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Pain invariably changes over time. These fluctuations contain statistical reg-
ularities which, in theory, could be learned by the brain to generate expecta-
tions and control responses. We demonstrate that humans learn to extract
these regularities and explicitly predict the likelihood of forthcoming pain
intensities in a manner consistent with optimal Bayesian inference with
dynamic update of beliefs. Healthy participants received probabilistic, volatile
sequences of low and high-intensity electrical stimuli to the hand during brain
fMRI. The inferred frequency of pain correlated with activity in sensorimotor
cortical regions and dorsal striatum, whereas the uncertainty of these infer-
ences was encoded in the right superior parietal cortex. Unexpected changes
in stimulus frequencies drove the update of internal models by engaging
premotor, prefrontal and posterior parietal regions. This study extends our
understanding of sensory processing of pain to include the generation of
Bayesian internal models of the temporal statistics of pain.

The main function of the pain system is to minimise harm and, to
achieve this goal, it needs to learn to predict forthcoming pain. To
date, this has been studied using cue-based paradigms, in which a
learned or given cue, such as a visual image, contains the relevant
information about an upcoming pain stimulus'. A much more gen-
eral, although neglected, route to generate predictions relates to the
background statistics of pain over time, i.e. the underlying base-rate
of getting pain, and of different pain intensities, at any one moment.
This is important because clinical pain typically involves long-lasting
streams of noxious signals, characterised by temporal regularities
that underscore the temporal evolution of pain®.

The brain can use associative learning strategies to predict pain
from cues, but these algorithms do not learn the structure of the
environment’. In principle, the pain system should be able to generate
predictions by learning regularities (i.e. structures) in its temporal
evolution, in absence of other information. This possibility is sug-
gested by research in other sensory domains, showing that the tem-
poral statistics of sequences of inputs are learned and inferred through
experience - a process termed temporal statistical learning®™. We
hypothesise that temporal statistical learning also occurs in the pain

system, allowing the brain to infer the prospective likelihood of pain by
keeping track of ongoing temporal statistics and patterns.

Here, we tested this hypothesis by designing a temporal statistical
learning paradigm involving long, probabilistic sequences of noxious
stimuli of low and high intensities, whose transition probabilities could
suddenly change. We tested people’s ability to generate explicit pre-
dictions about the probability of forthcoming pain, defined the
underlying computational principles and revealed their neural corre-
lates. We investigated the following computational features: (1) is the
stimulus sequence learnt using an optimal Bayesian inference strategy,
or an heuristic (a model-free delta rule)? (2) Does the learning update
take into account the volatility of the sequence? (3) Which temporal
statistics is inferred, stimulus frequencies or transition probabilities?

After identifying the computational principles of learning to pre-
dict pain sequences, we reveal the brain regions that encode these
predictions, their uncertainty and update, using functional MRI. We
hypothesised statistical predictions for pain would follow the funda-
mental rules of optimal Bayesian inference, based on previous work on
other sensory modalities™. We were particularly interested in under-
standing whether probabilistic predictions of pain might be
encoded in somatosensory processing regions (primary/secondary
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somatosensory cortex and insula), given that statistical inferences of
visual and auditory inputs can be encoded in visual and auditory
regions’. This would allow us to map core regions of the pain system to
specific functional information processing operations, i.e. the statis-
tical inference of pain.

Results

Thirty-five participants (17 females; mean age 27.4 years old; age range
18-45 years) completed an experiment with concurrent whole-brain
fMRI. They received continuous sequences of low- and high-intensity
electrical stimuli, eliciting painful sensations. Participants were
required to intermittently judge the likelihood that the next stimulus
was of high versus low intensity, given the previous stimulus
(Fig. 1a, b).

