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Abstract

Voluntary movement requires communication from cortex to the spinal cord, where a dedicated 

pool of motor units (MUs) activates each muscle. The canonical description of MU function 

rests upon two foundational tenets. First, cortex cannot control MUs independently but supplies 

each pool with a common drive. Second, MUs are recruited in a rigid fashion that largely 

accords with Henneman’s size principle. While this paradigm has considerable empirical support, 

a direct test requires simultaneous observations of many MUs across diverse force profiles. We 

developed an isometric task that allowed stable MU recordings, in a rhesus macaque, even during 

rapidly changing forces. Patterns of MU activity were surprisingly behavior-dependent and could 

be accurately described only by assuming multiple drives. Consistent with flexible descending 

control, microstimulation of neighboring cortical sites recruited different MUs. Furthermore, 
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the cortical population response displayed sufficient degrees of freedom to potentially exert 

fine-grained control. Thus, MU activity is flexibly controlled to meet task demands and cortex 

may contribute to this ability.

Introduction

Primates produce myriad behaviors, from acrobatic maneuvers to object manipulation, all 

requiring precise neural control of muscles. A muscle is controlled by a motor neuron pool 

(MNP) containing hundreds of α-motoneurons, each innervating a unique subset of muscle 

fibers. A motoneuron and associated fibers constitute a “motor unit” (MU)1. MUs are 

heterogeneous, differing in size (large MUs innervate more fibers)2, duration of generated 

force3, and muscle length where force becomes maximal4.

Optimality suggests flexibly using MUs suited to each situation5–7. Yet nearly a century 

of research supports an alternative rigid strategy that approximates optimality1,8,9. With 

limited exceptions, MUs within a pool are believed to be recruited in a consistent order10,11 

from smallest to largest, obeying Henneman’s size principle12–17. Small-to-large recruitment 

minimizes force fluctuations18 and energy expenditure19, and is attributed to intrinsic 

motoneuron properties1,9. Rigid recruitment is computationally efficient20: one ‘common 

drive’ determines every MU’s activity21. Henneman found small-to-large recruitment 

regardless of whether input was delivered via electrical stimulation of dorsal roots12; 

electrical stimulation of the motor cortex, basal ganglia, cerebellum, or brain stem22; or 

mechanical activation of reflex circuits13.

Rigid recruitment is believed to simplify control (Fig. 1a). If “the brain cannot selectively 

activate specific motor units1”, it is freed from the need to do so. Instead, each MU’s 

activity is a fixed function of a unified force command, yielding small-to-large recruitment 

with limited well-established exceptions. It is cautioned that these exceptions should not be 

misinterpreted as flexibility23–26. First, conduction-velocity differences impact recruitment 

order during ballistic contractions8,23. Second, cell-intrinsic mechanisms cause some MUs 

to rotate on and off, over many seconds, to combat fatigue27. Finally, for ‘multifunctional’ 

muscles with multiple mechanical actions, the size principle holds only within each 

action6,28,29. Each mechanical action is hypothesized to have its own common drive (or 

‘synergy’). These drives overlap imperfectly within the MNP30 (Fig. 1a, middle) and are 

preferentially reflected by different nerve branches31. Recruitment is still considered rigid25 

because it is a fixed function of a small number of commands.

The opposite of rigid control -- highly flexible control that leverages many degrees of 

freedom (Fig. 1b) -- has rarely been considered viable. EMG frequency analysis suggests 

flexibility7 within the rat gait cycle32 and across cycling speeds in humans33. Yet most 

studies argue that speed-based recruitment is absent23,34 and/or of limited benefit35. Thus, 

the consensus has been that speed does not reveal flexibility1,25,36,37. A possible exception is 

fast lengthening contractions5, but studies disagree38 regarding whether this is a general 

property36. Latent flexibility is suggested by biofeedback training26,39,40 yet may be 

limited41 and could involve known phenomena including multifunctional muscles24. The 

prevailing view is thus that flexibility is likely scant36,37 or non-existent25. Yet many have 
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stressed the need for further examination using improved recording techniques7 and a 

broader range of behaviors25.

Results

Pac-Man Task and EMG recordings

We trained a rhesus macaque to perform an isometric force-tracking task. Force controlled 

a ‘Pac-Man’ icon that intercepted scrolling dots (Fig. 1c). The dot path instructed force 

profiles (Fig. 1d, cyan). Actual forces (single trials in gray) closely matched target 

profiles. We performed three experiment types across 38 ~1 hour sessions. Microstimulation 

experiments perturbed descending commands. Dynamic experiments employed diverse force 

profiles. Muscle-length experiments used multiple force profiles across two muscle lengths.

In each session, we recorded from multiple custom-modified percutaneous thin-wire 

electrodes closely clustered within one muscle head. EMG spike-sorting is notoriously 

difficult during dynamic tasks; movement threatens stability and vigorous activity produces 

superimposed waveforms. Three factors aided spike sorting: the isometric task facilitated 

stability, the number of active MUs could be titrated via task gain, and each MU produced 

a complex waveform spanning multiple channels (Extended Data Fig. 1). We adapted 

recent spike-sorting advances, including methods for resolving superimposed waveforms. 

We isolated 3–21 MUs per session (356 total). To eliminate the possibility that recruitment 

might mistakenly appear flexible due to properties of multifunctional muscles, forces 

were all generated with the same mechanical action. Furthermore, recordings included non-

multifunctional muscles and analyses considered only simultaneously recorded neighboring 

MUs.

Cortical perturbations

If rigid MU control is spinally enforced13, artificially perturbing cortex should modulate 

MU activity while preserving orderly recruitment22. In contrast, if control is flexible, cortex 

might participate and perturbations might drive diverse recruitment patterns. It is argued that 

this does not occur22, but the possibility is suggested by a mapping study in baboons42. 

To investigate, we delivered microstimulation in sulcal motor cortex (Fig. 2a), during static 

forces, while recording from the deltoid, triceps, and pectoralis (18 sessions with 6661 

total successful trials; 183 total MUs, 3–21 per session). We compared stimulation-driven 

responses amongst neighboring cortical electrodes. We also recorded during a four-second 

force ramp without stimulation.

Rigid control is fundamentally a hypothesis regarding the population response. Yet if 

activity departs from rigid control, there should exist pairwise comparisons (amongst just 

two MUs) where flexibility becomes patent. Pairwise comparisons are helpful because 

inspection at the level of spikes and rates allows one to consider trivial explanations. In 

Fig. 2b, stimulation recruited two neighboring pectoralis MUs, visible on the same channels 

(MU206’s waveform is smaller and shown on an expanded scale). Cortical electrode 23 

primarily recruited MU206. Electrode 27 (400 microns away) primarily recruited MU215. 

This effect was robust across trials (Fig. 2c). Electrode 24 (physically between 23 and 27) 
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recruited both. These observations are incompatible with electrodes 23 and 27 recruiting the 

same common drive. Effects cannot be due to sampling error; standard errors of the mean 

are small. A similar effect is illustrated for two triceps MUs (Fig. 2d). Such effects were 

common: in 13/18 sessions, the relative activation of MUs depended on which electrode 

delivered stimulation (ANOVA, interaction between MU identity and electrode; p < 0.001 

adjusted for multiple comparisons; N = 11–77 trials per condition; session average = 29).

Cortical stimulation also yielded departures from the natural recruitment observed during 

the force ramp. For example, based on responses during the ramp, MU295 has a higher 

recruitment threshold than MU289 (Fig. 2e, left). Yet electrode 24 activated only MU295 

(Fig. 2e, middle). When MU289 was already active during static force production (Fig. 2e, 

right), stimulation had an effect consistent neither with common drive (it differed for the 

MUs) nor with recruitment during the ramp.

Departures from rigid control were not due to small latency differences amongst MUs23. 

For example, in Fig. 2c,d, all key departures relate to magnitude not latency. The same is 

true in Fig. 2e,f. Still, small latency differences exist: e.g., MU206 rises ~20 ms earlier 

than MU215 (Fig. 2c). Subsequent quantification thus takes latency into account. We saw 

little evidence for fatigue over a session, both in individual-example rasters and in summary 

analysis (Extended Data Fig. 2b). Occasionally, fatigue-combatting rotations27 produced 

‘streaky’ spike rasters (Fig. 2f, red) but this did not create the departures from rigid control 

in trial-averaged rates. To minimize any impact of fatigue-related effects, trials for all 

conditions (including stimulation sites) were interleaved. Occasionally, cortical perturbations 

produced hysteresis (Fig. 2f, right), likely reflecting persistent inward currents43. Unlike 

the immediate effect of stimulation, hysteresis rarely altered recruitment relative to natural 

behavior, consistent with properties of persistent inward currents37.

State-space predictions of rigid control

The hypothesis of rigid control is naturally expressed in a state space where every MU 

contributes an axis. Each MU’s activity is a monotonic function (termed a ‘link function’) 

of common drive44,45. Thus, with increasing drive, population activity should move farther 

from the origin, tracing a monotonic one-dimensional (1D) manifold (Fig. 2g, left). The 

manifold may curve (due to nonlinear link functions) but greater drive should cause all 

rates to increase (or remain unchanged if maximal or not yet recruited). In contrast, 

flexible control predicts recruitment patterns unconfined to a monotonic 1D manifold (Fig. 

2g, right). We use MU pairs to illustrate. Responses sometimes adhered to rigid-control 

predictions (Fig. 2h, left). Yet stimulation on different electrodes often yielded different 

trajectories (Fig. 2h, right; Fig. 2i,j), as did activity during the ramp. Brief trajectory 

‘loops’ likely reflect small latency differences and are thus compatible with rigid control. In 

contrast, entirely different trajectory directions are not.

Standard statistical tests (e.g., the ANOVA above) ask when MU responses are statistically 

different. However, the key population-level question is not whether responses differ, but 

whether differences can be explained by different link functions operating upon a common 

drive. Before engaging in model fitting, a simpler approach is to leverage the state-space 

perspective and ask whether population trajectories are logically consistent with rigid 
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control. To do so, we applied a novel metric: ‘MU displacement’ (Fig. 3a). Suppose two 

MUs have rates of 10 spikes/s at time t. If both rates increase by time t’ (possibly within 

a different condition), one can connect them with a monotonic manifold (left, dashed 
line). This is not true if rates change in opposition (right). ‘Displacement’ (blue) is the 

smallest alteration, in either MU’s rate, that renders activity consistent with a monotonic 

manifold. For each population response (one per session) we identified the MU pair causing 

the largest displacement, then minimized this displacement by allowing temporal shifts to 

eliminate latency-based effects. Any remaining displacement was the maximal displacement 

for that session. For 16/18 sessions, maximum displacement was higher than expected 

from sampling error (Fig. 3b, p<0.001, two-sample t-test). Displacements were larger when 

considering population trajectories across all stimulation sites (“all-stim”) versus each site 

alone (“1-stim”). This agrees with the ANOVA above: different stimulation sites often 

drove different MU-activity patterns. Even within a site, displacement was occasionally non-

negligible, indicating some MUs displayed responses with opposing polarities or temporal 

patterns. We extended the “all-stim” analysis by removing, from the population, the MU 

pair responsible for the largest displacement. We recomputed displacement and iterated until 

remaining displacement was no larger than the largest expected from sampling error (Fig. 

3c). On average it was necessary to remove 6.2 MUs, out of an average of 10.2 per session. 

Thus, a reasonably large percentage of the MU population showed responses inconsistent 

with rigid control.

We also applied a related metric, ‘MNP dispersion’. As common drive increases, so should 

the summed activity of all MUs: the L1-norm, ∥r∥1. Thus, there should not be two different 

‘ways’ of achieving a given ∥r∥1. Geometrically, crossing a given diagonal in multiple places 

(Fig. 3d) is incompatible with a monotonic manifold. We defined MNP dispersion, dMNP(λ) 

as the maximum distance between all population states with norm λ. For each population 

we computed the maximum dispersion (across λ), then minimized that value by allowing 

latency shifts. In agreement with analyses above, dispersion was largest when considering all 

stimulation sites (Fig. 3e). Dispersion exceeded that expected given sampling error for 17/18 

sessions (Fig. 3e).

Optimal motor unit recruitment

Is the capacity for flexible MU recruitment used during behavior? Because larger MUs tend 

to generate shorter-lived forces44, a venerable suggestion is that flexibility might reveal itself 

when comparing slow versus fast movements5,7,32,33. The prevailing view is that this does 

not occur1. Recruitment is preserved during slowly and quickly increasing force ramps23, 

excepting trivial latency effects. Yet studies have found evidence for flexible recruitment5,33 

using non-ramping force profiles. We reasoned that revisitation of this topic would benefit 

from clear expectations regarding which force profiles are most likely to evoke altered 

recruitment.

We developed a simplified computational model, inspired by prior work that established 

size-based recruitment as the optimal fixed strategy18–20. We inquired how recruitment 

would behave were it infinitely flexible and optimized for each force profile. We modeled 

the force produced by an idealized MNP with N MUs as
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fMNP(t) = ∑
i = 1

N
ℎi * ri (t) (1)

where hi(t) is the twitch responses (modeled as in44) and ri(t) is the idealized firing rate of 

the ith MU. Twitch responses were bigger and briefer for larger MUs. For each target-force 

profile, we optimized MU rates (Fig. 4a) to minimize error (both average error and trial-to-

trial variability) between fMNP(t) and intended force (Fig. 4b). Optimization considered the 

entire force profile, and could thus consider whether a force would be short-lived.

