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Abstract

Purpose: To assess the contributions of circulating metabolites for improving upon the 

performance of the Risk of Ovarian Malignancy Algorithm (ROMA) for risk prediction of ovarian 

cancer (OvCa) among women with ovarian cysts.
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Experimental Design: Metabolomic profiling was performed on an initial set of sera 

from 101 serous and non-serous OvCa cases and 134 individuals with benign pelvic 

masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related 

metabolites (diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-

acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid) 

was developed for distinguishing early-stage OvCa from BPM. The performance of the metabolite 

panel was evaluated in an independent set of sera from 118 OvCa cases and 56 subjects with 

BPM. The contributions of the panel for improving upon the performance of ROMA was further 

assessed.

Results: A 7-marker metabolite panel (7MetP) developed in the Training Set yielded an AUC of 

0.86 (95% CI: 0.76–0.95) for early-stage OvCa in the independent Test Set. The 7MetP+ROMA 

model had an AUC of 0.93 (95% CI: 0.84–0.98) for early-stage OvCa in the Test Set, which 

was improved compared to ROMA alone (0.91 (95% CI: 0.84–0.98); likelihood ratio test 

p-value:.03). In the entire specimen set, the combined 7MetP+ROMA model yielded a higher 

positive predictive value (0.68 vs 0.52; 1-sided p<.001) with improved specificity (0.89 vs 0.78; 

1-sided p<.001) for early-stage OvCa compared to ROMA alone.

Conclusions: A blood-based metabolite panel was developed that demonstrates independent 

predictive ability and complements ROMA for distinguishing early-stage OvCa from benign 

disease to better inform clinical decision making.

Introduction

Ovarian cysts are found to occur in some 17% of women that undergo transvaginal 

sonograms (TVS). Most of these cysts are non-cancerous.(1,2) Currently, neither TVS 

nor cancer antigen 125 (CA125) alone or in combination yield sufficient sensitivity and 

specificity to distinguish benign form malignant ovarian cysts. (3) The high false positive 

rates lead to unnecessary surgical procedures, with significant morbidity.(4)

Two risk assessment algorithms, the Risk of Ovarian Malignancy Algorithm (ROMA) 

and the risk of ovarian cancer algorithm (OVERA), were developed to assess the risk of 

a mass being cancerous.(5–8) ROMA and OVERA have similar abilities to distinguish 

malignant from benign pelvic masses.(7,8) Although these algorithms offer high sensitivity 

for detection of OvCa, specificity is limited.(5–8)

Perturbed cellular metabolism is a hallmark of cancer(9). Several lines of evidence indicate 

that cellular and systemic metabolic adaptations occur from the earliest phases of cancer 

development suggesting that metabolites may serve as cancer biomarkers.(10,11) Here, we 

applied a deep learning approach to metabolic profiles of sera to determine whether a 

metabolic signature may be uncovered that distinguish early-stage ovarian cancers from 

benign disease. A model consisting of seven cancer-relevant metabolites, including three 

polyamines, was developed and tested in an independent set in combination with the ROMA 

algorithm for OvCa risk prediction among women with ovarian cysts.
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Materials and Methods

Specimen Sets

Blood specimens were obtained preoperatively with informed consent under IRB/ethical 

committees approved protocols (LAB04–0687) at the University of Texas M.D. Anderson 

Cancer Center (MDACC) and at the Fred Hutchinson Cancer Research Center (FHCRC, 

IRB 4563) from patients who were admitted for surgery based on a mass found on 

ultrasound, elevated CA125, or a positive biopsy. This study was approved and monitored 

by the respective Institutional Review Boards and was conducted in accordance with the 

Declaration of Helsinki. All human biospecimens were obtained with written informed 

consent. All patients were fasting at the time of blood collection. Samples were processed 

on the same day, generally within 4 hours of blood draw, under standardized operating 

procedures, aliquoted to minimize freeze-thaw cycling effects, and stored in −80°C until 

use. The specimen set consisted of plasma from 59 patients with stage I-II and 160 patients 

with stage III-IV invasive epithelial ovarian cancer and from 190 patients with benign pelvic 

masses. (3,12) Biopsy samples were examined by a certified pathologist for the diagnosis 

of cancer or benign pelvic condition. Detailed patient and tumor characteristics are provided 

in Table 1. Information regarding histological ovarian cancer subtypes and benign etiologies 

are provided in Supplementary Table S1. All participants had provided consent for use of 

samples in ethically approved secondary studies.