We designed the task such that the statistics of the sequence
could occasionally and suddenly change (i.e. they were volatile), which
meant that the sequences of 1500 stimuli included sub-sequences of
stimuli (mean 25 + 4 stimuli per sub-sequence). Participants were not
explicitly informed when these changes happened. Figure 1aillustrates
an example of a snapshot of a typical sequence, showing a couple of
‘jump’ points where the probabilities change. The sequence statistics
were Markovian and, thus, incorporated two types of information.
First, they varied in terms of the relative frequency of high and low-
intensity stimuli (from 15 to 85%), to test whether the frequency sta-
tistics can be learned. Second, sequences also contained an additional
aspect of predictability, in which the conditional probability of a sti-
mulus depended on the identity of the previous stimulus (i.e. the
transition probability of high or low pain following a high pain sti-
mulus, and the transition probability of high or low pain following a
low pain stimulus; Fig. 1c). By having different transition probabilities
between high and low stimuli within sub-sequences, it is possible to
make a more accurate prediction of a forthcoming stimulus intensity
over-and-above simply learning the general background statistics.
Thus, we were able to test whether participants learn the frequency or
the transition probabilities between different intensities, as shown
previously with visual stimuli'. For this reason, our design mirrored a

Change point

well-studied task used to probe statistical learning with visual
stimuli'*®, From a mathematical point of view, the frequency can
always be derived from the transition probabilities, but not vice versa.
Therefore, participants were not asked to rate the frequency of the
stimuli because it can be simply derived from their transition prob-
ability ratings; in contrast, transition probability estimates cannot be
derived from frequency estimates.

Behavioural results

Participants were able to successfully learn to predict the intensity
(high versus low) of the upcoming painful stimulus within the
sequence based on its frequency. We measured the linear relation
between the true and rated frequency of low and high pain respec-
tively, for each participant. As shown in Fig. 2a, 83% of participants
showed a positive association, greater than 0, between true and rated
frequencies (median Pearson’s r = 0.25, SD = 0.19). Across subjects, the
within-individual Pearson’s r between true and rated frequencies was
significantly above zero (t(34) = 6.10, p <0.001, Cohen’s d =1.03; 2c).
This indicates that the majority of participants were able to predict the
frequency of the stimuli, despite the volatility of the sequence.

Next, we checked whether participants were able to also predict
higher order statistics, i.e. the transition probability between the sti-
muli. This seemed to be quite challenging for our participants. In 74%
of participants there was a positive correlation between true and rated
transition probabilities (P(H|H): median Pearson’s r=0.16, SD = 0.23;
P(H|L): median Pearson’s r = 0.13, SD = 0.22). As shown in Fig. 2b, ¢, 26%
of participants showed negative linear relations, indicating that they
could not predict transition probabilities. At group level, the relation
between true and rated transition probabilities was significantly
greater than O (p(H|H): t(34)=3.65, p<0.001, Cohen’s d=0.616;
p(H|L): t(34) =3.15, p=0.0034, Cohen’s d = 0.532; note that p(H|L) and
p(LIL) are reciprocal, as well as p(H|L) and p(L|L)).

Furthermore, we found no evidence for a correlation between the
participant prediction accuracy (as measured by the correlation
coefficient between generative and rated probabilities) and perceived
pain intensity for the high pain stimulus, averaged across sessions
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Fig. 1| Behavioural task and model explanation. a Example trials from a repre-
sentative participant, showing: the true probability of high (H) and low (L) stimuli
given current stimuli, trial stimulation given, and participant rated probabilities.
The arrows point to jump points of true probabilities, where a sudden change
happens. b Rating screens. Occasionally, the sequence was paused and participants
were asked to estimate the likelihood of the upcoming stimulus given the current
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one. For example, after a low stimulus participants would be asked to rate the
probability of the upcoming stimulus being low (L —>L) or high (L->H).

¢ Graphical representation of the Markovian generative process of the sequence of
low and high-intensity stimuli. The transition probability matrix was resampled at
change points, determined by a fixed probability of a jump.
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Fig. 2 | Behavioural results. a Relation between generative and rated frequencies,
p(H), in each participant (one regression line per participant, n =35). b Relation
between generative and rated transition probabilities, p(H|L), in each participant
(one regression line per participant, n = 35). ¢ Estimation accuracy, as measured by
the correlation coefficient between generative and rated probabilities: frequency
p(H) and transition probability p(H|L); each circle represents one participant

p(H)

Generative p(H|L) PHIL)
(n=35). The boxes show the quartile of the data and the whiskers illustrate the rest
of the distribution, except for points that are classified as "outliers" based on the
inter-quartile range. The two sets of correlations were not significantly different,
based on a two-sided z-test on Fisher-transformed correlation coefficients
(z=0.376, p=0.707). Source data are provided as a Source Data file.