Recruitment (Fig. 4c) was purely size-based for slowly ramping forces. Recruitment 

departed from purely size-based during fast ramps, but only modestly. Were such 

deviations observed empirically, most would be indistinguishable from latency differences. 

Recruitment was more profoundly altered during fast sinusoids. A similar effect was 

observed within chirps; recruitment changed as frequency increased. State-space plots 

confirm that, even under the assumption of complete flexibility, activity followed a 

similar manifold for slow and fast ramps (Fig. 4d). In contrast, flexibility revealed itself 

when comparing between slow ramps and the high-frequency sinusoid, or within the 

chirp. Flexibility leverages the fact that preferentially using small (slow) MUs minimizes 

fluctuations18,20. However, for high-frequency sinusoids, it becomes optimal to rely more on 

large (fast) MUs to avoid excessive force during troughs.

Motor unit activity across force profiles

Using diverse force profiles that included sinusoids (Fig. 1d) we recorded MU populations 

from the deltoid and triceps (14 sessions with 4734 total successful trials; 134 total MUs, 

3–20 MUs per session). MUs showed a range of recruitment thresholds and peak rates 

(Extended Data Fig. 2a). There was no indication of general fatigue across a session 

(Extended Data Fig. 2b). As predicted by the optimal-recruitment model, MU recruitment 

differed between slowly changing forces and high-frequency sinusoids. For example, in 

Fig. 5c, three lateral triceps MUs are active during the four-second ramp (left). During the 

3 Hz sinusoid, these MUs are similarly (or slightly less) active, and are joined by MUs 

that are active primarily during the sinusoid (right). Extended Data Fig. 3 shows additional 

single-trial traces, and rasters for all trials / MUs from this session. Of seven recorded MUs, 

three were strongly active during the 3 Hz sinusoid despite being inactive during the ramp.

Inspection of examples illustrates a range of effects. When considering only slowly changing 

forces (Fig. 5d), activity was equally consistent with rigid versus flexible control. Activity 

became inconsistent with rigid control when also considering high-frequency sinusoids. For 

example, MU309 (Fig. 5e) becomes far more active during the fast sinusoid, even as MU311 

becomes slightly less active (these correspond to MU5 and MU3 from panel c). MU329 

(Fig. 5f) is inactive during the four-second ramp and early in the chirp, but becomes active 

for the higher-frequency cycles even as MU324’s rate declines.

Both prior work and the optimal-recruitment model argue against large recruitment 

differences between slow and fast ramps. Indeed, despite their high rate of change (~64 N/s), 

fast (250 ms) ramps rarely produced recruitment that was clearly different from four-second 
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ramps. The only compelling exceptions were at force offset. For example, MU109 (Fig. 5g) 

tripled its activity in anticipation of a fast downward ramp, even as MU108 became slightly 

less active. A similar but smaller effect is exhibited by the model: large/fast MUs start to 

‘take over’ so force can terminate swiftly (in follow-up simulations, moving to even faster 

offsets enhanced this strategy).

As above, inspection of examples is useful when considering alternative explanations. 

Departures were not explained by some MUs reflecting force while others reflected its 

derivative. For example, MU309 (Fig. 5e) and MU329 (Fig. 5f) are more active during 

higher-frequency forces, but do not phase lead their neighboring MUs. Furthermore, 

responses did not exhibit large overshoots during rapidly increasing ramps (e.g., Fig. 5g, 

left). Effects were also not explainable by some sort of rapid within-trial fatigue. For 

example, there is no evidence of fatigue in Fig. 5e. In Fig. 5f, one might propose that 

MU324’s rate declines during the chirp due to fatigue, yet it maintained a consistently 

high rate during the much longer ramp. In Fig. 5g, the departure occurs because activity 

increases (not fatigues) in anticipation of force offset. Still, some MUs did show a slight rate 

‘sag’, especially during the lengthy four-second ramp (Fig. 2e, left). These long-timescale 

effects are presumably not a meaningful departure from rigid control, something taken 

into account when interpreting quantitative analyses below. We occasionally observed 

fatigue-combatting rotations; an MU could become less active for a handful of trials. To 

reduce any condition-specific impact on trial-averaged rates, trials for all conditions were 

interleaved. Inspection of individual-MU responses (also see Extended Data Fig. 3) confirms 

that different recruitment between ramps and sinusoids cannot be attributed to rotations or 

other long-timescale fatigue-related effects.

In situations where activity was potentially consistent with rigid control (Fig. 5d), trial-

averaged trajectories hewed close to a monotonic manifold (Fig. 5h). When activity was 

incompatible with rigid control (Fig. 5e,f), trajectories diverged from a monotonic manifold 

(Fig. 5i,j). To quantify at the population level, we employed the displacement and dispersion 

metrics. We focused on the model-based prediction that departures from rigid control should 

be minimal during the four-second ramp (where rigid and flexible control predict the 

same small-to-large strategy) but become common when considering all conditions. The 

four-second ramp is also a useful comparison because it provides an estimate of trivial 

departures from idealized rigid control due to modest temporal instabilities. Indeed, during 

the four-second ramp, displacement (Fig. 5k) and dispersion (Fig. 5n) were small but higher 

than expected given sampling error (yellow lines). Inspection of individual cases revealed 

that such effects were ‘real’ but not evidence of flexibility; they reflected uninteresting 

phenomena such a slight sag in rate over long timescales (as in Fig. 2e, left).

When considering the population response across all conditions, displacement (Fig. 5k) 

and dispersion (Fig. 5n) became much larger (p<0.001). All 14 sessions had a maximum 

displacement outside the range expected due to sampling error. As above, we removed the 

MU pair with the largest oppositional change, and iterated until remaining displacement 

was within the range possible due to sampling error. On average, 6.4 (out of an average 

of 9.6) MUs had to be removed. A given population typically exhibited a distribution 

of large, medium and small displacements (Fig. 5m). During the four-second ramp, all 
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displacements were small (purple). When considering all force profiles (green), the increase 

in displacement was due not to a few outliers, but to a large overall rightwards shift. For 

dispersion, we assessed robustness by sweeping the norm (rather than taking the maximum 

across norms). When considering all conditions (green), dispersion was high across a broad 

range of λ. Thus, population activity did not depart from a 1D monotonic manifold only at 

extremes, but did so over most of its dynamic range.

The contrast between the four-second ramp and sinusoidal forces also serves as a natural 

control for the concern that departures from rigid control might be due to occasional missed 

spikes. Judged subjectively, spike-sorting was excellent, but it remains likely that spikes 

were sometimes missed. Errors in spike sorting would, to a first approximation, be expected 

to impact all conditions similarly. Yet departures from rigid control were strongly present for 

some conditions but not others. One could argue that sorting might become particularly 

challenging during high-frequency sinusoids, leading to more missed spikes. However, 

departures from rigid control typically involved some MUs becoming more active during 

sinusoids. Direct inspection of voltage traces (Fig. 5c; Extended Data Fig. 3c) further rules 

out this potential source of effects.

Motor unit activity across muscle lengths

The optimal-recruitment-model solutions suggest a broader phenomenon: to achieve 

optimality, recruitment must depart from purely size-based whenever MUs show task-

relevant diversity in domains other than size. To explore one potential domain, we employed 

a task with two postures. The anterior deltoid generated torque in the same axis (shoulder 

flexion) for both, but was at different lengths as it did so. We recorded MU population 

activity during six sessions (2971 total successful trials; 39 total MUs, 4–9 MUs per 

session). Postures could not be interleaved on individual trials, and were thus performed 

in blocks. The possibility of length-based flexibility has only rarely been considered46. A 

challenge is that slight shifts in electrode location relative to muscle fibers can impact spike 

amplitude24,46. Fortunately, a matched-filter approach (see Methods) is insensitive to modest 

amplitude changes, and can rely on spike shape being preserved across time and channels. 

Example voltage traces are shown for two postures (Fig. 6a,b; only two channels shown for 

simplicity). MU3 and MU4 exhibit waveforms that shrink modestly in the second posture, 

yet could still be identified. MU3 became slightly more active at the shorter length, while 

MU4 became less active. MU5 was active only when the deltoid was shortened.

Muscle-length-driven recruitment changes could be dramatic (Fig. 6c,d), yielding state-

space trajectories far from a single monotonic manifold (Fig. 6e). At the population level, 

displacement (Fig. 6f) and dispersion (Fig. 6i) were high even when computed within 

muscle-length (green), reflecting force-profile-specific recruitment. They became higher 

still when also computed across muscle lengths (orange). All six sessions had maximum 

displacement outside the range expected due to sampling error. On average, more than half 

the MUs (4 out of an average of 6.5 recorded MUs) had to be removed from the population 

to eliminate significant displacement. The displacement distribution (Fig. 6h, orange) was 

shifted strongly rightwards relative to that observed during the four-second ramp at one 

muscle length (purple). Dispersion (Fig. 6j) was high across a broad range of norms.
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Effects were unrelated to fatigue. Recruitment changed suddenly at block boundaries, not 

slowly over a session. For example, the blue rasters in Fig. 6d reveal a sudden spiking 

increase between top and bottom subpanels, not a gradual change spanning both. A different 

concern is that an MU that becomes inactive might reflect recording instabilities. This is 

unlikely; other MUs recorded on the same channel always remained visible, indicating 

minimal electrode movement. Furthermore, often an MU became much less active but 

still spiked, ruling out this concern (e.g., Extended Data Fig. 4). In some sessions we 

re-examined the first posture, and confirmed that an MU that fell inactive during the second 

posture became active upon returning to the first posture.

Latent factor model

The most straightforward test of a hypothesis is to formalize it as a model and ask whether it 

can fit the data. For rigid control, this has historically been challenging because of the large 

space of free parameters. Existing models of rigid control use constrained link functions44,45 

that are reasonable but limit expressivity. The ideal model should have only those constraints 

inherent to the hypothesis – only then can it be rejected if it fails to fit the data. Fortunately, 

modern machine-learning approaches allow fitting models with unconstrained link functions 

and unknown common drive. We employed a probabilistic latent-factor model (Fig. 7a) 

where each MU’s rate is a function of common drive: ri(t) ~ fi(x(t + τi). Fitting used 

black box variational inference47 to infer x(t) and learn MU-specific link functions, fi, and 

time-lags, τi. fi was unconstrained other than being monotonically increasing. The resulting 

model can assume essentially any common drive and set of link functions, and MUs can 

have different latencies.

To be conservative, instead of testing on held-out data, we asked whether the model could fit 

the data when given every opportunity. Because some fit error is inevitable due to sampling 

error, we independently fit two random data partitions and computed cross-validated error: 

the dot product of the two residuals48 (residuals will be uncorrelated if due to sampling 

error). Cross-validated error can be positive or negative, and should be zero on average for 

an accurate model and greater than zero for an inaccurate model. To confirm, we used two 

different methods to construct artificial datasets that obeyed rigid control but were otherwise 

realistic and contained sampling error (see Methods and Extended Data Fig. 5). The model 

fit artificial datasets well, with cross-validated error consistently near zero (e.g., Fig. 7b, 

filled circles).

Given results above, we predict that the model should fit well during slowly changing forces 

(where flexible and rigid control make identical predictions) but not across all conditions. To 

test this prediction, for each session we fit MU population activity during the four-second 

increasing ramp alone, and again during all conditions. To avoid the concern that different 

conditions might intrinsically induce different-magnitude errors, in both cases we assessed 

error only within the four-second ramp. A model embodying rigid control should fit this 

situation well, unless also fitting other situations. As predicted, the model performed well 

when fitting only the four-second increasing ramp. Cross-validated error was above zero but 

only slightly (Fig. 7b, purple). This confirms that model failures due to trivial phenomena – 

e.g., short-timescale fatigue – are small.
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Cross-validated error (computed during the four-second ramp only) rose dramatically when 

the model had to also account for other conditions (Fig. 7b, green and orange). On 

individual sessions, error ranges were non-overlapping for 13/17 stimulation experiments, 

12/14 dynamic experiments, and 5/6 muscle-length experiments, (analysis could not be 

performed for one stimulation experiment because the recorded MUs were largely inactive 

during the ramp). To confirm the source of failures, we inspected example fits. As expected, 

the model could fit activity that followed a monotonic manifold during slowly changing 

forces (Fig. 7c, top). However, it could not fit activity that spanned different manifolds 

across conditions (bottom). Attempting to fit both situations yielded ‘compromise’ link 

functions that fit neither particularly well.

Historically, the possibility of speed-based flexibility has often been examined using 

force ramps that increase at different rates. In agreement with the predictions of optimal 

recruitment (Fig. 4) we did not find this comparison to be strongly diagnostic. When fitting 

the 250 ms ramp in addition to the four-second ramp, error increased only slightly: 9% as 

much as when fitting all conditions. In contrast, when fitting the 3 Hz sinusoid in addition 

to the four-second ramp, error increased considerably: 65% as much as when fitting all 

conditions. This supports what can be seen in examples: departures from rigid control are 

most prevalent when comparing slowly changing forces with fast sinusoids.