Metabolomic analysis—Metabolomic analyses were performed as previously described.

(13)

Primary Metabolites and Biogenic Amines

Metabolites were extracted from pre-aliquoted EDTA plasma (10 μL) with 30μL of LCMS 

grade methanol (ThermoFisher) in a 96-well microplate (Eppendorf). Plates were heat 

sealed, vortexed for 5 min at 750 rpm, and centrifuged at 2000 × g for 10 minutes at room 

temperature. The supernatant (10 μL) was carefully transferred to a 96-well plate, leaving 

behind the precipitated protein. The supernatant was further diluted with 10 μL of 100 

mM ammonium formate, pH3. For Hydrophilic Interaction Liquid Chromatography (HILIC) 

analysis, the samples were diluted with 60 μL LCMS grade acetonitrile (ThermoFisher), 

whereas samples for C18 analysis were diluted with 60 μL water (GenPure ultrapure 

water system, Thermofisher). Each sample solution was transferred to 384-well microplate 

(Eppendorf) for LCMS analysis.

Untargeted Analysis of Primary Metabolites and Biogenic Amines

Untargeted metabolomics analysis was conducted on Waters Acquity™ UPLC system with 

2D column regeneration configuration (I-class and H-class) coupled to a Xevo G2-XS 

quadrupole time-of-flight (qTOF) mass spectrometer. Chromatographic separation was 

performed using HILIC (Acquity™ UPLC BEH amide, 100 Å, 1.7 μm 2.1× 100mm, 

Waters Corporation, Milford, U.S.A) and C18 (Acquity™ UPLC HSS T3, 100 Å, 1.8 μm,, 

2.1×100mm, Water Corporation, Milford, U.S.A) columns at 45°C.
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Quaternary solvent system mobile phases were (A) 0.1% formic acid in water, (B) 0.1% 

formic acid in acetonitrile and (D) 100mM ammonium formate, pH 3. Samples were 

separated using the following gradient profile: for the HILIC separation a starting gradient 

of 95% B and 5% D was increase linearly to 70% A, 25% B and 5% D over a 5min period 

at 0.4mL/min flow rate, followed by 1 min isocratic gradient at 100 % A at 0.4mL/min flow 

rate. For C18 separation, a chromatography gradient of was as follows: starting conditions, 

100% A, with linear increase to final conditions of 5% A, 95% B followed by isocratic 

gradient at 95% B, 5% D for 1 min.

Binary pump was used for column regeneration and equilibration. The solvent system 

mobile phases were (A1) 100mM ammonium formate, pH 3, (A2) 0.1 % formic in 2-

propanol and (B1) 0.1 % formic acid in acetonitrile. The HILIC column was stripped using 

90% A2 for 5 min followed by 2 min equilibration using 100% B1 at 0.3 mL/min flowrate. 

Reverse phase C18 column regeneration was performed using 95% A1, 5% B1 for 2 min 

followed by column equilibration using 5% A1, 95% B1 for 5 min.

Mass Spectrometry Data Acquisition

Mass spectrometry data was acquired using ‘sensitivity’ mode in positive and negative 

electrospray ionization mode within 50–1200 Da range for primary metabolites and 100–

2000 Da for complex lipids. For the electrospray acquisition, the capillary voltage was set at 

1.5 kV (positive), 3.0kV (negative), sample cone voltage 30V, source temperature at 120° C, 

cone gas flow 50 L/h and desolvation gas flow rate of 800 L/h with scan time of 0.5 sec in 

continuum mode. Leucine Enkephalin; 556.2771 Da (positive) and 554.2615 Da (negative) 

was used for lockspray correction and scans were performed at 0.5 min. The injection 

volume for each sample was 3μL, unless otherwise specified. The acquisition was carried 

out with instrument auto gain control to optimize instrument sensitivity over the samples 

acquisition time.