(frequency prediction accuracy by high pain intensity: r=-0.175,
p=0.337; p(HH) prediction accuracy by high pain intensity: r = -0.178,
p=0.305; Supplementary Fig. 2).

Behavioural data modelling

Model choice. We adopted a normative approach to identify the
mathematical principles that underlie learning to predict pain
sequences, based on previous evidence in other sensory domains'**¢,
We designed six computational models to address three main
questions.

Firstly, we investigated whether the inference follows the rules of
optimal Bayesian inference, an heuristic (a simple delta rule), or it is
simply random. To this purpose, we compared a family of four Baye-
sian inference models", a basic reinforcement learning model with a
fixed learning rate”” and a baseline random model that assumes con-
stant probabilities throughout the experiment for high and low pain
respectively.

Secondly, we evaluated whether the Bayesian inference incorpo-
rates the possibility (prior probability) of sudden changes in stimulus
probability or ignores such possibilities. Given that the volatility of the
stimuli did not change over time, the Bayesian ’jump’ models had a
constant prior of the probability of a jump. The Bayesian ‘fixed’ models
did not have any prior over the volatility of the stimuli, but had a leaky
integration with an exponential decay to mimic forgetting.

Lastly, the Bayesian (jump and fixed) models differed according to
the temporal statistics they inferred: the stimulus frequency or the
transition probability. The Bayesian frequency models assume the
sequence as generated by a Bernoulli process, where observers track
how often they encountered previous stimuli. In contrast, the Bayesian
transition probability models assume the sequence follows a Markov
transition probability between successive stimuli, where observers
estimate such transition of previous stimuli.

Model fitting. The selected models estimate the probability of a pain
stimulus’ identity in each trial. The values predicted by the model can
be fitted to the subjects’ probability ratings gathered during the
experiment. A model is considered a good fit to the data if the total
difference between the model-predicted values and the subjects’
predictions is small. Within each model, free parameters were allowed
to differ for individual subjects in order to minimise prediction dif-
ferences. For Bayesian ‘jump’ models, the free parameter is the prior
probability of sequence jump occurrence. For Bayesian fixed models,

the free parameters are the window length for stimuli history tracking,
and an exponential decay parameter that discounts increasingly dis-
tant previous stimuli. The RL model’s free parameter is the initial
learning rate, and the random model assumes a fixed high pain prob-
ability that varies across subjects. The model fitting procedure mini-
mises each subject’s negative log likelihood for each model, based on
residuals from a linear model that predicts subject’s ratings using
model predictors. The smaller the sum residual, the better fit a model’s
predictions are to the subject’s ratings.

Model comparison. We compared the different models using the
likelihood calculated during fitting as model evidence. Figure 3a shows
model frequency, model exceedance probability, and protected
exceedance probability for each model fitted (see ‘Model compar-
ison’). Both comparisons showed the winning model was the 'Bayesian
jump frequency’ model inferring both the frequency of pain states and
their volatility, producing predictions significantly better than alter-
native models (Bayesian jump frequency model frequency=0.563,
exceedance probability = 0.923, protected exceedance =0.924). Fig-
ure 3b reports the model evidence for each subject; it shows that,
although the majority (n=23) of participants were best fit by the
model that infers the background frequency, some participants
(n=12) were better fit by the more sophisticated model that infers
specific transition probabilities. In Supplementary Fig. 1, we show
quality of the fit of the Bayesian jump frequency model for each
participant.

Neuroimaging results

We used the winning computational model to generate trial-by-trial
regressors for the hemodynamic responses. The rationale behind this
approach is that neural correlation of core computational components
of a specific model provides evidence that and how the model is
implemented in the brain',

First, a simple high > low pain contrast identified BOLD responses
in the right thalamus, sensorimotor, premotor, supplementary motor,
insula, anterior cingulate cortices and left cerebellum (with peaks in
laminae V-VI), consistent with the known neuroanatomy of pain
responses (Fig. 4, cluster list in Supplementary Table 2).