To explore further, we considered conditions spanning a range of frequencies, from static 

to 3 Hz sinusoid (dividing the chirp into two sub-conditions). We fit the latent-factor model 

to single-trial responses for two conditions at a time. We defined an MU as a ‘consistent 

violator’ if activity was overestimated for trials from one condition and underestimated for 

trials from the other, at a rate much higher than expected by chance. Of course, even when 

the population response is inconsistent with rigid control, only some individual MUs will 

show effects large enough to be defined as consistent violators (especially when comparing 

only two conditions and ignoring within-condition violations). This is acceptable because 

we wish not to interpret absolute scale, but to assess which conditions evoke different 

recruitment. Consistent violators were rare when two conditions had similar frequency 

content (Fig. 7d, left, dark entries near diagonal), and prevalent when conditions had 

dissimilar frequency content. Violations of rigid control during muscle-length experiments 

were also systematic. We divided conditions into slowly changing forces (Fig. 7d, top-right) 
and higher-frequency sinusoidal forces (bottom-right). Within each category, consistent 

violators were uncommon when comparing conditions with the same muscle length (dark 

block-diagonal entries), and prevalent when comparing across muscle lengths.

Might it be possible to elaborate the latent-factor model, and perhaps achieve better fits, 

while maintaining the core assumptions of rigid control? Further increasing link-function 

expressivity with more free parameters had almost no effect. We also employed a model that 

allowed history dependence: there was a single common drive, but each MU could reflect 

the current drive value and/or integrate past values. For example, common drive could reflect 

force, with some MUs directly sensitive to force and others to its history. Alternatively, the 

inferred common drive could reflect a high-passed version of force, allowing some MUs to 

reflect rate-of-change while others (via low-pass filtering) reflect force. Fits were improved 

for some specific history-dependent features (likely caused by persistent inward currents). 
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Yet there was still a dramatic increase in error when the model had to account for responses 

during all conditions.

In contrast, excellent fits were obtained simply by abandoning the core assumption of 

common drive, and allowing multiple latent-factor ‘drives’ consistent with flexible control. 

To ask how many drives might be needed (Fig. 8a), we challenged the model using the two 

dynamic sessions with the most simultaneously recorded MUs (16 and 18 recorded from the 

triceps, selecting sessions where all MUs were reasonably active at some point). Allowing 

more drives produced an immediate decrease in cross-validated error, which reached zero 

around 4–6 factors (Fig. 8b). Thus, the model can fit well, it simply needs more drives than 

allowed under rigid control.

Neural degrees of freedom

Describing MU population activity required 4–6 drives, even for a subset of MUs (the 

triceps alone contain a few hundred) during a subset of behaviors. Neural control of the arm 

may thus be quite high-dimensional, with dozens or even hundreds of degrees of freedom 

across all muscles. It is unclear what proportion is accessible to descending control, but it 

could be large. The corticospinal tract alone contains approximately one million axons in 

human49, and stimulation suggests remarkably fine-grained control.

For fine-grained descending control to be plausible, motor cortex activity would need to 

display many degrees of freedom. Yet motor cortex activity is often described as constrained 

to relatively few dimensions50–52, with 10–20 latent factors accounting for most response 

variance. Studies have stressed the presence of more degrees of freedom than predicted by 

simple models, but even the largest estimate (~3053) seems insufficient to support detailed 

control over many muscles. However, the meaning of these numbers is unclear because 

they depend on methodology. For example, in53, a variance-explained threshold yielded an 

estimated dimensionality of 9. In contrast, assessing signal reliability yielded an estimate of 

29. Both are potentially underestimates given analyzed populations of ~100 neurons. The 

present task yields the opportunity to revisit this issue using behaviors relevant to flexible 

control. We considered a large population (881 sulcal neurons) recorded over 13 sessions 

using the 128-channel primate Neuropixels probes. Force profiles were as in Fig 1d.

Neurons displayed a great variety of response patterns (Extended Data Fig. 6). Capturing 

85% of the variance required 33 principal components (PCs). This is high relative to prior 

variance-cutoff-based estimates, possibly due to condition variety in the present task. Yet we 

stress that ‘variance explained’ is not a particularly meaningful measure given our specific 

scientific question. Small-variance signals may be deeply relevant to descending control54. 

Thus, we focused not on size but on whether a factor was reliable across trials (Fig. 8d). 

For the projection onto a given PC, we defined reliability as the correlation between held-out 

data and the data used to identify the PC. Each PC past the first 33 captured a small 

signal, yet those signals were reliable (Fig. 8e); the first 60 had reliability >0.7. Reliability 

remained well above zero for approximately 200 PCs (Fig. 8f). For comparison, we analyzed 

artificial datasets that closely matched the real data but had known dimensionality. Even 

when endowed with 150 latent factors, artificial populations displayed reliability that fell 

faster than for the data. This is consistent with the empirical population having >150 degrees 
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of freedom – an order of magnitude more than previously considered. Thus, the motor cortex 

population response has enough complexity that it could, in principle, provide detailed 

outgoing commands.

Discussion

The hypothesis of rigid control has remained dominant1,9 for three reasons: it describes 

activity during steady force production1,11,16,21, is optimal in that situation18, and could be 

implemented via simple mechanisms13,14. It has been argued that flexible control would be 

difficult to implement and that “it is not obvious... that a more flexible, selective system 

would offer any advantages14.” In contrast, our findings argue that flexible MU control 

is a normal aspect of skilled performance in the primate. Flexibility appeared in all three 

situations we examined.

Different muscles, with different compositions of slow- and fast-twitch fibers, become 

coordinated differently during high-speed movements: rapid paw shakes55, burst-glide 

swimming56, and cycling57. Yet it has remained controversial whether similar within-muscle 

flexibility exists7,25,37. Most studies of single MUs23,34,38 report no speed-based recruitment 

beyond trivial latency effects. Thus, the prevailing view is that speed-based recruitment 

doesn’t occur1,25,36, or occurs in some lengthening contractions37. Other studies indicate 

speed-based flexibility5,32,33, but often via indirect measures. This contrast might seem to 

suggest that the presence versus lack of flexibility reflects how carefully MU activity is 

measured. Our results instead suggest that prior disagreement reflected force-profile choice: 

ramps versus sinusoids. The optimal-recruitment model predicts large recruitment changes 

only during the latter. In agreement, whether studies found evidence for flexibility typically 

reflected which profile they employed.

We observed MUs that became less active at the highest frequencies (e.g., Fig. 5f) but 

no MUs became inactive, even though the optimal-recruitment model predicted this could 

happen. This discrepancy may reflect model simplicity: e.g., it doesn’t consider that 

slow fibers can accelerate under negative load58. Yet despite its simplicity, the optimal-

recruitment model is sufficient to make the key high-level point: accurately generating force 

profiles while minimizing other costs requires respecting diversity not only of size, but 

in any domain relevant to the range of behaviors being generated. In agreement, muscle 

length had a large impact on MU recruitment. The anatomical basis of flexibility is likely 

also domain-specific. Muscle-length-driven flexibility may require only spinally available 

proprioceptive feedback. In contrast, when flexibility reflects future changes in force, it may 

depend upon descending signals.

The hypothesis that descending signals can influence MU recruitment has historically been 

considered implausible; control might be unmanageably complex unless degrees of freedom 

are limited14,21. For this reason, descending control has typically been considered to involve 

muscle synergies59, above the individual-muscle level. Yet cortical stimulation induced 

remarkably selective recruitment. It remains unclear whether this selective activation 

involves small or large MU groups, but it is certainly below the individual-muscle 

level. Such fine-grained control may be more prominent in primates than cats49, where 

Marshall et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selective recruitment may be weaker and more easily dismissed as reflecting a damaged 

preparation22.

Motor cortex, a major source of descending control, is often described as low-dimensional. 

In an operational sense this is correct: a handful of high-variance signals often account for 

most response variance51,52, and are informative when testing and developing hypotheses52. 

Yet there also exist reliable small-variance signals53,54 that could contribute to outgoing 

commands. Our results reveal that small-but-reliable signals are numerous. Thus, although 

it is typically proposed that descending control is and should be simple1,60, in our view 

there is little reason to doubt the capacity for detailed control. The human corticospinal 

tract contains around a million axons, including direct connections onto α-motoneurons49, 

and exerts surprisingly selective control over MU activity. Our field has long accepted that 

detailed information about photoreceptor activity is communicated to cortex via a similarly-

sized (and less direct) pathway. It seems time to consider that the corticospinal tract could 

carry detailed information in the other direction.

Methods

Subject and task

All protocols were in accord with the National Institutes of Health guidelines and approved 

by the Columbia University Institutional Animal Care and Use Committee (protocol AC-

AABE3550). Subject C was a 10-year-old adult, male macaque monkey (Macaca mulatta) 

weighing 13 kg.

During experiments, the monkey sat in a primate chair with his head restrained via surgical 

implant and his right arm loosely restrained. To perform the task, he grasped a handle 

with his left hand while resting his forearm on a small platform that supported the handle. 

Once he had achieved a comfortable position, we applied tape around his hand and velcro 

around his forearm, which ensured consistent placement within and between sessions (the 

monkey could break the tape / velcro if desired, but did not as he was focused on the task). 

When performing the task, the monkey received both time-varying visual feedback from 

the screen and time-varying cutaneous feedback from the pressure his hand applied to the 

handle. There exist reports that adding unusual sensory feedback (e.g., via cutaneous nerve 

or mechanical stimulation) may alter recruitment under some situations61, though this is 

controversial. This is extremely unlikely to have impacted our results as our task design 

placed the primary source of feedback (the palm) far from the relevant shoulder muscles, 

and no interaction across such distance has been suggested (indeed, most studies that report 

orderly recruitment involve sensory feedback). Furthermore, the handle was held in the same 

way across force profiles and across stimulation sites, and is thus unlikely to account for 

changes in recruitment among those conditions.

The handle controlled a manipulandum, custom made from aluminum (80/20 Inc.) and 

connected to a ball bearing carriage on a guide rail (McMaster-Carr, PN 9184T52). The 

carriage was fastened to a load cell (FUTEK, PN FSH01673), which was locked in place. 

The load cell converted one-dimensional (tensile and compressive) forces to a voltage signal. 

That voltage was amplified (FUTEK, PN FSH03863) and routed to a Performance real-time 
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target machine (Speedgoat) that executed a Simulink model (MathWorks R2016b) to run the 

task. Because the load cell was locked in place, forces were applied to the manipulandum 

via isometric contractions.

The monkey controlled a ‘Pac-Man’ icon, displayed on an LCD monitor (Asus PN PG258Q, 

240 Hz refresh, 1920 × 1080 pixels) using Psychophysics Toolbox 3.0. Pac-Man’s horizontal 

position was fixed on the left-hand side of the screen. Vertical position was directly 

proportional to the force registered by the load cell. For 0 Newtons of applied force, 

Pac-Man was positioned at the bottom of the screen; for the calibrated maximum requested 

force for the session, Pac-Man was positioned at the top of the screen. Maximum requested 

forces (see: Experimental Procedures, below) were titrated with two goals in mind. First, to 

be comfortable for the monkey across many trials, and second, to activate multiple MUs but 

not so many that EMG signals became unsortable. On each trial, a series of dots scrolled 

leftwards on screen at a constant speed (1344 pixels/s). The monkey modulated Pac-Man’s 

position to intercept the dots, for which he received juice reward. Thus, the shape of the 

scrolling dot path was the temporal force profile the monkey needed to apply to the handle 

to obtain reward. We trained the monkey to generate static, step, ramp, and sinusoidal forces 

over a range of amplitudes and frequencies. We define a ‘condition’ as a particular target 

force profile (e.g., a 2 Hz sinusoid) that was presented on many ‘trials’, each a repetition 

of the same profile. Each condition included a ‘lead-in’ and ‘lead-out’ period: a one-second 

static profile appended to the beginning and end of the target profile, which facilitated 

trial alignment and averaging (see below). Trials lasted 2.25–6 seconds, depending on the 

particular force profile. Juice was given throughout the trial so long as Pac-Man successfully 

intercepted the dots, with a large ‘bonus’ reward given at the end of the trial.

The reward schedule was designed to be encouraging; greater accuracy resulted in more 

frequent rewards (every few dots) and a larger bonus at the end of the trial. To prevent 

discouraging failures, we also tolerated small errors in the phase of the response at high 

frequencies. For example, if the target profile was a 3 Hz sinusoid, it was considered 

acceptable if the monkey generated a sinusoid of the correct amplitude and frequency but 

that led the target by 100 ms. To enact this tolerance, the target dots sped up or slowed down 

to match his phase. The magnitude of this phase correction scaled with the target frequency 

and was capped at +/− 3 pixels/frame. To discourage inappropriate strategies (e.g., moving 

randomly, or holding in the middle with the goal if intercepting some dots) a trial was 

aborted if too many dots were missed (the criterion number was tailored for each condition). 

The average number of successful trials per session was 370 (stimulation experiments), 338 

(dynamic experiments), and 495 (muscle-length experiments). This excludes trials that were 

failed online and trials that were judged (via an algorithm, see below) to not meet standards 

for accuracy.