Data Processing

Data were processed using Progenesis QI (Nonlinear, Waters). Peak picking and retention 

time alignment of LC-MS and MSe data were performed using Progenesis QI software 

(Nonlinear, Waters). Data processing and peak annotations were performed using an in-

house automated pipeline as previously described.(13–16) Annotations were determined 

by matching accurate mass and retention times using customized libraries created from 

authentic standards and by matching experimental tandem mass spectrometry data against 

the NIST MSMS, LipidBlast or HMDB v3 theoretical fragmentations; for complex lipids 

retention time patterns characteristic of lipid subclasses was also considered. To correct for 

injection order drift, each feature was normalized using data from repeat injections of quality 

control samples collected every 10 injections throughout the run sequence. Measurement 

data were smoothed by Locally Weighted Scatterplot Smoothing (LOESS) signal correction 

(QC-RLSC) as previously described. Values are reported as ratios relative to the median of 

historical quality control reference samples run with every analytical batch for the given 

analyte.(13–16)
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Assaying of CA125 and HE4—Serum CA125 and HE4 concentrations were measured 

using the Architect CA125II assay (Abbott Diagnostics, Abbott Park), and the HE4 EIA 

assay (Fujirebio Diagnostics, Malvern, PA) as previously described.(17) To calculate the 

ROMA score, a predictive index (PI) was calculated using serum HE4 and CA125 II 

levels and one of the following equations, depending on the patient’s menopausal status as 

previously described(7):

Premenopausal: Predictive Index (PI) = −12.0 + 2.38*Natural Log[HE4] + 0.0626*Natural 

Log[CA 125]

Postmenopausal: Predictive Index (PI) = −8.09 + 1.04*Natural Log[HE4] + 0.732*Natural 

Log[CA 125]

ROMA percentage were calculated by exp(PI)/(1+exp(PI).

Statistical analysis—An overall schematic workflow of the study is provided in 

Supplementary Fig. S1. Metabolite selection and model building was performed using 

metabolic profiles generated from plasma samples from the FHCRC. The method reported 

by Gedeon was used to prioritize pertinent variables to be included in the model.(18–20) 

This approach removes irrelevant or noisy variables by analyzing for the relative weight of 

each variable within the overall data matrix. An importance score is calculated by dividing 

the absolute value of the weight of an input connecting to an output by the total absolute 

value of all weights from that input. When applied in the deep learning model, this approach 

is recursively extended backwards through layers by taking the effect of a neuron on a 

connected node, then multiplying the derived weight by the effect of the given node on the 

target output and summing all connecting nodes.

Pjk =
|wjk|

∑r = 1
nℎ |wrk|

Here, Pjk represents the average contribution of a node j in a layer to a node k in the next 

layer. w is the weight on the connection and nh is the number of nodes in the next layer.

The contribution of an input neuron to an output is:

Qik = ∑
r = 1

nℎ
Pir × Prk

Using this approach, 20 iterations with slightly modified hyperparameters were introduced, 

and the relative variable importance score recalculated for each metabolite. Metabolites 

that consistently yielded a relative variable importance score >0.7 (corresponding to those 

metabolites with importance scores in the top 30th percentile) across all 20 iterations 

were selected to develop an algorithm for distinguishing early-stage OvCa from benign 

disease. Seven models, including deep learning, random forest, ensemble learning and 

gradient boosting method algorithms, incorporating the seven metabolites were assessed 
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for distinguishing early-stage OvCa from benign disease. Performance of the models were 

evaluated using a 5-fold cross validation. To further evaluate model stability, perturbations 

(e.g. random selection and replacement) were introduced to the Training Set and the 

performance re-assessed.

A deep learning model (DLM) with 3 hidden layers and 3 nodes in each layer was selected 

for modeling the 7-marker metabolite panel (7MetP) based on AUC, and the 7MetP using 

fixed parameters tested for detection of OvCa in the MDACC cohort.

