movement of 
the patient is performed while applying a dynamic fac-
tor, such as gravity (standing radiograph) and motion 
(flexion-extension and bending radiographs). Flexion-

extension lateral radiograph-based dynamic imaging can 
confirm the presence of instability and determine the dy-
namics of the spinal lesion [8-13]. In preoperative evalua-
tion and surgical planning, dynamic radiography provides 
information, such as the effects of gravity, spinal mobility, 
and instability. Recently, imaging techniques, including 
bending X-rays [14,15] and prone-traction radiography 
[16], have been introduced to predict motion in an op-
erative position before surgery. Although dynamic plain 
radiography is available, including gravity and dynamic 
elements, it does remain a static image. At the moment 
of filming, the patient must temporarily stop moving and 
remain stationary in one position.

As a diagnostic modality, the most serious limitation of 
plain radiography is the difficulty in identifying soft tissue 
structures. Occasionally, internal organ structures, such as 
the bowel gas, overlap bony structures, making it difficult 
to identify spinal osseous pathology, which can lead to 
finding false-positive lesions. When skeletal tissues, such 
as the rib, humeral head, and iliac crest, exist together 
around the spine, they can overlap and obscure the cor-
responding spinal column, making it difficult to identify 
lesions or cause underestimation.

Radiation hazards are an unavoidable risk in X-ray im-
aging, and although the cumulative amount is not large, it 
cannot be excluded from cancer risk [17]. Under specific 
conditions, such as the first trimester period of pregnancy, 
X-ray imaging is considered an absolute contraindication 
as it may directly harm the fetus [18]. Efforts are made to 
minimize radiation exposure when long-term, continu-
ous, and repeated radiation is essential for several torso 
pathologies, such as in the evaluation of adolescent scolio-
sis [17].

2. Computed tomography

CT allows good visualization of spinal pathologies, in-
cluding compression of neural structures and diseases of 
laterally situated structures (such as foraminal stenosis) 
[19-21]. Modern spiral CT with multidetector rows al-
lows for fast and continuous data acquisition within a 
few seconds [22]. In the diagnosis of spinal diseases, CT 
is particularly valuable for evaluating osseous structures. 
Volumetric reconstruction of three-dimensional (3D) 
images and multiplanar post-image acquisition process-
ing provides excellent visualization of the bony structure 
of the spinal column and intuitive information pre- and 
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postoperatively [23,24]. In particular, CT is appropriate to 
explore complex anatomical areas (such as occipito-cer-
vical junctions and sacroiliac regions) or lesions wherein 
normal anatomy has largely been lost due to congenital 
anomalies, degenerative processes, or previous surgical 
treatments (Fig. 1) [25].

The intrinsic capability of CT in discriminating spi-
nal osseous lesions arises from exceptional sensitivity 
and specificity to cortical bone abnormalities. Lesions, 
including cortical discontinuity, thinning, and margin ir-
regularity, can be readily identified on CT. It is useful for 
identifying skeletal lesions that are very small or unclear 
on plain radiography [26]. CT provides higher sensitivity 
than MRI in distinguishing calcified hard disc lesions or 
ossification of ligamentous structures (such as the poste-
rior longitudinal ligament or ligamentum flavum) [27-29]. 
Additionally, the evaluator can easily adjust the contrast 
and window level in the captured image. Subtle soft tis-
sue abnormalities, such as intervertebral disc protrusion, 
can also be detected through adjustment to a density that 
can best visualize each soft tissue and bony structure. CT 
can accurately assess postoperative conditions, including 
achieving solid spinal fusion, positioning of implanted 
material, and hardware-related complications [30].