Next, we evaluated the neural correlates of the modelled poster-
ior probability of high pain. For any stimulus, this reflects the newly
calculated probability that the next stimulus will be high, i.e. the
dynamic and probabilistic inference of high pain. Given that the
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Fig. 3 | Model comparison results. a Bayesian model comparison based on model
fitting evidence. Subjects' predictive ratings of next trial’s pain intensity were fitted
with posterior means from Bayesian models, values from Rescorla-Wagner (rein-
forcement learning) model, and random fixed probabilities. The winning model
was the Bayesian jump frequency model, which assumes jumps in the sequence and
infers the stimulus frequency. In our model comparison, the model frequency
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indicates how often a given model is used by participants; the model exceedance
probability measures how likely it is that any given model is more frequent than the
other models, and the protected exceedance probability is the corrected excee-
dance probability for observations due to chance. b Individual subject model evi-
dence (each row represents a subject; colorbar indicates the model probability
ranging from O to 1). Source data are provided as a Source Data file.

Encoding of stimulus intensity
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Fig. 4 | Brain responses to noxious stimuli. Red: high > low pain stimuli, blue: high < low pain stimuli. Two-sided statistics corrected for the false discovery rate (FDR) at

level p <0.001; colorbar shows Z scores >3.3.

predicted probabilities of high and low pain are reciprocal, their neural
correlates can be revealed by using positive and negative contrasts.
The prediction of high pain frequency was associated with BOLD
responses in the bilateral primary and secondary somatosensory cor-
tex, primary motor cortex, caudate and putamen (pink clusters in
Fig. 5, Table 1). The prediction of low pain frequency implicated the
right (controlateral to stimulation) sensorimotor cortex, the supple-
mentary motor cortex, dorsal anterior cingulate cortex, thalamus and
posterior insular-opercular cortex bilaterally (green clusters in Fig. 5,
Table 1).

Uncertainty signals, quantified by the variability (SD) of the pos-
terior probability distribution of high pain, were found in a right
superior parietal region, bordering with the supramarginal gyrus

(Fig. 6a and Table 2). The negative contrast of the posterior SD did not
yield any significant cluster.

A key aspect of the Bayesian model is that it provides a metric of
the model update, quantified as the Kullback-Leibler (KL) divergence
between successive trials’ posterior distribution. The KL divergence
increases when the two successive posteriors are more different from
each other, and decreases when the posteriors are similar. We found
that the KL divergence was associated with BOLD responses in left
premotor cortex, bilateral dorsolateral prefrontal cortex, superior
parietal lobe, supramarginal gyrus, and left somatosensory cortex
(Fig. 6b, Table 2). For completeness, we report the negative contrast in
Supplementary Fig. 3 and Supplementary Table 3. Figure 7 overlays the
posterior probability of pain with its uncertainty and update (KL

Nature Communications | (2022)13:6613
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Fig. 5 | Brain activity associated with the temporal statistical inference of pain intensity. Neural correlates of the mean posterior probability of low pain (green) and
high pain (pink) in the Bayesian jump frequency model (two-sided statistics, FDR corrected p < 0.001, colorbar shows Z scores >3.3).

divergence). This shows that the temporal prediction of high pain and
its update activate distinct, although neighbouring regions in the
sensorimotor and premotor cortex, bilaterally. In contrast, the
uncertainty of pain predictions activates a right superior parietal
region that partially overlaps with the neural correlates of model
update.

Discussion

Pain is typically uncertain, and this is most often true when pain per-
sists after an injury. When this happens, the brain needs to be able to
track changes in intensity and patterns over time, in order to predict
what will happen next and decide what to do about it. Here we show
that the human brain can generate explicit predictions about the
likelihood of forthcoming pain, in absence of external cues. Pain pre-
dictions are best described by an optimal Bayesian inference model
with dynamic update of beliefs, allowing explicit prediction of the
probability of forthcoming pain at any moment in time. Using neu-
roimaging, we found distinct neural correlates for the probabilistic,
predictive inference of pain and its update. Predictions (i.e. mean
posterior probability) of high pain intensity are encoded in the bilat-
eral, primary somatosensory and motor regions, secondary somato-
sensory cortex, caudate and putamen, whereas predictions of low pain
intensity involve the controlateral sensorimotor cortex, the supple-
mentary motor corteX, dorsal anterior cingulate cortex, bilateral tha-
lamus and posterior insular-opercular cortex. The signal representing
the update of the probabilistic model localises in adjacent premotor
and superior parietal cortex. The superior parietal cortex is also
implicated in the computation of the uncertainty of the probabilistic
inference of pain. Overall, the results show that cortical regions typi-
cally associated with the sensory processing of pain (primary and
secondary somatosensory cortices) encode how likely different pain
intensities are to occur at any moment in time, in the absence of any
other cues or information; the uncertainty of this inference is encoded
in the superior parietal cortex and used by a network of parietal-
prefrontal regions to update the temporal statistical representation of
pain intensity.