To assess the contributions of the 7MetP and ROMA, we first fitted a logistic regression with 

the 7MetP and ROMA as two separate predictors (Supplementary Table S2). For ROMA, 

we used percentage risk as described above.(21) Initial modeling was performed using 

early-stage OvCa cases and individuals with BPM from the FHCRC and testing of the model 

performed in the MDACC cohort.

To directly compare the performance of the combined 7MetP+ROMA model with ROMA, 

we used fixed risk thresholds of 11.4% in premenopausal women and 29.9% for 

postmenopausal, (21) and calculated positive predictive values (PPV), negative predictive 

values (NPV) as well as sensitivity and specificity estimates.

The combined score from the logistic regression model were converted to risk by 

exp(combined score)/(1+exp(combined score)).

Model discrimination was assessed based on receiver operating characteristic curve (ROC), 

as well as sensitivity and specificity estimates. The 95% confidence intervals (CI) for AUCs 

were estimated using the Delong method.(22) P-values for specificity and sensitivity were 

estimated by calculating 2.5 and 97.5 percentiles of 1,000 boot straps on the delta values. All 

modeling was performed using the h2o package and R statistical program.(18)

Data Availability—Relevant data supporting the findings of this study are available 

within the Article and Supplementary Information or are available from the authors upon 

reasonable request.

Results

Feature selection for algorithm training

Untargeted metabolomics was conducted on a Training Set of sera from 101 OvCa cases 

(39 early stage and 62 late stage) and 134 subjects with BPM from the Fred Hutchinson 

Cancer Research Center (FHCRC) (Table 1). A total of 475 uniquely annotated metabolites 

were quantified (Supplementary Table S3). To prioritize metabolites, relative importance 

scores were calculated using the Gedeon method (19,20) and metabolites selected based 

on consistently exhibiting an importance score above 0.7. This approach resulted in seven 

metabolites each of which had prior evidence for cancer relevance (diacetylspermine 

(DAS)(23), diacetylspermidine (DiAcSpmd)(23), N-(3-acetamidopropyl)pyrrolidin-2-one 

(N3AP)(23), N-acetylneuraminate (NANA)(24), N-acetyl-mannosamine (NAcMan)(25), 

N-acetyl-lactosamine (NAcLAC)(26), and hydroxyisobutyric acid (HBA)(27)) that were 

subsequently used for model building. Individual classifier performance of these metabolites 
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for distinguishing OvCa cases from individuals with BPM ranged from 0.55 to 0.82 

(Supplementary Table S4; Supplementary Fig. S2).

Development of a combination rule and validation in an independent test set

We next sought to develop an optimal combination rule that incorporated the seven 

metabolites for distinguishing early-stage OvCa from benign disease. For model building, 

we tested seven different machine learning algorithms. Of these, a deep learning model 

(DLM) with 3 hidden layers and 3 nodes in each layer achieved the highest predictive 

performance and was used to establish the 7-marker metabolite panel (7MetP), which 

yielded an AUC of 0.75 (95% CI: 0.66–0.85) for differentiating early-stage OvCa cases 

from benign disease (Table 2; Supplementary Tables S5–6). When stratifying OvCa cases 

into serous and non-serous, the 7MetP had respective AUCs of 0.85 (95% CI: 0.79–0.91) 

and 0.80 (95% CI: 0.71–0.89) (Supplementary Table S7).

Validation of the 7MetP using fixed parameters was performed in an independent Test Set 

from MD Anderson Cancer Center (MDACC) that consisted of 118 OvCa cases (20 early 

stage and 98 late stage) and 56 individuals with BPM. The 7MetP yielded an AUC of 

0.88 (95% CI: 0.82–0.93) for distinguishing all OvCa cases from individuals with BPM 

(Supplementary Table S5), and an AUC of 0.86 (95% CI: 0.76–0.95) for early-stage OvCa 

(Figure 1; Supplementary Table S5).