Despite these advantages, CT has inherent limitations 
in the evaluation of spinal diseases. Since the introduc-
tion of CT, cancer risk due to high radiation exposure has 
been a fundamental challenge [31]. High-dose radiation 

exposure to patients is required to obtain high-resolution 
images. Conversely, images of relatively low resolution 
are derived with low-dose radiation; therefore, there is a 
possibility that the diagnosis may be missed or misdiag-
nosed in the case of minute changes in the cortical bone. 
Distinguishing soft tissues (even with contrast agents) has 
limitations, particularly between muscles, ligaments, and 
neural structures around the spine. Spatial artifacts are a 
challenge, such that the size of the cortical bone appears 
larger than it is at soft tissue density. When cortical bone 
diameter/thickness is important, such as in surgical plan-
ning for screw placement, a change to bone density setting 
is recommended. CT images are vulnerable to the forma-
tion of metal artifacts from metal foreign bodies in the 
body, and specific image acquisition and reconstruction 
are required [32,33]. Particularly, detailed tissue examina-
tion may be hindered when previous implantation or for-
eign bodies containing steel are present around the lesion.

3. Magnetic resonance imaging

MRI is an imaging technology that detects and visualizes 
changes in the arrangement of hydrogen nuclei (protons) 
in cells within an artificial magnetic field. Similar to CT, 
MRI can achieve excellent anatomical and spatial resolu-
tion through multiplanar images [34]. Protons are tempo-
rarily aligned in one direction when an artificial magnetic 
field is generated; simultaneously applied radiofrequency 
pulses disrupt this uniform alignment. The protons at-
tempt to return to their original arrangement when the 
magnetic field is removed. This shift-back timing varies 
according to the difference in the number of protons in 
the tissue, that is, the water content [35,36]. The MRI ma-
chine distinguishes shift-back timing (and water content) 
differences between tissues.

The strength of MRI is that it provides visualization 
and clear distinction through high-resolution images 
of individual tissues and organs, particularly soft tis-
sue structures. Spinal diseases affect both the complex 
bony structure constituting the vertebral column and the 
diverse soft tissue structures, including ligaments and 
muscles surrounding the spine, intervertebral discs, and 
neural structures, including the spinal cord and nerve 
roots. Therefore, despite its relatively high cost and dif-
ficulty in accessibility, MRI, which can visualize both os-
seous and soft tissues, has become an essential element in 
the diagnosis of spinal diseases. With the advancement 

Fig. 1. Three-dimensional computed tomography images for preoperative plan-
ning. (A) Bilateral vertebral arteries with normal course were observed. (B) 
Right unilateral vertebral artery without left vertebral artery was detected.

A B
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of this technology, the field strength of the superconduct-
ing magnets of the MRI machine has gradually increased 
from 0.15 T initially to 9.4 T at some settings [37]. The 
standard protocol for spine MRI generally includes axial 
and sagittal images of T1- and T2-weighted sequences 
[34]. Depending on the characteristics and phase of the 
disease, fat suppression T2-weighted images, such as short 
tau inversion recovery or contrast-enhanced T1 images, 
are frequently added to sagittal images [34].

T1-weighted images are specialized in providing ana-
tomical details of changes in the bone marrow, osseous 
structures, discs, and musculotendinous soft tissue [34]. 
The neural structure is expressed as intermediate signal 
intensity in the T2-weighted image; however, it provides 
well-visualized information through perfect contrast with 
the high signal intensity of the surrounding cerebrospinal 
fluid [38]. Fat suppression technology provides highly 
contrasted images for the visualization of pathological 
structures [39,40].

Similar to CT, intravenous contrast agents can be used 
in MRI. However, unlike CT, which provides detailed 
visualization of the vascular structure, gadolinium en-
hancement used in MRI reduces the relaxation time of 
molecules around the magnetic field and transmits an im-
age with increased signal intensity of tissue showing hy-
pervascularity. This enhancement appears most clearly at 
T1 and is used for the diagnosis of epidural fibrous scars, 
infections, tumors, vascular malformations, or leptomen-
ingeal lesions [41-44].