Surgical procedures

After task performance stabilized at a high level, we performed a sterile surgery, under 

anesthesia, to implant a cylindrical chamber (Crist Instrument Co., 19 mm inner diameter) 

that provided access to primary motor cortex (M1). Guided by structural magnetic resonance 

imaging scans taken prior to surgery, we positioned the chamber surface-normal to the 
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skull, centered over the central sulcus. We covered the skull within the cylinder with a 

thin layer of dental acrylic. Small (3.5 mm), hand-drilled burr holes through the acrylic 

provided the entry point for electrodes. These were performed under anesthesia and did not 

cause discomfort. These healed once stimulation / recordings were complete, and were then 

recovered with dental acrylic. During recordings, a guide-tube was used to provide stability 

but did not penetrate dura, to avoid any damage to motor cortex.

Intracortical recordings and microstimulation

Neural activity was recorded with the passive version of the primate Neuropixels probes. 

Each probe contained 128 channels (two columns of 64 sites). Probes were lowered into 

position with a motorized microdrive (Narishige). Recordings were made at depths ranging 

from 5.6 – 12.1 mm relative to the surface of the dura. Raw neural signals were digitized 

at 30 kHz and saved with a 128-channel neural signal processor (Blackrock Microsystems, 

Cerebus).

Intracortical electrical stimulation (20 biphasic pulses, 333 Hz, 400 μs phase durations, 

200 μs interphase) was delivered through linear arrays (Plexon Inc., S-Probes) using 

a neurostimulator (Blackrock Microsystems, Cerestim R96). We did not explore the 

effectiveness of different parameters but simply used parameters common across many of 

our studies. We kept pulse-trains relatively short to avoid the more complex movements 

that occur on longer timescales62. Each probe contained 32 electrode sites with 100 μm 

separation between them. Probes were positioned with a motorized microdrive (Narishige). 

We estimated the target depth by recording neural activity prior to stimulation sessions. Each 

stimulation experiment began with an initial mapping, used to select 4–6 electrode sites to 

be used in the experiments. That mapping allowed us to determine the muscles activated 

from each site, and estimate the associated thresholds. Thresholds were determined based 

on visual observation and were typically low (10–50 μA), but occasionally quite high (100–

150+ μA) depending on depth. Across all 32 electrodes, microstimulation induced twitches 

of proximal and distal muscles of the upper arm, ranging from the deltoid to the forearm. 

Rarely did an electrode site fail to elicit any response, but many responses involved multiple 

muscles or gross movements of the shoulder that were difficult to attribute to a specific 

muscle. Yet some sites produced more localized responses, prominent only within a single 

muscle head. Sometimes a narrow (few mm2) region within the head of one muscle would 

reliably and visibly pulse following stimulation. Because penetration locations were guided 

by recordings and stimulation on previous days, such effects often involved the muscles 

central to performance of the task: the deltoid and triceps. In such cases, we selected 4–6 

sites that produced responses in one of these muscles, and targeted that muscle with EMG 

recordings. EMG recordings were always targeted to a localized region of one muscle head 

(see below). In cases where stimulation appeared to activate only part of one muscle head, 

EMG recordings targeted that localized region. Recordings targeted the pectoralis when 

stimulation had its primary effect there. Pectoralis was only modestly involved in the task, 

but this did not hinder the ability to compare the impact of stimulation across stimulation 

sites.
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EMG recordings

Intramuscular EMG activity was recorded acutely using paired hook-wire electrodes (Natus 

Neurology, PN 019–475400). Electrodes were inserted ~1 cm into the muscle belly using 30 

mm × 27 G needles. Needles were promptly removed and only the wires remained in the 

muscle during recording. Wires were thin (50 um diameter) and flexible and their presence 

in the muscle is typically not felt after insertion, allowing the task to be performed normally. 

Wires were removed at the end of the session.

We employed several modifications to facilitate isolation of MU spikes. As originally 

manufactured, two wires protruded 2 mm and 5 mm from the end of each needle (thus 

ending 3 mm apart) with each wire insulated up to a 2 mm exposed end. We found that 

spike sorting benefited from including 4 wires per needle (i.e., combining two pairs in a 

single needle), with each pair having a differently modified geometry. Modifying each pair 

differently meant that they tended to be optimized for recording different MUs63; one MU 

might be more prominent on one pair and the other on another pair. Electrodes were thus 

modified as follows. The stripped ends of one pair were trimmed to 1 mm, with 1 mm of 

one wire and 8 mm of the second wire protruding from the needle’s end. The stripped ends 

of the second pair were trimmed to 0.5 mm, with 3.25 mm of one wire and 5.25 mm of the 

second wire protruding. Electrodes were hand-fabricated using a microscope (Zeiss), digital 

calipers, precision tweezers and knives. During experiments, EMG signals were recorded 

differentially from each pair of wires with the same length of stripped insulation; each 

insertion thus provided two active recording channels. Four insertions (closely spaced so 

that MUs were often recorded across many pairs) were employed, yielding eight total pairs. 

The above approach was used for both the dynamic and muscle-length experiments, where 

a challenge was that normal behavior was driven by many MUs, resulting in spikes that 

could overlap in time. This was less of a concern during the microstimulation experiments. 

Stimulation-induced responses were typically fairly sparse near threshold (a central finding 

of our study is that cortical stimulation can induce quite selective MU recruitment). 

Thus, microstimulation experiments employed one electrode pair per insertion and 8 total 

insertions (rather than two pairs and 4 total insertions), with minimal modification (exposed 

ends shortened to 1 mm).

Raw voltages were amplified and analog filtered (band-pass 10 Hz - 10 kHz) with ISO-

DAM 8A modules (World Precision Instruments), then digitized at 30 kHz with a neural 

signal processor (Blackrock Microsystems, Cerebus). EMG signals were digitally band-pass 

filtered online (50 Hz - 5 kHz) and saved.

Experimental procedures

Cortical recordings were performed exclusively during one set of experiments (‘dynamic’, 

defined below), whereas EMG recordings were conducted across three sets of experiments 

(microstimulation, dynamic, and muscle length). In a given session, the eight EMG electrode 

pairs were inserted within a small (typically ~2 cm2) region of a single muscle head. This 

focus aided sorting by ensuring that a given MU spike typically appeared, with different 

waveforms, on multiple channels. This focus also ensured that any response heterogeneity 

was due to differential recruitment among neighboring MUs.
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Microstimulation experiments employed recordings from the lateral deltoid and lateral 
triceps. Both these muscles exhibited strong task-modulated activity, as documented in 

the dynamic and muscle-length experiments. We also included recordings from the sternal 

pectoralis major, as we found cortical sites that reliably activated it. The manipulandum was 

positioned so that the angle of shoulder flexion was 25° and the angle of elbow flexion 

was 90°. Microstimulation experiments employed a limited set of force profiles: four static 

forces (0, 25%, 50% and 100%), and the slow (4 s) increasing ramp. The ramp was included 

to document the natural recruitment pattern during slowly changing forces. Maximal force 

was typically set to 16 N, but was increased to 24 N and 28 N for two sessions each in an 

effort to evoke greater muscle activation during the ramp. Microstimulation was delivered 

once per trial during the static forces, at a randomized time (1000–1500 ms relative to 

when the first dot reached Pac-Man). Because stimulation evoked activity in muscles used 

to perform the task, it sometimes caused small but detectable changes in force applied to 

the handle. However, these were so small that they did not impact the monkey’s ability to 

perform the task and appeared to go largely unnoticed. These experiments involved a total of 

17–25 conditions: the ramp condition (with no stimulation) plus the four static forces for the 

4–6 chosen electrode sites. These were presented interleaved in block-randomized fashion: 

a random order was chosen, all conditions were performed, then a new random order was 

chosen.

In dynamic experiments, the monkey generated a diverse set of target force profiles. The 

manipulandum was positioned so that the angle of shoulder flexion was 25° and the angle 

of elbow flexion was 90° (as in stimulation experiments). The maximum requested force 

was 16 Newtons. We employed twelve conditions (Supp Fig. 1) presented interleaved in 

block-randomized fashion. Three conditions employed static target forces: 33%, 66% and 

100% of maximal force. Four conditions employed ramps: increasing or decreasing across 

the full force range, either fast (lasting 250 ms) or slow (lasting 4 s). Four conditions 

involved sinusoids at 0.25, 1, 2, and 3 Hz. The final condition was a 0–3 Hz chirp. The 

amplitude of all sinusoidal and chirp forces was 75% of maximal force, except for the 0.25 

Hz sinusoid, which was 100% of maximal force. Recordings in dynamic experiments were 

made from the deltoid (typically the anterior head with some from the lateral head) and the 

triceps (lateral head).

In muscle-length experiments, the monkey generated force profiles with his deltoid at a 

long or short length (relative to the neutral position used in the dynamic experiments). 

The manipulandum was positioned so that the angle of shoulder flexion was 15° (long) 

or 50° (short), while maintaining an angle of elbow flexion of 90°. Maximal requested 

forces were 18 N (long) and 14 N (short). Different maximal forces were employed as 

it appeared more effortful to generate forces in the shortened position. To ensure enough 

trials per condition, we employed only a subset of the force profiles used in the dynamics 

experiments. These were 2 static forces (50% and 100% of maximal force), the slow 

increasing ramp, both increasing and decreasing fast ramps, all four sinusoids and the chirp. 

These were presented interleaved in block-randomized fashion for multiple trials (~30 per 

condition) for the lengthened position (15°) before changing to the shortened position (50°). 

In most experiments we were able to revert to the lengthened position (15°) at the end 

of the session, and verify that MU recruitment returned to the originally observed pattern. 
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Recordings in muscle-length experiments were made from the deltoid (anterior head) only, 

because it was the deltoid that was shortened by the change in posture.

Signal processing and spike sorting

Cortical voltage signals were spike sorted using KiloSort 2.064. A total of 881 neurons were 

isolated across 15 sessions.

EMG signals were digitally filtered offline using a second-order 500 Hz high-pass 

Butterworth. Any low SNR or dead EMG channels were omitted from analyses. Motor 

unit (MU) spike times were extracted using a custom semi-automated algorithm. We 

adapted recent spike-sorting65–67 advances, including methods for resolving superimposed 

waveforms66. As with standard spike-sorting algorithms used for neural data, individual MU 

spikes were identified based on their match to a template: a canonical time-varying voltage 

across all simultaneously recorded channels (example templates are shown in Extended 

Data Fig. 1, bottom left). Spike templates were inferred using all the data across a given 

session. A distinctive feature of intramuscular records (compared to neural recordings) is 

that they have very high signal-to-noise (peak-to-peak voltages on the order of mV, rather 

than uV, and there is negligible thermal noise) but it is common for more than one MU 

to spike simultaneously, yielding a superposition of waveforms. This is relatively rare at 

low forces but can become common as forces increase. Our algorithm was thus tailored to 

detect not only voltages that corresponded to single MU spikes, but also those that resulted 

from the superposition of multiple spikes. Detection of superposition was greatly aided by 

the multi-channel recordings; different units were prominent on different channels. Further 

details are provided in the Supplementary Methods. We also analyzed artificial spiking data 

with realistic properties (e.g., recruitment based on the actual force profiles we used, and 

waveforms based on actual recorded waveforms) to verify that spike-sorting was accurate 

in circumstances where the ground truth was known. Mis-sorted spikes were rare, and 

they were similarly rare during slowly changing forces versus high-frequency sinusoids. 

Spike-sorting errors are thus unlikely to explain differences in the empirical recruitment 

between these situations.

Trial alignment and averaging

Single-trial spike rasters, for a given neuron or MU, were converted into a firing rate via 

convolution with a 25 ms Gaussian kernel. One analysis (Fig. 7d) focused on single-trial 

responses, but most employed trial-averaging to identify a reliable average firing rate. To 

do so, trials for a given condition were aligned temporally and the average firing rate, at 

each time, was computed across trials. Stimulation trials were simply aligned to stimulation 

onset. For all other conditions, each trial was aligned on the moment the target force 

profile ‘began’ (when the target force profile, specified by the dots, reached Pac-Man). 

This alignment brought the actual (generated) force profile closely into register across 

trials. However, because the actual force profile could sometimes slightly lead or lag the 

target force profile, some modest across-trial variability remained. Thus, for all trials with 

changing forces, we realigned each trial (by shifting it slightly in time) to minimize the 

mean squared error between the actual force and the target force profile. This ensured that 

trials were well-aligned in terms of the actual generated forces (the most relevant quantity 

Marshall et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for analyses of MU activity). Trials were excluded from analysis if they could not be well 

aligned despite searching over shifts from −200 to 200 ms.

ANOVA-based examination of microstimulation effects

We quantified whether microstimulation-evoked responses displayed an interaction effect 

between stimulation electrode and MU identity using a two-way ANOVA. Analysis was 

performed separately for each session and static force level. For each MU and stimulation 

trial, we computed the magnitude of the stimulation-driven response by taking the largest 

absolute change in mean firing rate between a baseline period and a response period. 

Baseline and response periods were defined as −300–0 ms and 30–130 ms with respect to 

stimulation onset. We performed a two-way ANOVA (anovan, MATLAB R2019b, R2020b) 

using the vector of single-trial responses and a set of two grouping vectors. The first 

contained the identity of each MU. The second contained the identity of the stimulation 

electrode. To evaluate whether the responses for a particular session displayed an interaction 

effect, p-values were divided by the number of static force amplitudes to correct for the three 

different comparisons made per session.

