Table 2.
Model | Hyper parameters | AUC1 | Log Loss | AUCpr2 | Mean per class error | RMSE3 |
---|---|---|---|---|---|---|
Deep learning model | Activation: MaxoutWithDropout, hidden layers: [3, 3, 3] | 0.753 | 0.354 | 0.556 | 0.222 | 0.303 |
Deep learning model | Activation: Tanh, hidden layers: [1,1] | 0.740 | 0.362 | 0.529 | 0.233 | 0.322 |
StackedEnsemble | Ensemble models: GLM, Deep Learning, Random Forest, Gradient Boost Method | 0.713 | 0.387 | 0.484 | 0.205 | 0.332 |
Deep learning model | Activation: Tanh, hidden layers: [2,2] | 0.711 | 0.377 | 0.519 | 0.237 | 0.325 |
Lasso Regression | Lambda =0.2,5 features selected | 0.709 | 0.506 | 0.438 | 0.202 | 0.376 |
StackedEnsemble | Ensemble models (best of each family): GLM, Deep Learning, Random Forest, Gradient Boost Method | 0.692 | 0.399 | 0.459 | 0.228 | 0.336 |
GLM | Family: binomial | 0.687 | 0.532 | 0.447 | 0.241 | 0.364 |
Extremely Randomized Trees (XRT) | - | 0.681 | 0.577 | 0.359 | 0.224 | 0.351 |
Distributed Random Forest (DRF) | - | 0.679 | 0.746 | 0.355 | 0.216 | 0.354 |
Gradient Boosting Method | Number of tree: 50, Maximum depth:6 | 0.668 | 0.516 | 0.357 | 0.234 | 0.372 |
AUC: Area under the ROC Curve
AUCpr: Area under the precision recall curve
RMSE: Root-mean-square deviation