Skip to main content
. Author manuscript; available in PMC: 2023 May 1.
Published in final edited form as: Clin Cancer Res. 2022 Nov 1;28(21):4669–4676. doi: 10.1158/1078-0432.CCR-22-1113

Table 2.

Performance of different learning algorithms for differentiating early-stage OvCa cases from BPM in the training set using 5-fold cross validation.

Model Hyper parameters AUC1 Log Loss AUCpr2 Mean per class error RMSE3
Deep learning model Activation: MaxoutWithDropout, hidden layers: [3, 3, 3] 0.753 0.354 0.556 0.222 0.303
Deep learning model Activation: Tanh, hidden layers: [1,1] 0.740 0.362 0.529 0.233 0.322
StackedEnsemble Ensemble models: GLM, Deep Learning, Random Forest, Gradient Boost Method 0.713 0.387 0.484 0.205 0.332
Deep learning model Activation: Tanh, hidden layers: [2,2] 0.711 0.377 0.519 0.237 0.325
Lasso Regression Lambda =0.2,5 features selected 0.709 0.506 0.438 0.202 0.376
StackedEnsemble Ensemble models (best of each family): GLM, Deep Learning, Random Forest, Gradient Boost Method 0.692 0.399 0.459 0.228 0.336
GLM Family: binomial 0.687 0.532 0.447 0.241 0.364
Extremely Randomized Trees (XRT) - 0.681 0.577 0.359 0.224 0.351
Distributed Random Forest (DRF) - 0.679 0.746 0.355 0.216 0.354
Gradient Boosting Method Number of tree: 50, Maximum depth:6 0.668 0.516 0.357 0.234 0.372

AUC: Area under the ROC Curve

AUCpr: Area under the precision recall curve

RMSE: Root-mean-square deviation