Quantifying motor unit flexibility

We developed two metrics – displacement and dispersion – that quantified MU-recruitment 

flexibility without directly fitting a model (model-based quantification is described below). 

Both methods leverage the definition of rigid control to detect population-level patterns of 

activity that are inconsistent with rigid control even under the most generous of assumptions.

Let rt = [r1,t r2,t … rn,t]⊤ denote the population state at time t, where ri,t denotes the firing 

rate of the ith MU. If rt traverses a 1-D monotonic manifold, then as the firing rate of one 

MU increases, the firing rate of all others should either increase or remain the same. More 

generally, the change in firing rates from t to t′ should have the same sign (or be zero) for 

all MUs. If changes in firing rate are all positive (or zero), then one can infer that common 

drive increased from t to t′. If the changes in firing rate are all negative (or zero), then 

one can infer that common drive decreased. Both these cases (all positive or all negative) 

are consistent with rigid control because there exists some 1-D monotonic manifold that 

contains the data at both t′ and t.

On the other hand, departures from a 1-D monotonic manifold are indicated if there are 

moments when the firing rates of one or more MUs increase as others’ decrease. Both 

displacement and dispersion seek to quantify the magnitude of such departures while being 

very conservative. Specifically, the size of a departure was always measured as the smallest 

possible discrepancy from a 1-D manifold, based on all possible 1-D manifolds. To illustrate 

the importance of this conservative approach, consider a situation where the firing rate 

of MU1 increases considerably while MU2’s rate decreases slightly from t to t′. This 

scenario would be inconsistent with activity being modulated solely by a common input, 

yet it would be impossible to know which MU reflected an additional or separate input. 

Perhaps common drive decreased slightly (explaining the slight decrease in MU2’s rate) but 

MU1 received an additional large, private excitatory/inhibitory input. This would indicate 

a large departure from rigid control. Another possibility is that common drive increased 
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considerably (explaining the large increase in MU1’s rate) and that MU2’s rate failed to rise 

because it was already near maximal firing rate. This would not explain why MU2’s rate 

went down, but if that decrease was small it could conceivably be due to a very modest 

departure from idealized rigid control. Thus, to be conservative, one should quantify this 

situation as only a slight deviation from the predictions of rigid control. Both metrics were 

designed to be conservative in this regard; they report the smallest change in rate(s) needed 

to make activity consistent with rigid control.

For the displacement metric, we first computed the largest nonnegative change in firing rates 

from t to t′ for a population of n MUs as

Δr+ t, t′ = max 0, r1, t − r1, t′, r2, t − r2, t′, …, rn, t − rn, t′ (1)

If a 1-D monotonic manifold can be drawn through rt and rt′, then either Δr+(t, t′) or Δr+(t′, 

t) will be zero. Otherwise, Δr+(t, t′) will capture the largest increase (across MUs) in rate 

from t to t′ while Δr+(t′, t) will capture the largest decrease. Thus, we computed departures 

from a monotonic manifold as

D t, t′ = min Δr+ t, t′ , Δr+ t′, t (2)

As examples, consider a population of two MUs with rt = [10, 10] and rt′ = [15, 25]. These 

states would be consistent with an increase in common drive from t to t′, so D(t, t′) = 

0. Conversely, rt = [10, 10] and rt′ = [9, 30] suggests a violation of rigid control, but that 

violation might be small; one can draw a manifold that passes through [10, 10] and comes 

within 1 spike/s of [9, 30]. In this case, D(t, t′) = 1. Finally, rt = [10, 10] and rt′ = [0, 30]
argue for a sizable violation; [0, 30] is at least 10 spikes/s distant from any monotonic 

manifold passing through [10, 10], so D(t, t′) = 10.

To allow the metric to summarize multiple comparisons among timepoints, we computed 

‘MU displacement’ as

dMU(t) = min
τ, τ′

max
t′

D t + τ, t′ + τ′ (3)

where t′ indexes over all other times and conditions, and τ and τ′ are time lags. The 

inclusion of time lags ensures that departures from a monotonic manifold cannot simply 

be attributed to modest differences in response latencies across MUs. In our analyses, we 

took the minimum over τ, τ′ ∈ [−25, 25] ms. dMU is exceedingly conservative; it makes no 

assumptions regarding the manifold other than that it is monotonic, and identifies only those 

violations that are apparent when comparing just two times. When analyzing a single session 

we considered the distribution of dMU(t) across all times t. When considering all sessions, 

we simply took the maximum within each session.

It is worth emphasizing that displacement is computed for a population including all 

simultaneously recorded MUs. Yet when taking the maximum to yield one value per session, 
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that final value is determined by a comparison between two MUs: one whose firing rate 

increased the most and the other whose firing rate decreased the most across a pair of 

time points. This makes it possible to remove that MU pair from population and repeat the 

analysis, iterating until displacement is within the range of values expected if activity obeys 

rigid control but for sampling error (see below). This allowed us to estimate how many MUs 

had to be removed from the population to render it potentially consistent with the hypothesis 

of rigid control (i.e. until the population does not contain any unambiguous violations of 

rigid control).

An advantage of the dMU metric is interpretational simplicity; it identifies pairs of times 

where the joint activity of two MUs cannot lie on a single 1-D monotonic manifold. A 

disadvantage is that it does not readily capture the degree to which multiple other MUs 

might also have activity inconsistent with a 1-D monotonic manifold. This can be done 

via the ‘remove and iterate’ procedure described above. However, we desired a metric that 

more naturally reports the magnitude of population-level departures from a 1-D monotonic 

manifold.

To do so, we employed the dispersion metric. Under the assumptions of rigid control, the 

magnitude of common drive determines the population state and therefore the summed 

activity of all MUs or, equivalently, its L1-norm, ∥r∥1. Increases and decreases in common 

drive correspond, in a one-to-one manner, to increases and decreases in ∥r∥1. Violations of 

rigid control can thus be inferred if a particular norm value, λ, is associated with different 

population states. Geometrically, this corresponds to the population activity manifold 

intersecting the hyperplane defined by ∥r∥1 = λ at multiple locations, which could not occur 

were the manifold monotonic.

We defined the motor neuron pool (MNP) dispersion as

dMNP(λ) = min
τ1, τ2

( max
t1, t2 ∈ Ω

rt1 + τ1 − rt2 + τ2 1), Ω = t: rt 1 − λ < ϵ
(4)

where τ1, τ2 are time lag vectors, of the same dimensionality as r, and ϵ is a small constant. 

Conceptually, the dispersion identifies the pair of time points when the population states are 

the most dissimilar, despite both having norms within ϵ of λ. As when computing dMU(t), 
we minimized dMNP(λ) over time lags so as to only consider effects that could not be 

attributed to latency differences across MUs. For our analyses, we set ϵ = 1 and optimized 

over τ1, τ2 ∈ [−25, 25] ms (each MU could have its own time-lab). When analyzing a 

single session we considered dMNP(λ) as a function of λ. When considering all sessions, we 

simply took the maximum within each session.

We compared displacement and dispersion values for the true MU population with those 

for an artificial population. The artificial population was generated so as to resemble the 

empirical responses as closely as possible, while being describable by a single latent factor 

plus corruption by sampling error. Thus, the artificial population obeys rigid control except 

for the addition of realistic sampling error. For each session, the artificial population was 

based on the empirical population response. We extracted the first principal component 

(PC1) from the empirical trial-averaged firing rates over all conditions. For each individual 
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trial, we projected the population firing rate (for all times during that trial) onto PC1, 

reconstructed the firing rate of each MU, then rectified to remove any negative rates. This 

resulted in data that perfectly obeyed rigid control (and thus would have resulted in both 

displacement and dispersion values of exactly zero). To reintroduce sampling error, we 

redrew trials (as many as were originally recorded) in which the population response on a 

given redrawn trial was composed of individual MU responses on different (randomly and 

independently drawn) trials. For example, the population response on the first redrawn trial 

might contain the response of MU1 on trial 8, the response of MU2 on trial 33, etc. Thus, 

each redrawn trial was a noisy (with noise matching the original recordings) observation 

of an underlying population response that obeyed rigid control. Trial averages were then 

computed to generate the artificial population response. We then measured displacement and 

dispersion. This process was repeated ten times with different random draws, to generate ten 

artificial population responses per session.

Computation of displacement and dispersion considers a population response that spans 

multiple times across one or more conditions. The values of displacement and dispersion 

thus depend on what times and conditions are considered. The values of t and t′ index 

the set of times over which the metric is computed. Depending on the analysis, t and t′ 
may be constrained to lie within the same condition, or may be allowed to span different 

conditions. For example, in Fig. 5m, the purple trace plots the distribution of values of 

dMU(t) when both t and t′ are constrained to lie within the set of population responses 

observed during the slow four-second ramp. The green trace plots the distribution of values 

when t and t′ can span the full set of population responses observed during all force profiles. 

Many of our analyses employ this strategy of computing displacement and dispersion for 

both a more restrictive set of conditions and a more expansive set. For example, Fig. 3b 

computes displacement both when considering each stimulation site on its own (1-stim) 

and when considering the population response for all (all-stim). For 1-stim, the maximum 

displacement is computed separately for each stimulation site, with t and t′ indexing within 

the response for that site. The maximum is then taken across all values of t. Because there 

are multiple sites, there are multiple such maxima and we report the largest. For all-stim, t 
and t′ index across responses for all stimulation sites, and the maximum is taken across t.

Optimal MU recruitment model

We developed a computational model to predict the optimal recruitment strategy for 

generating a particular force profile by an idealized motor pool. MU twitch responses were 

simulated using a standard model, in which peak tension and contraction time are inversely 

related (i.e., MUs with smaller peak tensions have longer contraction times)44. The set 

of MU firing rates for generating a target force profile was derived as the solution that 

minimized a cost function that depended principally on the mean-squared error between 

the target and simulated forces (in addition to modest regularizers). Minimizing this cost 

function is a convex optimization problem, which we solved numerically. For details, see 

Supplementary Methods.
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Latent factor model formulation

We developed a probabilistic latent variable model of MU activity. Let yi,t be the known 

activity of the ith MU at time t. Let xt be the unknown latent variables at time t, which are 

shared between all MUs. We can fit this model with one latent (xt can be a single value, 

as for all analyses in Fig. 7) or multiple latents (Fig. 8b). The relationship between the MU 

activity and the underlying latent(s) is given by:

yi, t N fi xt + τi , ϵ (5)

where fi denotes a learned link function for the ith MU and τi denotes a learned lag between 

its response and the shared latent variables. We constrained τi ∈ [−25, 25] ms. This allows 

some MUs to lead the ‘typical’ response by up to 25 ms, and others to lag by up to 25 ms. 

(As a technical aside, results would have been identical had we used [−50 0], only the range 

is important because the latent has no temporal constraints). The allowable range of latency 

differences (50 ms) is larger than the likely range of latencies due to variable conduction 

velocities, but not so large as to be wildly unrealistic. This accords with our general strategy 

of allowing the model as much reasonable expressivity as possible so that interpretation is 

conservative.

To allow expressive, monotonically increasing link functions with nonnegative outputs, we 

parameterized fi as a rectified monotonic neural network. We fit each fi using a two-hidden-

layer feedforward neural network, in which the weights were constrained to be positive. 

This class of network with only a single hidden layer is able to model any univariate 

monotonic function (as is the case when our model uses a single latent variable)68. The 

positivity constraint was achieved by letting each weight w = ln(1 + eu), where the values of 

u were fit within the model. For the models with one latent variable (Fig. 7), we employed 

10 hidden units per layer. This allows considerably more expressivity than the commonly 

used sigmoid, while still encouraging relatively smooth monotonic functions. Performance 

improved negligibly if we increased the number of hidden units up to 100 per layer, allowing 

quite non-smooth functions. Thus, the inability of the single-latent model to account for 

the data was not due to insufficiently expressive link functions. (This inference can also 

be made by inspecting the data, which often depart from a monotonic manifold and thus 

cannot be fit by a single-latent model with any monotonic link functions.) Early versions of 

our model used logistic or spline-based link functions and led to the same scientific result: 

a single-latent model cannot sufficiently explain MU activity across conditions. We used 

the neural-network-based link functions simply to be conservative and confirm that results 

held when expressive link functions were allowed. During model training, the output of 

the neural network was passed through a ‘leaky rectified linear unit’ with a slope value of 

0.01 for negative inputs to the leaky ReLU. After training was completed, we used standard 

rectification on the output.

When fitting models with multiple latent variables, we used 20 hidden units per layer, as this 

improved performance of multi-latent models. Link functions were thus highly expressive. 

We therefore stress that the analysis likely underestimates the number of latents necessary 

to fit the data (more latents would likely be needed with less expressive link functions). 
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This tradeoff highlights a limitation of the single-latent model. It is ideally suited to testing 

the hypothesis of rigid control. However, once that hypothesis is rejected, meaningfully 

extending the model requires incorporating constraints based on physiology or anatomy, and 

many of those constraints are presently unknown.