Contributions of the metabolite panel with the ROMA algorithm

We next assessed whether the 7MetP would improve upon the predictive performance of the 

ROMA algorithm. Using model scores derived from the 7MetP and the ROMA algorithm, a 

logistic regression model for distinguishing early-stage OvCa from BPM was developed in 

the Training Set and performance evaluated in the Test Set. The combined 7MetP+ROMA 

yielded an AUC of 0.93 (95% CI: 0.86–1.00) for early-stage OvCa in the Test Set whereas 

ROMA alone had an AUC of 0.91 (95% CI: 0.84–0.98) (likelihood ratio test p: 0.03) (Table 

3). Compared to ROMA, the combined 7MetP+ROMA yielded improvements in the PPV by 

21.0% (1-sided p< .001) and specificity by 14.0% (1-sided p< .001) for early stage OvCa 

(Table 3). When considering all OvCa cases, the combined 7MetP+ROMA model yielded an 

AUC of 0.97 (95% CI: 0.94–0.99) in the Test Set (Table 4).

Performance of the metabolite panel alone and in combination with ROMA in the combined 
training and test sets

We further evaluated the predictive performance of the 7MetP alone and in combination with 

ROMA in the entire specimen set (n=219 OvCa cases (59 early stage and 160 late stage 

and 190 BPM)). The 7MetP had an AUC of 0.85 (95% CI: 0.81–0.88) for distinguishing 

all OvCa cases from individuals with BPM and an AUC of 0.81 (95% CI: 0.76–0.86) for 

early-stage OvCa (Supplementary Table S5). The combined 7MetP+ROMA model had a 

resultant AUC of 0.87 (95% CI: 0.85–0.93) for early-stage OvCa, which was markedly 

improved compared to ROMA alone (AUC: 0.84 (95% CI: 0.81–0.90); likelihood ratio 

test p-value: <0.001) (Table 5; Supplementary Table S8). Importantly, compared to ROMA 

alone, the 7MetP+ROMA model yielded a statistically significantly (1-sided P< .001) higher 

PPV (0.68 vs 0.52) and specificity (0.89 versus 0.78) for early-stage OvCa (Table 5).

Irajizad et al. Page 7

Clin Cancer Res. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Pelvic masses are relatively common among women of all ages usually necessitating 

surgery. However, most such masses are benign and only a small percentage of these women 

will be diagnosed with ovarian cancer.(28)

Algorithms such as OVERA and ROMA were developed to estimate probability of a woman 

with a pelvic mass harboring a malignancy and to determine whether a patient should 

be referred to a general gynecologist if the mass is likely to be benign or a gynecologic 

oncologist if the mass is likely to be malignant.(7,29,30) A gynecologic oncologist has 

specialized training to dissect nodes, remove the omentum, and to remove as much cancer 

as possible from the surface of the bowel if extensive disease is found. Although the 

OVERA and ROMA algorithms offer high sensitivity, they are limited by sub-optimal 

specificity which can result in high false-positive rates, increased patient anxiety, and 

unnecessary procedures that are associated with significant morbidity.(31,32) A test that 

offers high sensitivity and specificity for identifying individuals at high risk of harboring 

malignant ovarian cysts has potential to better inform clinical decision making and improve 

patient outcomes. We developed and validated a blood-based metabolite panel that improves 

prediction of malignancy in combination with ROMA for women presenting with ovarian 

cysts.

The metabolite panel includes three polyamines, three acetylated carbohydrates, and 

hydroxyisobutyric acid. We have previously shown utility of circulating polyamines for early 

detection of ovarian cancer.(15) Polyamines have also been reported to be elevated in urine 

of individuals with ovarian cancer compared to controls.(33) The acetylated carbohydrates 

NANA and NAMA are involved in metabolism of sialic acids, which are commonly found in 

glycans of cell surface glycoproteins and glycolipids. Sialic acids are known to be involved 

in various aspects of tumorigenesis, including promoting tumor growth and metastasis as 

well as immune evasion.(34–37) Moreover, sialic acids can accumulate in the circulation 

due to increased turnover, secretion, and/or shedding.(38) N-acetyllactosamine (LacNAc) 

is a reported carbohydrate antigen involved in malignant transformation and metastasis.