MRI can identify small soft tissue structures in the 
spine, including the spinal cord, surrounding vessels, and 
nerve roots [45-47]. Spine MRI is an essential diagnostic 
tool for evaluating lesions in degenerative diseases, such 
as spinal stenosis, disc herniation, and myelopathy [47-49]; 
the vertebrae, ligaments, and spinal cord after trauma [50-
52]; and the benign/malignant nature, size, and extent of 
tumorous lesions [45]. Similar to CT, in the case of acute 
traumatic osseous lesions, such as fractures, sensitivity, 
and specificity are high. However, the MRI identification 
point is different from CT in that it checks for fractures 
based on signal changes in the bone marrow and cancel-
lous parts rather than direct visualization of the cortical 
bone. Using signal changes based on bone marrow edema, 
MRI identifies the presence and location of acute fracture 
or soft tissue injury and simultaneously distinguishes it 
from normal tissue without injury. T1-weighted imaging 
is useful for evaluating the integrity of ligament structures, 

particularly anterior and posterior longitudinal ligaments 
and epidural hematomas [53-56]. MRI is also used to 
diagnose inflammatory conditions, such as multiple scle-
rosis, sarcoidosis, and transverse myelitis, because it can 
detect swelling of the spinal cord (acute inflammation) or 
demyelination (chronic inflammation) [57-59].

Dynamic or axial-loaded MRI was developed to per-
form MRI in locations that may best reveal pathology. 
In the diagnosis of cervical myelopathy, dynamic (neck 
extension) MRI usage is gradually increasing (Fig. 2) [60-
63]. Recently, to obtain MRI with gravity added, weight-
bearing MRI has been introduced in some facilities. It is 
promising that the pathologic status of the erect spine, 
including actual weight-bearing, can be reflected in the 
image [64-67]. However, it is unlikely to replace conven-
tional MRI owing to technically limiting factors, such as 
lower image resolution [68,69] and longer examination 
time [67,70]; therefore, it is used as additional or auxiliary 
imaging technology. Given the cortical bone has sparse 
free-water content, most signals in MRI are generated by 
bound water; thus, signal decay is fast, and signal intensity 
is low [71]. To overcome these shortcomings, technolo-
gies, including ultrashort echo time sequences, have been 
developed to amplify weak cortical bone signals to en-
hance imaging [72,73].

Similar to other diagnostic imaging modalities, MRI 

Fig. 2. A 63-year-old female patient with degenerative cervical myelopathy. 
(A) Neutral sagittal magnetic resonance (MR) imaging of the cervical spine 
showed a C4–5 canal stenosis with signal change of the spinal cord. (B) 
Extension sagittal MR of the cervical spine showed more aggravated cord com-
pression of C4–5 segment, as well as the cranial and caudal extension of the 
cervical canal stenosis to C3–7 levels.

A B
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has drawbacks. Completing an MRI scan takes several 
minutes, which is longer than the period for completing a 
CT scan. The increase in magnetic field strength has dra-
matically improved the MRI resolution; however, this re-
quires more imaging time, thereby causing patient incon-
venience and increased possibility of motion artifacts. The 
possibility of artifact formation based on patient motion 
is inherent. Moreover, due to interference with magnetic 
fields, metal artifacts in MRI are formed more extensively 
than those in CT. In the case of ferrous metal-containing 
implants, including artificial discs, wires, or screws, exten-
sive artifacts are formed in the area adjacent to the neural 
structure, thereby obscuring lesions in the adjacent area 
[74]. There is a possibility that imaging may be impossible 
or limited due to factors inherent to the patient, such as 
claustrophobia and the presence of ferromagnetic devices 
[74,75]. Furthermore, the imaging of tissues with very 
low water content or thickness, such as the cortical bone 
and calcified tendon/ligament or cartilage, is not as clearly 
distinguishable from other soft tissues [76]. For pregnant 
women, MRI is considered to be a relative contraindica-
tion, particularly in the first trimester [77].