Optimization sought to minimize the mean squared error (MSE) between model fits and 

empirical population firing rates. Given that rates were derived from spikes, another option 

would have been to maximize spiking likelihood under a Poisson model. We chose to 

minimize MSE for three reasons. First, MU spiking has very non-Poisson statistics. Second, 

we wished the model to be able to fit both single-trial rates and trial-averaged rates, and 

MSE is very natural in the latter case as sampling error should become fairly Gaussian due 

to the central limit theorem. Third, in our central analysis (Fig. 7b), squared error provides 

an intuitive metric of the distance between what the data does and what the model can 

explain. Furthermore, squared error can be computed in a manner that is not biased upward 

by sampling error that inevitably arises due to spiking variability (by cross-validating across 

partitions, see below). A core element of our strategy was always to give the model every 

chance to succeed – only then is it fair to reject it following failure. Thus, it was most 

appropriate to minimize the metric (MSE) by which success would be judged. We confirmed 

that model residuals were close to Gaussian distributed in circumstances where the model 

was expected to fit well (e.g., during slowly changing forces).

For our example model fits (Fig. 7c), we wished to plot trajectories with realistic smoothness 

(i.e., on the same scale as the data), without hurting the ability of the model to fit. We 

thus incorporated additional smoothness by letting xt N xt − 1, σ , where smaller values 

of σ encouraged greater temporal smoothness. We set σ to 0.01 for this figure. Greater 

temporal smoothness leads to more realistic trajectories, which are more easily compared 

with the empirical trajectories (which were minimally smoothed when they were computed). 

However, quantitatively, results were nearly identical regardless of whether we did or did 

not require smoothness in the latent variable. Thus, for simplicity, our quantitative analyses 

did not insist on any additional smoothness. This corresponds to allowing the latent variable 

(i.e., the common drive) to change very swiftly if that helped fit the data. This choice 

is conservative because, if the model still fails to fit, it cannot be because we imposed 

smoothness.

The standard conception of rigid control is that a single latent variable (a common-drive 

force command) determines MU activity via MU-specific link functions (providing each 

MU with its own threshold etc.). While those link functions are typically modeled as 

static, some MUs exhibit history dependence due to persistent inward currents (PICs) that 

increase activity. PICs rarely alter recruitment order because they are most prevalent in 

small MUs, which for a given force level are the more active MUs to begin with (making 

them even more active does not alter recruitment order). However, because PICs cannot 

be captured well by a fixed link function, it is possible that they are a partial source 

of model failure. They are unlikely to be a major source error for two reasons. First, 

inspection reveals many model failures that are unrelated to PICs (e.g., Fig. 7c). Second, we 

saw putative PIC-based effects only occasionally. Still, the fact that they were sometimes 

observed means that it is likely that model fits suffered modestly because they could not fit 
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PIC-based effects. To control for this, we fit models in which, rather than giving MUs fixed 

lags, we allowed the mapping between the latent and each MU’s activity to have internal 

dynamics (accomplished by adding a hidden recurrent unit, unique for each MU, between 

the latent and the MU’s feedforward neural network link function). Despite the increase in 

expressivity the same results were observed: the model fit well when fitting slowly changing 

forces but fit poorly when fitting all conditions together. In the latter case, total error was 

reduced by ~25% as a result of allowing dynamics, but was still high. Inspection revealed 

that some of the reduction in error was indeed due to the model now being able to account 

for effects that were likely PIC-driven. However, these were not the principal source of 

model error.

Latent factor model fitting

To infer the most likely distribution of latent variables given the data (i.e., the model 

posterior, p(x|y)), and to learn the link functions, we used variational inference with a 

mean-field approximation for the posterior approximation. We used black-box variational 

inference69,70, which performs gradient-based optimization via automatic differentiation to 

maximize the model’s evidence lower bound, in order to directly update both the mean and 

variance of the variational posterior, and the model parameters. We used the Adam algorithm 

for optimization71. We iterated between (1) optimizing the posterior and link functions 

while holding response lags fixed, as described above and (2) optimizing the response lags. 

As the response lags were integers rather than continuous variables, rather than using a 

gradient-based method, during each iteration of updating the lags, we selected lags, within 

2 ms of the previous iteration’s lags, that maximized the data’s likelihood. Using simulated 

data, we confirmed that this approach accurately inferred known lags. Post model-fitting, 

when predicting MU activity, we used the mean of the posterior distribution as the latent 

input at each time.

To initialize the model fits, we set the mean of the variational distribution to the mean 

activity (across neurons) at each time. We then initialized the link functions by fitting the 

monotonic neural network to predict MU firing rates from this mean activity across time. 

Lags were initialized at 0 ms for all MUs. This initialization procedure led to very stable 

model predictions across multiple model fits, and thus all analyses were done using single 

model fits (as opposed to choosing the best among many model fits).

Prior to fitting the model, the firing rate of each MU was normalized by its maximum 

response across conditions. Normalization did not alter the ability of the model to fit 

the data, but simply encouraged the model to fit all MUs, rather than just the high-rate 

units. Additionally, the likelihood of each time point was weighted by the duration of the 

experimental condition, so that each condition mattered equally within the model regardless 

of duration. When fitting to single trials, we also weighted each condition by its trial count, 

again so that each condition had equal importance. All model fits were to a single-session’s 

population responses. Analyses then summarize fits across all sessions of a given type.
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Quantifying residual model errors

To compute the cross-validated model residuals, we first randomly split the single-trial firing 

rates for each recorded MU into halves, and computed the trial-average responses for each 

half: yi,1 and yi,2. We then fit the latent variable model to each half, which yielded a pair of 

predicted responses, yi, 1 and yi, 2. The cross-validated model residuals were calculated as the 

dot product between the residual errors of each half: yi, 1 − yi, 1
⊤ yi, 2 − yi, 2 . We computed 

the median cross-validated residuals across all MUs and sessions for a given partitioning of 

the data. The above steps were then repeated for 10 different random splits of trials and we 

reported the mean +/− standard deviation of the median error across re-partitions and fits. 

Note that the standard deviation of the resampled error is equivalent to the standard error 

(i.e, it is the standard deviation of the sampling distribution).

To verify that fitting was successful when it should be, and that cross-validated error 

behaved as expected, we modified the data so that a single latent variable could fully account 

for all responses (with the exception of sampling error). To do so, we reconstructed the firing 

rates using only the first principal component of the trial average firing rates. For example, 

if w is the n × 1 loading vector for the first principal component, then Y1, the ct × n 
matrix of responses for one partitioning of the data, was reconstructed as [Y1ww⊤]+, where 

the rectification ensures that all firing rates are non-negative. Using these reconstructed 

firing rates, we performed the same residual error analysis. Because of the rectification, the 

modified data are not one-dimensional in the linear sense (there would be multiple principal 

components with non-zero variance). Yet because the data will lie on a one-dimensional 

monotonic manifold, cross-validated error should be near zero when fitting the model, 

which is indeed what we observed. This confirms that optimization succeeds in finding an 

essentially perfect fit when the data lie within the scope of things that can be accounted for 

by the model. We repeated this control, with the same result, with artificial data generated in 

other ways and with different amounts of sampling error (Extended Data Fig. 5).

Consistency plots

For this analysis, we fit the latent factor model to the activity of single trials. We aimed 

to determine whether, when fit to two conditions, the model consistently overestimated the 

true firing rates in one condition and underestimated the firing rates in the other condition. 

To do so, we calculated the mean model error across time on every trial for each condition 

(yielding one error value per trial). Let E(1, tr) and E(2, tr) denote the mean errors for 

a particular MU, pair of conditions (indexed by 1 and 2), and trial tr. We calculated the 

consistency for the MU and conditions as

C = max nover, 1 + nunder, 2 + 0.5 ⋅ nequal
n ,

nunder, 1 + nover, 2 + 0.5 ⋅ nequal
n

(6)

where

Marshall et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nover, j = ∑
tr

1E(j, tr) > 0

nunder, j = ∑
tr

1E(j, tr) < 0

nequal = ∑
tr

1E(1, tr) = 0 + ∑
tr

1E(2, tr) = 0

n is the total number of trials across both conditions, and 1A is the indicator function (1 if 

A is true; 0 otherwise). Eq. (6) determines the fraction of times where one condition had 

negative errors and the other had positive errors, while accounting for trials with no error. 

Prior to performing this consistency calculation, we set all E(j, tr) with absolute value less 

than 0.01 to 0, so that the sign of negligible errors was not considered. We also removed 

E(1, tr) or E(2, tr) in which the MU had zero actual and predicted activity, because it was 

impossible for the predicted activity to undershoot the true activity in this setting.

We calculated the fraction of MUs that had C > 0.8 and an average error of at least 0.01 

across trials (to ensure that outlier trials did not lead to false positives of consistent errors). 

We excluded MUs that had zero activity in > 80% of trials in the two conditions being 

analyzed. Consequently, the number of MUs included in the analysis varied for each pair of 

conditions.

The fraction of MUs that were ‘consistent violators’ was the fraction computed as above, 

minus the fraction expected by chance. To calculate that chance-level baseline, for each 

MU, we calculated the probability that greater than 80% of the included trials would have 

a positive or negative error, assuming that each trial has an independent 50/50 chance of 

being positive or negative. More precisely, let F(k; n, p) be the cumulative density function 

of a binomial distribution of having k successes in n Bernoulli events, each event with 

probability p of being a success. We calculate Pi = 2(1 – F(ceil[0.8ni]; ni, 0.5)), where ni 

is the number of total trials included for MU i and ceil[] gets the next integer. The total 

expected fraction of MUs with C > 0.8 by chance is thus ∑iPi.

Reliability based estimate of dimensionality

The goal was to assess whether M1 population activity, projected onto a given principal 

component (PC) constitutes a ‘real’ signal or is largely noise. If real, it should be reliable 

(similar) across partitions of the data. To assess, we randomly split the single-trial firing 

rates for each neuron into two groups of trials, and averaged over trials within each 

group to create trial-averaged firing rates. Let Y1 and Y2 denote the CT × N matrices 

of trial-averaged rates for each partition (CT condition-times and N neurons). Let wi (an 

N × 1 vector) denote the ith PC of Y1. The reliability of PC i was computed as the 

correlation between Y1wi and Y2wi. We repeated this process for 25 re-partitions to obtain 

confidence intervals. Our method is inspired by Churchland et al.72 and conceptually similar 
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to but distinct from the cross-validated PCA analysis of Stringer et al.73, which estimates 

the stimulus-related (‘signal’) neural variance based on spontaneous activity across many 

neurons on single trials73. PCA was used simply because it concentrates variance in as few 

dimensions as possible, which is conservative given the present goals.

To create simulated data sets with dimensionality k, we computed Y k = Y QkQk
⊤, where Y is 

the matrix of M1 firing rates averaged over all trials, and Qk denotes the first k columns of 

a random orthonormal matrix. Simulated single-trial spikes were generated for each neuron 

using an inhomogeneous Poisson process with rate given by the corresponding column of 

Yk. Simulated spikes were smoothed using a 25 ms Gaussian kernel (as was done for the 

actual data), and the cross-validated reliability metric applied as described above.

Statistics & Reproducibility

Many analyses employed standard statistical tests. As described above, we used an ANOVA 

to ask whether stimulation drove similar or different patterns of MU activity depending 

on the cortical electrode. We also used t-tests to ask whether displacement and dispersion 

behaved differently for the empirical data versus artificial data where activity was enforced 

to obey rigid control. The ANOVA was corrected for multiple comparisons because it was 

run three times per session (one for each static force level). T-tests were always two-tailed. 

Data distributions were assumed to be reasonably close to normal (even Poisson spike 

counts approximate normal at reasonable rates, and MUs spike much more regularly than 

Poisson) but this was not formally tested. All the above tests asked whether effects were 

larger than could have been observed due to across-trial sampling error if a population 

actually did obey rigid control. For the latent-variable model, we assessed reliability relative 

to across-trial sampling error by repeating the partitioning (used when computing the 

cross-validated error) multiple times, each using a different random partitioning of trials 

(described above).

A key aspect of reproducibility lies in the analyses performed prior to statistical tests: great 

care was taken to ensure analyses were conservative. We wished to underestimate rather than 

overestimate the size of violations of rigid control. This is described at some length above 

for the displacement and dispersion-based analyses, and for the latent factor model analyses. 

A related point is that we did not use what might seem to be an appealing and easy test 

of rigid control: assume that common drive is proportional to force, and fit MU responses 

as simple functions of force (a sigmoid has often been used in this context). This approach 

would have had the advantage of simplicity. It also would have been able to provide, for 

every MU individually, an estimate of how far it departed from rigid control. However, we 

avoided using this approach because it could have overestimated the magnitude of violations 

if either 1) common drive is not proportional to force, or 2) link-functions fall outside the 

assumed class. We thus used the sophisticated latent-variable model, which could assume 

any common drive and any monotonic link functions (and could use MU-specific latencies). 