(26,39,40) Hydroxyisobutyric acid, a metabolite derived from valine metabolism, has also 

been linked to cancer with diagnostic and prognostic applications in ovarian cancer.(27)

On balance, limitations to our study including the unbalanced distribution of histology 

across the test and validation sets. OvCa cases were largely at advanced stages of disease 

in the specimen sets with differential representation of non-serous and serous OvCa. The 

metabolite panel yielded comparable performance for distinguishing serous and non-serous 

OvCa from BPM. Moreover, our metabolite panel was developed using early-stage OvCa 

cases and validated in an independent set of early-stage OvCa cases. Contributions of the 

metabolite panel with the OVERA algorithm was not assessed. Comparison of performance 

estimates between ROMA and OVERA have shown that they are comparable with tradeoffs 

in sensitivity and specificity.(7,41,42) Although PPV and NPV estimates are dependent upon 

the prevalence of disease in the evaluated population, previous investigations have reported 

ROMA to have a PPV of 42.9% (7), which is consistent with our findings. OVERA has 

a reported PPV of 40%.(8) In our study, the 7MetP+ROMA model had PPV of 68.0%. 
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Thus, we believe that the metabolite panel has the potential to significantly contribute to the 

OVERA as well.

In conclusion, we developed and validated a metabolite panel that complements ROMA for 

improved risk prediction of malignancy among women presenting with ovarian cysts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Two FDA-approved algorithms, the Risk of Ovarian Malignancy Algorithm (ROMA) 

and the risk of ovarian cancer algorithm (OVERA), have been developed to assess the 

likelihood of a mass being cancerous. Although these algorithms offer high sensitivity 

for detection of ovarian cancer, specificity is limited, which can result in high false-

positive rates, increased patient anxiety, and unnecessary procedures that is associated 

with significant morbidity. Here, we developed and independently validated a blood-

based metabolite panel for distinguishing early-stage ovarian cancers from benign 

pelvic masses. We additionally showed that the metabolite panel in combination with 

ROMA yields a higher positive predictive value with improved specificity for early-stage 

OvCa compared to ROMA alone. The metabolite panel provides a clinical tool that 

complements ROMA for improved prediction of malignancy. Such a test would better 

inform clinical decision making and improve patient outcomes.
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Figure 1. 
Predictive performance of the 7MetP for distinguishing early-stage OvCa from BPM in the 

independent Test Set.
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Table 1.

Patient and tumor characteristics

Patient and Tumor 
Characteristics

Training Set Testing Set

Cases BPM† P-value‡ Cases BPM† P-value‡

Number of Subjects, N 101 134 118 56

Age, average (min-max) 59 (23–85) 57 (30–83) 0.14 61 (36–86) 55 (33–79) 0.009

Menopausal Status, N (%)

Pre 21 (20.8%) 39 (29.1%) 0.17 19 (16.1%) 18 (32.1%) 0.02

Post 80 (79.2%) 95 (70.9%) 99 (83.8%) 38 (67.8%)

Race, N (%)

White 83 (82.2%) 104 (77.6%) 0.18 87 (73.7%) 42 (75%) 0.52

Black 5 (5%) 3 (2.2%) 9 (7.6%) 9 (16.1%)

Asian 2 (2%) 3 (2.2%) 13 (11%) 1 (1.8%)

American Indian - 1 (0.7%) - -

Pacific Islander - - 9 (7.6%) 4 (7.1%)

Unknown 11 (10.9%) 23 (17.2%) - -

Stage, N (%)

Stage I and II 39 (38.6%) - 20 (16.9%) -

Stage III and IV 62 (61.4%) - 98 (83.1%) -

Histological Subtype, N (%)

Serous 69 (68.3%) - 114 (96.6%) -

Non-Serous 32 (31.7%) - 1 (0.8%) -

Unknown 3 (2.54%)

ROMA, median (25th/75th 

Percentiles)
86.85 (36.85–

98.03)
11.14 (6.64–

20.66)
<0.0001 89.51 (70.55–

96.95)
13.66 (6.42–

18.56)
<0.0001

†
individuals with benign pelvic masses (BPM)

‡
Statistical significance was determined by Wilcoxon rank sum tests for continuous variables and Fisher’s exact test or χ2 tests for trend for 

categorical variables. 2-sided p-values are reported.