Radionuclide Imaging

Bone scans (bone scintigraphy) are one of the primary 
nuclear medicine tests. Bone scans have high sensitivity 
and can easily evaluate the bones of the whole body. Gen-
erally, this modality scans from the head to the toe using a 
gamma camera 2–6 hours after intravenous injection with 
99mTc-labeled polyphosphonate. However, it includes ob-
taining a local planar image or a single-photon emission 
computed tomography (SPECT) image while the gamma 
camera is fixed. Bone scans are used to evaluate suspi-
cion and extent of metastatic disease, differentiation of 
fractures and trauma from inflammatory diseases of the 
skeleton, and evaluation and observation of the prognosis 
of radiotherapy, benign tumors, arthritis, metabolic bone 
disease, infection, and other skeletal disorders [78,79].

Although their uptake mechanism is unclear, they are 
absorbed by chemisorption on the surface of hydroxyapa-
tite by bone metabolism. The degree of accumulation of 
these drugs depends on biological factors, including bone 
blood flow and turnover. In the case of a whole-body bone 
scan, an intravenous injection of a phosphate compound 
is followed by imaging of the whole-body skeleton or a 
specific area 2–4 hours later according to the prescribed 

protocol. The acquired images are 100% and 70% en-
hanced images; 100% images are used for shallow bone 
examination, and 70% images are used for thick bones, 
including the spine. When analyzing the bone condition 
and vascular distribution of soft tissues is necessary, such 
as in osteomyelitis, latent fractures, and joint diseases, 
the radiopharmaceutical is intravenously injected while 
a simultaneous flow image is obtained for 60 seconds, 
and a blood pool image is obtained within 10 minutes of 
injection. After 2–4 hours, a delayed image is obtained 
by statically capturing the image of the region of interest 
and evaluated. This image is known as a three-phase bone 
scan.

Bone scan is superior to X-ray in some circumstances, 
as it can show abnormal findings with only 3%–5% min-
eral change, whereas a 30%–50% change is required by 
other radiological examinations. Since the gamma-ray 
signal has a linear relationship with lesion severity, it is 
more useful than MRI in quantitative evaluation.

1. Bone scintigraphy (bone scan)

Radionuclide bone scintigraphy, also called bone scan, is a 
molecular imaging that is widely used in detecting spinal 
pathologies. Owing to its high sensitivity, bone scans can 
detect 3%–5% of bone mineral change; however, its speci-
ficity is relatively low. Due to this high sensitivity, it can be 
used for screening or confirming compression fractures 
that cannot be detected on plain radiographs. Vertebral 
compression fractures can be diagnosed using simple 
radiography, radionuclide bone imaging, and imaging 
modalities, including MRI. Occult fractures that are not 
visible on simple radiographs can be diagnosed by MRI 
or bone scan; however, Zhao et al. [80] found no differ-
ence in sensitivity between these two imaging modalities. 
In the case of MRI, the examination time is long, and the 
cost is high; therefore, it is considered cost effective to use 
bone scans for this diagnosis [81,82].

Osteomyelitis and pyogenic arthritis are accompanied 
by systemic symptoms related to inflammation, which can 
cause tissue destruction in the bones and joints. However, 
within 10 days of symptom onset, plain radiographs gen-
erally show normal or non-specific findings. Radionuclide 
imaging is a useful adjunct to MRI, which is the imaging 
test of choice for spinal infection. Although not useful for 
detecting soft tissue infections, it is a screening test for 
spondylodiscitis. Gallium-67 imaging with bone scan in-