This almost certainly underestimated the magnitude of violations, but that was considered 

acceptable given the scientific goals.
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A number of different sample sizes are relevant to the reliability of results: number of 

MUs (356), number of sessions (38 ~1 hour sessions), number of simultaneously recorded 

motor units (3–21), number of behavioral conditions (52 across all experiments), number 

of muscles (3, typically with multiple heads per muscle), number of animals (1), total 

number of experimental situations in which flexibility might be observed (3), total number 

of behavioral trials examined (14,336). In none of these cases could traditional power 

analyses be performed. Thus, no statistical method was used to pre-determine sample 

sizes. Regarding behavioral trial-counts and number of MUs, we simply tried to maximize 

these on each day, via extensive training prior to experiments and refinement of recording 

techniques. An unusually large number of conditions (52 across the three experiment types) 

was used because this was anticipated to be important for revealing flexibility (which 

can only reveal itself across meaningfully different situations). Although no formal power 

analysis could be usefully performed, the optimal recruitment model was used (after 

preliminary experiments, and before the actual experiments) to yield insight into which 

condition combinations would be most likely to reveal flexibility, if it were present. The 

number of conditions used within a session was chosen so that the number of trials per 

condition would be in the 10–80 range. Previous experience has shown that this yields 

good estimates of firing rates, with small standard errors, for most neurons (motor neurons 

should be even ‘better’ in this regard, as they spike much more regularly). A number forms 

of replication were pursued not for statistical purposes, but to confirm that effects (which 

were significant in most individual sessions) were not constrained to some limited situation. 

For example, we recorded from three muscles, and multiple heads within those muscles, to 

confirm that flexibility was not a peculiar property of one muscle. Similarly, we performed 

three different types of experiments (stimulation, dynamic, muscle-length) to confirm that 

flexibility was not confined to one particular situation. Only one monkey was used because 

it was considered very unlikely that flexible control over MUs would be specific to an 

individual animal. It would be interesting if that were true, but such a basic feature of 

physiology is not likely to differ across animals within a species. Thus, if it is clearly 

observed in the first monkey tested, it is likely to be typical or at least not rare. Because 

our one monkey was very comfortable being handled, this afforded the opportunity to repeat 

experiments many times (including the three different experiment types). The total quantity 

of data is thus large: ~387 ‘motor unit hours’ (the number of MUs times the number of hours 

each was recorded). In the absence of any formal power analysis, our goal was simply to 

make this considerably larger than in most prior experiments (where ~25–60 was typical, 

though exact estimates are not always possible).

The only data exclusion was preliminary data recorded with different stimulating and 

recording methods, using a different task. Results from those preliminary experiments are 

the same but the quality of the spike sorting is not as high, and recording stability is less 

good. For this reason we repeated the experiments after developing the Pac-Man tracking 

task and modifying our recording techniques. For analyses of trial-averaged firing rates, we 

did not include trials with inaccurate performance because these would be unrepresentative 

of the average (this is typical of such analyses). Our automated procedure for rejecting trials 

with poor performance is described above.

Marshall et al. Page 29

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results were replicated many times. Specifically, for each of the basic experimental 

types (microstimulation experiments, dynamic experiments, muscle-length experiments) we 

repeated the experiment multiple times, on different days, while recording different sets of 

MUs. This resulted in 38 total replications: 18, 14 and 6 replications for the three experiment 

types.

Randomization was mostly irrelevant to our experiments, with the exception that 

interleaving trials was useful for ruling out certain confounds, such as fatigue or slow loss 

of isolation quality. In all experiments, trials were presented in block-randomized design 

to ensure even interleaving of trials. The only exception were the two postures used to 

investigate the impact of muscle length – these could not be moved back and forth every trial 

and had to be presented in blocks. Thus, other controls and observations are leveraged to 

address concerns about fatigue or isolation stability.

All spike sorting was done blind to the condition and was largely automated in any case. 

Data collection and analysis were not performed blind to the conditions of the experiments 

(we know what conditions the monkey performs as he does so). However, analyses are 

automated and thus subjective judgments are mostly irrelevant.

Data Availability

Extensive sample data can be accessed via Dropbox.

Code Availability

Code can be accessed via GitHub.

Extended Data
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Extended Data Fig. 1. Example MU spikes and sorting, including a challenging moment with 
spike overlap.
Behavior and MU responses during one dynamic-experiment trial. The target force profile 

was a chirp. Top: generated force. Middle: eight-channel EMG signals recorded from the 

lateral triceps. 20 MUs were isolated across the full session; 13 MUs were active during the 

displayed trial. MU spike times are plotted as circles (one row and color per MU) below 

the force trace. EMG traces are colored by the inferred contribution from each MU (since 

spikes could overlap, more than one MU could contribute at a time). Bottom left: waveform 

template for each MU (columns) and channel (rows). Templates are 5 ms long. As shown 

on an expanded scale (bottom right), EMG signals were decomposed into superpositions 

of individual-MU waveform templates. The use of multiple channels was critical to sorting 

during challenging moments such as the one illustrated in the expanded scale. For example, 

MU2, MU5, and MU10 had very different across-channel profiles. This allowed them to 

be identified when, near the end of the record, their spikes coincided just before the final 

spike of MU12. The ability to decompose voltages into a sum of waveforms also allowed 

sorting of two spikes that overlapped on the same channel (e.g., when the first spike of MU6 

overlaps with that of MU10, or when the first spike of MU9 overlaps with that of MU5). The 

fact that sorting focused on waveform shape across time and channels (rather than primarily 

on amplitude) guarded against mistakenly sorting one unit as two if the waveform scaled 

modestly across repeated spikes (as occurred for a modest subset of MUs).

Extended Data Fig. 2. Basic properties of MU responses.
(a) Comparison, for all MUs recorded during the dynamic experiments, of maximum rates 

during the four-second increasing ramp and during the chirp. Each point plots the maximum 

trial-averaged firing rate and its standard error for one MU (N = number of trials for that MU 
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and that condition; 28 on average). Labels highlight four MUs that have similar maximum 

firing rates during the ramp but different maximum firing rates during the chirp. There were 

also many MUs that were nearly silent during the ramp but achieved high rates during the 

chirp (points clustered near the vertical axis). Inset: distribution of recruitment thresholds, 

estimated as the force at which the MU’s firing rate, during the four-second ramp condition, 

exceeded 10% of its maximum rate during that condition. (b) Analysis of the possible 

impact of fatigue across the course of each session. Top: total MU spike counts, over the 

full recorded population, after dividing the session into thirds. Each line corresponds to one 

session. Bottom: Mean and standard error (across 14 sessions) of the normalized total MU 

spike counts (counts for each session were normalized by maximum across trial epochs). 

There is little overall change in MU activity over the course of a session.

Marshall et al. Page 32

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3. Additional documentation of single-trial responses during a dynamic 
experiment session.
Presentation is similar to Fig. 5a–c but voltage traces are shown for six total trials. 

Furthermore, spike rasters are shown for all active MUs and all trials for two conditions: the 

four-second ramp and the 3 Hz sinusoid. (a) Same as Fig. 5a but force traces are highlighted 

for six trials (three trials per condition) rather than two. (b) MU spike templates, repeated 

from Fig. 5b. (c) EMG voltage traces for the highlighted trials and times (slightly greater 

time ranges are used relative to Fig. 5c). Data are shown for six trials, three in each column. 
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Four recording channels are shown per trial. Left column: three trials for the ramp. Right 
column: three trials for the sinusoid. In each column, the second trial repeats that shown in 

Fig. 5c. Vertical and horizontal scales are shared with panel b. (d) Responses of all MUs that 

were active for these two conditions during this session. Data is shown for the four-second 

ramp (left column) and the 3 Hz sinusoid (right column). Data is color-coded by MU. Labels 

give both the session-specific MU identity (1–7), and the overall ID. Trial-averaged rates are 

shown with flanking standard errors. Spike rasters contain one row per trial, ordered from 

the first trial for that condition at the bottom to the last at top. Trials for all conditions were 

interleaved during the experiment. Vertical scale: 20 spikes/s. Horizontal scale: 500 ms.

Extended Data Fig. 4. Example MU responses and waveforms across muscle lengths.
These data address a potential artifact: an apparent change in recruitment across muscle 

lengths could occur if, due to tiny shifts in electrode location across muscle lengths, the 

spikes of an MU become undetectable. On the one hand, the stability of neighboring MUs 

largely rules out this concern. On the other hand, it is conceivable that most MUs could 

remain stable, while one (or more) MUs undergo a dramatic change in waveform that 

renders them unsortable. Addressing this concern thus requires confirming that changes 

in recruitment are observed concurrently with waveform stability. (a) State-space plots 

illustrating, for two MUs, that changes in muscle length create large departures from a 

1D monotonic manifold. Departures occurred because the activity of MU158 was greatly 

reduced when muscle length was shortened. A natural concern is thus that the waveform 

of MU158 may have changed (or disappeared) across muscle lengths, causing an apparent 
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drop in firing rate due to most spikes being missed. If one considered only the data for 

the 2 Hz sinusoid, this potential confound cannot be ruled out because there are no spikes 

from MU158 during that condition. Thus, one cannot distinguish between the possibility 

that MU158 is no longer detectable and the possibility that it is no longer active. However, 

other conditions did evoke activity from MU158. Thus, MU158 is still detectable, it is just 

much less active. (b) The above observations largely rule out the concern that the drop 

in firing rate of MU158, at the shorter muscle length, is due to it becoming undetectable. 

Yet perhaps its waveform changed considerably – enough to be detected only occasionally? 

Alternatively, perhaps MU158 did indeed become undetectable, and the spikes attributed to 

it were from some other MU? Both these possibilities are very unlikely: waveform shape, 

across multiple channels, provided a unique signature of this MU that was stable across 

muscle lengths. Left. Template of MU158 across the 5 EMG channels used during this 

session. Middle. Across all conditions when the muscle was long, we sorted 5147 spikes 

matching the template. The 20 with the best match are shown. Right. Across all conditions 

when the muscle was short, we sorted 1568 spikes that matched the template (~30% as many 

spikes as when the muscle was long). The 20 with the best match are shown, and illustrate 

that this waveform was still very much present. This rules out the concern that the waveform 

of MU158 has changed dramatically. It also addresses the concern that the waveform of 

MU158 has become undetectable, and the apparent spikes of MU158 are due to missorted 

spikes from some other MU. This is extremely unlikely; the ‘other’ MU would have to 

produce spikes that matched the original template, across both time and channels.

Extended Data Fig. 5. Single-latent model fits to artificial data constructed to be consistent with 
rigid control, but with various types of noise.
We generated realistic simulated data from a 1-latent model by fitting our 1-latent model 

to the empirical MU response from one session. Then, using the learned latents, link 

functions, and lags, we generated simulated MU activity. We then fit a different model (with 

different initialization or parameters) to confirm that it could successfully fit the simulated 

responses. This acts as both a test of whether optimization succeeds in finding a perfect fit 

when one is possible, and as a way of documenting the behavior of the cross-validated fit 
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error. (a) ‘True’ (gray traces) and model fit (dashed red traces) responses for two example 

simulated MUs (columns) during four conditions (rows). Simulations involved no sampling 

error. R2 values of the fit were above 0.99 for all MUs. (b) Cross-validated error plots 

(as in Fig. 7) for simulated data for this example session, and after incorporating noise 

into the simulations. ‘Independent emission noise’ is Gaussian noise that is independently 

added at each time point, with standard deviation for each MU equal to the SEM of MU 

activity across trials (a typical value was found by averaging across time-points and MUs). 

‘Realistic emission noise’ is T-dimensional gaussian noise (where T is the number of time 

points) generated from a MU's temporal covariance structure computed across trials (i.e., the 

covariance matrix of a T × R matrix of activity, where R is the number of trials). This noise 

structure is calculated separately for each MU. ‘Realistic latent noise’ is T-dimensional 

gaussian noise that is added to the latent (prior to the link functions), rather than noise 

directly added to the MU activities. This noise was generated from the latents' temporal 

covariance structure computed across trials. Independent noise was added to the latent for 

each MU, corresponding to each neuron receiving a noisy version of a single latent. Error 

bars show mean and 95% range of the cross-validation error across 10 partitionings of the 

data. Note that cross-validated error should be zero on average if sampling noise is the 

only impediment to a perfect fit, and is thus expected (in that situation) to take on a range 

of positive and negative values centered near zero. Cross-validated error was indeed near 

zero for all simulations (and much lower than the fit error for the empirical data, orange) 

confirming that optimization was successful and cross-validated error behaved as expected. 

Note that this session had larger single-latent model violations for the empirical data than the 

average session, so the scale of the y-axis is larger than in Fig. 7.
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Extended Data Fig. 6. Example M1 neural activity.
(a) Trial-averaged forces from one recording session. Each column corresponds to one 

condition (the intermediate static force condition is omitted for space). Vertical scale bar 

indicates 8 N. Horizontal scale bar indicates 1 s. (b-j) Responses of 9 M1 neurons. Each 

subpanel plots the trial-averaged firing rate with standard error (top) and single-trial spike 

rasters (bottom). Vertical scale bars indicate 20 spikes/s. Horizontal scale bars indicate 1 s.