Clin Cancer Res. Author manuscript; available in PMC 2023 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Irajizad et al. Page 15

Table 2.

Performance of different learning algorithms for differentiating early-stage OvCa cases from BPM in the 

training set using 5-fold cross validation.

Model Hyper parameters AUC1 Log Loss AUCpr2 Mean per 
class error RMSE3

Deep learning model Activation: MaxoutWithDropout, hidden 
layers: [3, 3, 3] 0.753 0.354 0.556 0.222 0.303

Deep learning model Activation: Tanh, hidden layers: [1,1] 0.740 0.362 0.529 0.233 0.322

StackedEnsemble Ensemble models: GLM, Deep Learning, 
Random Forest, Gradient Boost Method 0.713 0.387 0.484 0.205 0.332

Deep learning model Activation: Tanh, hidden layers: [2,2] 0.711 0.377 0.519 0.237 0.325

Lasso Regression Lambda =0.2,5 features selected 0.709 0.506 0.438 0.202 0.376

StackedEnsemble
Ensemble models (best of each family): GLM, 

Deep Learning, Random Forest, Gradient 
Boost Method

0.692 0.399 0.459 0.228 0.336

GLM Family: binomial 0.687 0.532 0.447 0.241 0.364

Extremely Randomized 
Trees (XRT) - 0.681 0.577 0.359 0.224 0.351

Distributed Random Forest 
(DRF) - 0.679 0.746 0.355 0.216 0.354

Gradient Boosting Method Number of tree: 50, Maximum depth:6 0.668 0.516 0.357 0.234 0.372

AUC: Area under the ROC Curve

AUCpr: Area under the precision recall curve

RMSE: Root-mean-square deviation
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Table 3.

Performance estimates of ROMA and the combined 7MetP+ROMA model for early-stage OvCa the Training 

Set and the independent Testing Set.

Training Set

ROMA ROMA + 7MetP Difference P 

AUC (95% CI) 0.81 (0.77 – 0.85) 0.84 (0.80 – 0.88) 0.03 (0.01 to 0.06) < .001

At 11.4% risk threshold for premenopausal 
and 29.9% for postmenopausal (same risk as 

ROMA)

Sensitivity 0.68 (0.60 – 0.77) 0.68 (0.59 – 0.77) 0.00 (−0.06 to 0.07) .49

Specificity 0.79 (0.75 – 0.83) 0.88 (0.85 – 0.91) 0.09 (0.06 to 0.12) <.001

PPV 0.48 (0.40 – 0.55) 0.62 (0.54 – 0.69) 0.14 (0.08 to 0.20) <.001

NPV 0.90 (0.87 – 0.93) 0.91 (0.88 – 0.94) 0.01 (−0.01 to 0.03) .14

Test Set

ROMA ROMA + 7MetP Difference P 

AUC (95% CI) 0.91 (0.84–0.98) 0.93 (0.86–1.00) 0.02 (−0.01 to 0.04) .03

At 11.4% risk threshold for premenopausal 
and 29.9% for postmenopausal (same risk as 

ROMA)

Sensitivity 0.90 (0.83 – 0.97) 0.90 (0.81 – 0.97) 0.00 (−0.09 to 0.09) .472

Specificity 0.77 (0.70 – 0.83) 0.91 (0.86 – 0.95) 0.14 (0.09 to 0.20) <.001

PPV 0.58 (0.48 – 0.68) 0.79 (0.67 – 0.87) 0.21 (0.13 to 0.28) <.001

NPV 0.96 (0.92 – 0.99) 0.96 (0.93 – 0.99) 0.01 (−0.03 to 0.04) .365

Abbreviations: PPV: positive predictive value; NPV: negative predictive value. P-values for comparison of AUCs represent likelihood ratio tests. 
Risk threshold corresponding to 11.4% in premenopausal women and 29.9% for postmenopausal were chosen based on reported findings from 
Ortiz-Munoz and colleagues.(21) 1-sided P-values are reported as we expect that the combined 7MetP+ROMA will yield improved performance 
estimates compared to ROMA alone.
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Table 4.