Diagnostic Technology for Spine PathologyAsian Spine Journal 769

creases the specificity of the scan [83,84].
In patients with malignant diseases, prompt diagnosis 

and appropriate treatment are significant factors for a 
healthy life. Since most bone metastases are asymptomat-
ic, imaging modalities for early detection have been intro-
duced, with bone scan being the modality of choice [85-88] 
(Fig. 3). Bone metastasis is often detected late, and serious 
effects, such as pathologic fracture and cord compression, 
are highly likely, significantly diminishing patient treat-
ment outcomes and quality of life. Several studies have 
shown that bone scan sensitivities for bone and vertebral 

body metastases are high (87% and 84%, respectively) 
[89,90]. However, when Park et al. [91] considered a bone 
scan performed on a patient with cervical spinal metasta-
sis, the sensitivity and specificity were 59.1% and 94.6%, 
respectively. These dissimilar results were attributed to 
differences in bone metabolism related to the primary 
cancer type and anatomical characteristics of the cervical 
spine. Despite some controversial results, the value of a 
bone scan as a screening test for bone tumors and metas-
tasis is considered high.

Imaging tests are significant for diagnosing rheumatoid 
arthritis and confirming the course of disease. Although 
simple imaging is widely used, plain radiographs have 
limitations in early diagnosis, whereas bone scans exam-
ine the whole body to identify early disease. Diagnosis 
of inflammatory diseases, such as rheumatoid arthritis, 
ankylosing spondylitis, and Reiter syndrome, is important 
as they accompany sacroiliac arthritis. To quantitatively 
evaluate sacroiliac joint inflammation, the sacroiliac joint/
scrum ratio is computed based on the central portion of 
the sacrum in a bone scan. Sacroiliac arthritis is suspected 
if the value is 1.15 or more, and diagnosis is positive if it 
is 1.2 or more [78]. Gheita et al. [92] suggested that bone 
scans are useful for detecting disease activity and periph-
eral arthritis in patients with subclinical axial seronegative 
spondyloarthritis. Currently, bone scintigraphy of the 
spine is widely used.

2. ‌�Single-photon emission computed tomography/com-
puted tomography

SPECT/CT is a fusion of CT imaging and SPECT, which 
acquires an image by rotating a gamma camera around 
the patient using radioactive isotopes to reconstruct a 
cross-sectional image. SPECT/CT complements SPECT, 
which has poor spatial resolution, to increase diagnostic 
specificity, and enable quantitative measurements [93,94]. 
Horger et al. [95] found that SPECT/CT was 85% more 
accurate than bone scan alone. Accuracy increases in 
areas with complex anatomical structures, such as axial 
skeletal structures, where planar evaluation is difficult. 
Arthritis causes back pain when it occurs in the facet joint 
of the spine; however, it is difficult to distinguish early due 
to slight changes using plain radiography. Using SPECT, 
osteoarthritis is diagnosed by confirming an increase in 
intake in the facet joint with a diagnostic sensitivity and 
specificity of 85%–100% and 71%, respectively; SPECT/

A

B

Fig. 3. A 75-year-old male patient was admitted to the emergency room with 
lower motor weakness and sensory change that gradually developed and was 
diagnosed with T7–9 epidural space mass lesion and prostate cancer multiple 
metastasis. (A) A preoperative whole-body bone scan showed hot-uptake of 
the skull, mandible, multiple ribs, T7–11, and L4–5, suggesting metastasis. (B) 
In the preoperative enhanced magnetic resonance image, metastasis was con-
firmed in the T5, T7, and L3 vertebral bodies, and T7–9 cord compression was 
seen.
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Cz’) in the parietal lobe contralateral to the stimulated 
side. The cut-off values are 21.0 (N19) and 24.6 ms (P23) 
for median-SEP and 43.4 (P37) and 51.1 ms (N45) for PT-
SEP [104].