Marshall et al. Page 37

Nat Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Rigid versus flexible motor unit control and experimental setup.
(a) Rigid control schematic. The activity of many MUs is determined by a small number 

of force commands. Commands may be for individual-muscle force, or may be ‘synergies’ 

that control a mechanical action (e.g., an elbow flexion synergy and a forearm supination 

synergy). Thus, the number of controlled degrees of freedom is less than or equal to the 

number of motor neuron pools. Each MU’s activity is a ‘link function’ of one synergy (or 

for multifunctional muscles, 2–3 synergies). Link functions typically enforce size-based 

recruitment. (b) Flexible control schematic. Each motor neuron pool is controlled by 

multiple degrees of freedom, such that recruitment can be size-based but can also be flexibly 

altered when other solutions are preferable. (c) Task schematic. A monkey modulated the 

force generated against a load cell to control Pac-Man’s vertical position and intercept a 

scrolling dot path. (d) Single-trial (gray), trial-averaged (black), and target (cyan) forces 

from one session. Vertical scale: 4 N. Horizontal scale: 500 ms.
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Figure 2 |. Stimulation experiments.
(a) Microstimulation was delivered, on interleaved trials, through a selection of electrodes 

on a linear array. (b) EMG voltages for two EMG recording channels (of eight total) 

and four example trials, stimulating on electrode 23 or 27. The two electrodes recruited 

MUs with different waveform magnitudes, and vertical scales are adjusted accordingly. 

Stimulation was delivered during each green-shaded region, during which a small 

stimulation artifact can be seen. Right. spike templates for these two MUs. Vertical scale: 

50 standard deviations of background noise (ignoring stimulation artifact). (c) Responses of 

the same two MUs, for all trials during stimulation on three electrodes. Traces plot firing 
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rates (mean and standard error). Rasters show spike times, separately for the two MUs. (d) 

As in c but for a different session. (e) Additional example from a different session, showing 

responses during both the four-second ramp and during stimulation as the monkey held two 

baseline force levels. Mean force plotted at top. (f) As in e, but for a different session. (g) 

State-space predictions for rigid control (left) and flexible control (right). (h) State-space 

plots for two sessions where MUs were recorded from the lateral deltoid. Each subpanel 

plots joint activity of two MUs during stimulation on each of three electrodes. (i) For two 

sessions recording from sternal pectoralis major. Left: activity during stimulation on three 

electrodes. Right: activity during stimulation on two electrodes and during the slow force 

ramp. (j), For two sessions recording from lateral triceps.
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Figure 3 |. Quantifications of flexible control.
(a) Schematic illustrating MU displacement (dMU) for a two-dimensional population state 

and two times. Left. a monotonic manifold can pass through rt and rt′. Thus, dMU(t) = 0. 

Right. Any monotonic manifold passing through rt is restricted to the green zone, and thus 

cannot come closer than 8 spike/s to rt′. Thus, dMU(t) = 8. (b) Maximum displacement 

(one black line per session). For ‘1-stim’, displacement was computed across times during 

the response for each stimulation site alone. The maximum was then taken across sites 

from that session. For ‘all-stim’, the maximum displacement was computed across all 
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times and stimulation sites within a session. ‘All-stim’ displacement was significantly 

larger (two-sample two-tailed t-test, p = 0.00017, N=18 sessions). Both were significantly 

larger than the displacement expected due to sampling error alone (yellow, ten resampled 

artificial populations per empirical dataset). (c) Maximum displacement (for ‘all-stim’) after 

repeatedly removing the MU pair causing the largest displacement. Each trace corresponds 

to one session, and ends when remaining displacement is no larger than the largest across 

the ten resampled populations for that session. Gray histogram plots the distribution, across 

sessions, of the number of MUs that had to be removed to reach that point (mean in green). 

(d) Illustration of MNP dispersion metric for two MUs. The three trajectories were driven by 

stimulation at three cortical sites. The line defined by ∥r∥1 = 15 intercepts these trajectories 

at six points, with r1 and r2 being most distant. The MNP dispersion for λ = 15 is the L1 

distance between these points. (e) Maximum (across λ) dispersion (one line per session). 

‘All-stim’ dispersion was significantly larger (two-sample two-tailed t-test, p = 0.00011, 

N=18 sessions). Both were significantly larger than the dispersion expected due to sampling 

error alone (yellow, ten resampled artificial populations per empirical dataset). Results are 

shown for conditions where stimulation was delivered as the monkey held a low static force, 

and were nearly identical for a higher static force.
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Figure 4 |. Optimal MU recruitment.
(a) Isometric force production was modeled using an idealized MNP containing 5 MUs. 

MU twitch amplitude varied inversely with contraction time such that small MUs were 

also slow. A given set of rates resulted in both a mean total force and inferred trial-to-trial 

variation around that force. The latter was smaller when using multiple small MUs versus 

one large MU. Both contributed to mean-squared error between actual and target forces. The 

optimal set of MU firing rates was numerically derived as the solution minimizing that error. 

Optimization was independent for each force profile. (b) Example target (cyan) and mean 

MNP (black) forces (for simplicity no variability is shown). Mean force matched targets 

very well, with notable small exceptions at the troughs during sinusoidal forces. (c) Optimal 

MU firing rates, used to generate the forces in b. Each color corresponds to a different MU, 

numbered by size (MU1 was the smallest and slowest). (d) State space plot of MU3 versus 

MU2 for each condition in c.
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Figure 5 |. Dynamic experiments.
(a) Forces for two conditions: the four-second ramp and the 3 Hz sinusoid. Gray traces show 

all trials in this session. Black traces highlight trials for which EMG data are shown below. 

(b) MU spike templates across four (of eight) EMG channels recorded in the lateral triceps. 

Vertical scale: 50 standard deviations of the noise. Each template spans 10 ms. (c) EMG 

voltage traces for the two trials and time-periods highlighted in a. Traces become colored 

to indicate when spikes were detected. Numbers indicate the identity of the MU producing 

the spike. In some cases, spikes from two or more MUs overlap. Trace color reflects the 

relative magnitudes of the contributions made by different MUs. (d) Responses of two MUs 
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during the 0.25 Hz sinusoid. Black trace at top shows trial-averaged force. Colored traces 

show firing rates (mean and standard error). Rasters show individual spikes on all trials 

for these conditions. Vertical scales: 8N and 20 spikes/s. (e) Response of two MUs during 

the four-second ramp (left) and 3 Hz sinusoid (right). MU311 and MU309 correspond to 

MUs 3 and 5 for the session focused on in c. (f) Response of two MUs (from a different 

session) during the four-second ramp (left) and the 0 – 3 Hz chirp (right). (g) Response of 

two MUs (from a different session) during the 250 ms increasing and decreasing ramps. 

(h,i,j) State-space plots for the MUs shown in d,e,f. Scale bars: 20 spikes/s. (k) Maximum 

displacement for every session. Displacement was computed twice: within the four-second 

ramp only, and again across all conditions. Yellow lines plot displacement expected due 

to sampling error (ten resampled artificial populations per session). Empirical slopes were 

significantly larger than expected given sampling error (two-sample two-tailed t-test, p = 

0.000003, N=14 sessions). (l) Maximum displacement, across all conditions, after repeatedly 

removing the MU pair that caused the largest displacement. Each trace corresponds to one 

session, and ends when remaining displacement was no larger than the largest from the ten 

resampled datasets (or when no pairs would be left). Gray histogram plots the distribution, 

across sessions, of the number of MUs that had to be removed (mean in green). One 

session (lone green square) terminated immediately because it contained only 3 MUs. (m) 
Cumulative distribution for displacement (dMU(t)). Rather than summarizing a session by 

taking the maximum across all times (as in k,l), here we plot the distribution of dMU(t) for 

all times within one session. Distributions were computed for the slowly increasing ramp 

alone (purple) and all conditions (green). (n) Maximum (across λ) dispersion (one line per 

session). Slopes were significantly larger than expected given sampling error (two-sample 

two-tailed t-test, p = 0.0000007, N=14 sessions). (o) Additional within-session analysis of 

dispersion. Rather than summarizing a session by taking the maximum dMNP(λ) across λ 
(as in n), here we plot dMNP(λ) versus the λ (the norm).
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Figure 6 |. Muscle-length experiments.
The monkey generated a subset of the force profiles in Fig. 1d with a shoulder-flexion 

angle of 15° (the deltoid was long) or 50° (the deltoid was short). (a) Example forces and 

recordings when the deltoid was long, for one static-force condition. Gray traces plot force 

for all trials. Black trace plots force for one example trial. EMG voltages traces are shown 

for the highlighted portion (gray window) of that trial. Only two channels are shown for 

simplicity. Conventions as in Fig 5c. (b) Same but for later in the session after posture 

was changed and the deltoid was short. Recordings are from the same two channels and 

many of the same MUs (MU1, MU3, and MU4) are visible. However, MU4 has become 

considerably less active and MU5 is now quite active, despite being rarely active when 

the deltoid was long. (c) Data, from the same session documented in a,b, recorded during 

the 250 ms decreasing ramp. MU158 and MU159 correspond to MU4 and MU5 from 

panels a,b. Gray traces at top plot trial-averaged force. Colored traces plot firing rates 

(mean and standard errors). Rasters show spikes on all trials for this condition. Top and 
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bottom subpanels plot data where the deltoid was long and short. (d) Example from another 

session, recorded during the 0 – 3 Hz chirp. (e) State space plots for four example MU 

pairs. Top-left: same data as in c. Bottom-left: same data as in d. Top-right: additional 

comparison from the same session documented in a,b. MUs 157 and 158 correspond to 

MUs 3 and 4. Responses are during the chirp. Bottom-right: Example from a different 

session. Responses are during the 250 ms downward ramp. (f) Maximum displacement 

for every session (one line per session). Displacement was computed three times: within 

the four-second ramp, across all conditions within a muscle length (then pooled across 

lengths), and across all conditions and both muscle lengths. Yellow lines plot displacement 

expected due to sampling error (ten resampled artificial populations per empirical dataset). 

The empirical slopes were significantly larger than expected due to sampling error both 

for the increase from the four-second ramp to all conditions within a muscle length (p 

= 0.00044) and for the additional increase when considering both muscle lengths (p = 

0.022, two-sample two-tailed t-test, N=6 sessions). (g) Maximum displacement (across all 

conditions and both muscle lengths) after repeatedly removing the MU pair that caused 

the largest displacement. Each trace corresponds to one session, and ends when remaining 

displacement was no larger than the largest within the ten resampled populations. Gray 

histogram plots the distribution, across sessions, of the number of MUs that had to be 

removed (mean in green). (h) Cumulative distribution of displacement, within one session, 

for the three key comparisons: four-second ramp (purple), all conditions within a muscle 

length (green), and all conditions for both muscle lengths (orange), for one session. (i) As in 

f but for dispersion. The two slopes were significantly higher than expected given sampling 

error (p = 0.00011 and p = 0.03, two-sample two-tailed t-tests, N=6 sessions). (j) dMNP(λ) 

as a function of the norm, λ, for one session.
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Figure 7 |. Latent factor model.
(a) The model embodies the premise of rigid control: MU firing rates are fixed ‘link 

functions’ of a shared, 1-D latent input. (b) Model performance for the three experiment 

types. The model was fit separately for each session. Regardless of how many conditions 

were fit, error was computed only during the four-second ramp. To compute cross-validated 

error, each session’s data was divided, trial-wise, into two random partitions. The model 

was fit separately to the mean rates for each partition. For each MU, cross-validated fit 

error was the dot product of the two residuals. To summarize cross-validated error for that 

experiment type, we computed the median error across all MUs in all relevant sessions. 

Partitioning was repeated 10 times. Vertical bars indicate the mean and standard deviation 

across these 10 partitionings, and thus indicate reliability with respect to sampling error 

(the standard deviation of the sampling error is equivalent to the standard error). Purple 
bars plot error when fitting only the four-second ramp. Green bars plot error when fitting 

additional conditions (stimulation across multiple sites, or different force profiles). For 

muscle-length experiments, green bars plot error when fitting all force profiles for the same 

muscle length, then averaging across muscle lengths. Orange bars plot error when fitting all 

force profiles for both muscle lengths. Circles show cross-validated fit error for an artificial 

population response that obeyed rigid control, but otherwise closely resembled the empirical 

population response. (c) Illustration of model fits for simplified situations: the activity of 

two MUs during the four-second ramp (top) or following cortical stimulation on three 

different electrodes (bottom). For illustration, the model was fit only to the data shown. (d) 

Proportion of total MUs that consistently violated the single-latent model when fit to pairs 

of conditions. Each entry is the difference between the proportion of consistent violators 
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obtained from the data and the proportion expected by chance. Left: dynamic experiments. 

Right: for muscle length experiments, we grouped conditions by frequency (lower on top, 

higher on bottom).
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Figure 8 |. Quantifying neural degrees of freedom.
(a) Schematic illustrating the central question: how many degrees of freedom might 

influence the MNP? (b) Cross-validated fit error as a function of the number of latent 

factors. Cross-validated error was computed within all conditions, but was otherwise 

calculated as above. For each partitioning, the overall error was the median cross-validated 

error across all MUs in two sessions. Error bars indicate the mean +/− standard deviation 

across 10 total partitionings. (c) We recorded neural activity in motor cortex using 128-

channel Neuropixels probes. (d) Two sets of trial-averaged rates were created from a 

random partitioning of trials. Traces show the projection of the first (green) and second 

(purple) partitions onto PCs found using only the first. Traces for PCs 1 and 50 were 

manually offset to aid visual comparison. (e) Reliability of neural latent factors for the first 

60 factors. Traces plot the mean and central 95% (shading) of the distribution across 25 

random partitionings. (f) Same but for latent factors 1–400. The empirical reliability (blue) 

is compared to that for simulated data with 50 (yellow), 150 (orange), and 500 (red) latent 

signals.
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