Performance estimates of ROMA and the combined 7MetP+ROMA model for all OvCa in the Training Set 

and the independent Testing Set.

Training Set

ROMA ROMA + 7MetP Difference P 

AUC (95% 
CI) 0.91 (0.89 – 0.93) 0.93 (0.91 – 0.94) 0.01 (0.00 to 0.03) <.001

At 11.4% risk threshold for 
premenopausal and 29.9% for 

postmenopausal (same risk as ROMA)

Sensitivity 0.87 (0.83 – 0.91) 0.86 (0.82 – 0.90) −0.01 (−0.04 to 0.02) .22

Specificity 0.79 (0.75 – 0.83) 0.88 (0.85 – 0.91) 0.09 (0.06 to 0.12) <.001

PPV 0.76 (0.71 – 0.80) 0.84 (0.81 – 0.89) 0.09 (0.05 to 0.12) <.001

NPV 0.89 (0.86 – 0.92) 0.89 (0.86 – 0.92) 0.00 (−0.02 to 0.02) .36

Test Set

ROMA ROMA + 7MetP Difference P 

AUC (95% 
CI) 0.96 (0.94–0.99) 0.97 (0.94–0.99) 0.01 (0.00 to 0.01) .06

At 11.4% risk threshold for 
premenopausal and 29.9% for 

postmenopausal (same risk as ROMA)

Sensitivity 0.96 (0.93 – 0.98) 0.93 (0.90 – 0.96) −0.03 (−0.05 to 
−0.01) .008

Specificity 0.76 (0.70 – 0.83) 0.91 (0.86 – 0.95) 0.15 (0.10 to 0.20) < .001

PPV 0.89 (0.86 – 0.93) 0.96 (0.93 – 0.97) 0.06 (0.04 to 0.09) < .001

NPV 0.89 (0.84 – 0.94) 0.86 (0.81 – 0.91) −0.03 (−0.08 to 0.01) .07

Abbreviations: PPV: positive predictive value; NPV: negative predictive value. P-values for comparison of AUCs represent likelihood ratio tests. 
Risk threshold corresponding to 11.4% in premenopausal women and 29.9% for postmenopausal were chosen based on reported findings from 
Ortiz-Munoz and colleagues.(21) 1-sided P-values are reported as we expect that the combined 7MetP+ROMA will yield improved performance 
estimates compared to ROMA alone.
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Table 5.

Performance estimates of ROMA and the combined 7MetP+ROMA model for early-stage OvCa in the 

combined Specimen Set.

Entire Set

ROMA ROMA + 7MetP Difference P

AUC (95% CI) 0.84 (0.79–0.90) 0.87 (0.82–0.93) 0.03 (0.01 to 0.04) <.001

At 11.4% risk threshold for premenopausal 
and 29.9% for postmenopausal (same risk as 

ROMA)

Sensitivity 0.76 (0.69 – 0.82) 0.76 (0.70 – 0.82) 0.00 (−0.04 to 0.05) .464

Specificity 0.78 (0.75 – 0.81) 0.89 (0.86 – 0.92) 0.11 (0.08 to 0.14) <.001

PPV 0.52 (0.45 – 0.58) 0.68 (0.61 – 0.75) 0.16 (0.11 to 0.21) <.001

NPV 0.91 (0.89 – 0.94) 0.92 (0.90 – 0.94) 0.01 (−0.01 to 0.02) .091

Abbreviations: PPV: positive predictive value; NPV: negative predictive value. P-values for comparison of AUCs represent likelihood ratio tests. 
Risk threshold corresponding to 11.4% in premenopausal women and 29.9% for postmenopausal were chosen based on reported findings from 
Ortiz-Munoz and colleagues.(21) 1-sided P-values are reported as we expect that the combined 7MetP+ROMA will yield improved performance 
estimates compared to ROMA alone.
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