3. Nerve conduction study and electromyography

NCS and EMG evaluate the state of peripheral nerves 
and muscles [105,106]; the information on the degree 
and site of nerve injury can be obtained. Using EMG, 
the presence of muscle pathology can be investigated. In 
NCS, electrical stimulation is delivered to the nerves by 
the stimulating electrode, while the recording electrode 
attached to specific sites on the nerves receives electrical 
activity [105]. Subsequently, the latency for the muscles 
to contract in response to the nerve electrical stimulation, 
conduction velocity, and amplitude are assessed. EMG 
evaluates the electro-physiological condition of a muscle 
by the insertion of a thin needle electrode directly into 
the muscle tissue [107]. Electrophysiological alterations 
occur in a muscle if nerve or muscle damage is present. In 
spinal disorders, NCS/EMG can be used to evaluate the 
presence and level of radiculopathy. Before spinal surgery, 
NCS/EMG is used for the differentiation of other possible 
unexpected disorders, including motor neuron disease, 
Guillain–Barré syndrome, and peripheral demyelinating 
disease [108,109]. Therefore, NCS/EMG can prevent un-

CT can be used to localize the uptake site, which results in 
more accurate diagnostic results [96-99].

SPECT/CT is a highly recommended diagnostic tool for 
specific spinal pathologies, including spondylolysis, oc-
cult fracture, infection, and malignancy. While bone scans 
have high diagnostic sensitivity, SPECT/CT can evaluate 
the spine as a 3D tomography image; therefore, it can have 
a higher diagnostic accuracy than bone scans [100,101]. 
Studies have shown that SPECT/CT can be a useful di-
agnostic method for detecting spinal diseases, including 
malignant tumors, active phases of arthritis, minor trau-
ma, infections, pseudoarthrosis, and postoperative pain 
caused by minor factors [102,103].

Electrodiagnostic Studies

1. Central motor conduction time study

Central motor conduction time (CMCT) studies evaluate 
the state of the corticospinal tract in the brain or spinal 
cord based on motor evoked potentials (MEPs) (Fig. 4A). 
Generally, the values for CMCTs are recorded from the bi-
lateral biceps brachii (BB), abductor pollicis brevis (APB), 
and tibialis anterior (TA) muscles. Electrodes are attached 
to the selected muscles to induce an MEP. Magnetic 
stimulation is initiated over the primary motor cortex and 
delivered to the muscles on the contralateral side of the 
stimulated cortex by inducing muscle contraction. Muscle 
contractions are recorded as MEPs, and the latency is cal-
culated; CMCT is estimated by subtracting the latency of 
nerve conduction between the spinal nerve root around 
the intervertebral foramen and the muscle, where an elec-
trode was attached, from the latency of nerve conduction 
from the cerebral cortex to the muscle via the cortico-
spinal tract. The cut-off values are 8.5, 9.2, and 18.1 ms 
for BB-CMCT, APB-CMCT, and TA-CMCT, respectively 
[104].

2. Sensory evoked potential study

Sensory evoked potential (SEP) studies evaluate the state 
of the sensory tract in the brain or spinal cord. The SEPs 
of the bilateral median and posterior tibial (PT) nerves are 
generally assessed (Fig. 4B); SEPs of median nerve stimu-
lation at the wrist (N19, P23) and PT nerve at the ankle 
(N37, N45) are recorded on the scalp overlying the pri-
mary sensory area (median nerve: C3’ and C4,’ PT nerve: 

Fig. 4. Assessment of central motor conduction time (A) and sensory evoked 
potential (B).

A

B
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necessary spinal surgery by accurately diagnosing the le-
sions causing neurological symptoms.

Conclusions

Accurate diagnosis and patient-specific treatment strate-
gies for spinal diseases are of paramount importance 
although remain challenging despite the advancement of 
diagnostic technologies. In recent years, these technolo-
gies have significantly improved, allowing for greater ac-
curacy and reliability to be achieved in diagnosing spinal 
pathologies. Diagnostic technologies, such as X-rays, CT, 
MRI, and electrodiagnostic tests, can aid in appropriate 
patient management and accurately determine prognosis. 
Therefore, to determine the best approach for each pa-
tient, clinicians should be aware of the essential diagnostic 
modalities for the spine.
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