The ability of the brain to extract regularities from temporal
sequences is well-documented in other sensory domains such as vision
and audition®". However, pain is a fundamentally different system with
intrinsic motivational value and direct impact on the state of the
body”?. Pain can constrain cognitive functions, such as working

memory and attention”**, Furthermore, the cortical representation of
pain is distributed” and a primary brain region for pain has not been
found®.

We show that pain predictions are best described by an optimal
Bayesian inference model, tracking the frequency of pain states and
their volatility based on past experience. A more complex strategy
involves inferring higher level statistical patterns within these
sequences, i.e. representing all the transition probabilities between
different states. It has been shown that optimal inference of transition
probabilities can be achieved using similar paradigms with visual and
auditory stimuli**. Although this model fits 1/3 of subjects best, overall
it was not favoured over the simpler frequency learning model, which
best describes the behaviour of ~2/3 of our sample (Fig. 3). At this stage
it is not clear whether this is because of stable inter-individual differ-
ences, or whether given more time, more participants would be able to
learn specific transition probabilities. However, it is worth noting that
stable, individual differences in learning strategy have been previously
reported in visual statistical learning™*. In supplementary analyses, we
show that the neural correlates of both frequency and transition
probability learning were generally comparable between the sub-
groups of participants who favoured a frequency inference strategy
and those who preferred a transition probability strategy (Supple-
mentary Notes 6-7).

As in other domains, we focused on conscious judgement of the
relative overall probability of pain, as opposed to looking at autonomic
responses or other physiological measures of pain prediction; this was
done to allow direct comparisons between the participant’s predic-
tions and ideal observers'. We did not test whether statistical learning
for pain is automatic but, based on previous work, we expect it to
happen spontaneously, without requiring the need to explicitly report
stimulus probabilities. Indeed, statistical learning of visual or auditory
inputs has been reported in songbirds, primates and newborns*,
Furthermore, previous studies have shown implicit expectation effects
from sequences of stimuli in humans®,

The present evidence in support of Bayesian inference is broadly
consistent with previous work on the learning of a cognitive model or
acquisition of explicit contingency knowledge across modalities,
including pain®**%, This reflects a fundamentally different process to
pain response learning—either in Pavlovian conditioning where sim-
ple autonomic, physiological or motoric responses are acquired, or
basic stimulus-response (instrumental / operant) avoidance or
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Table 1| Activation clusters associated with the mean pos-
terior p(High pain) and p(Low pain) of the Bayesian jump
frequency model

Table 2 | Activation clusters positively associated with the
uncertainty (SD posterior) and update (KL divergence) of the
Bayesian jump frequency model

Cluster ID X Y z Peak stat Cluster size (mm?®) ClusterID X Y z Peak stat Cluster size (mm?®)

p(H) Uncertainty

0 1 66 -7 27  6.477 4402 0 1 40 -48 58 4.3M1 1186
1 1a 52 -7 33 5787 1 1a 47 -38 58 4.168

2 2 -62 -7 33 5.924 2408 2 1b 33 -41 43 3.745

3 2a -46  -12 43  4.002 3 2 28 -58 49 4.084 736
4 3 21 -12 24 4885 1491 Update

5 3a n -2 15 4197 0 1 -58 6 36 6.191 11034
6 3b 13 -7 21 4140 1 1a -26 -2 49 5945

p(L) 2 1b -60 4 21 4.935

0 1 28 -22 65 6.158 5265 3 1c -43 0 55 4.516

1 1a 30 -19 49 6.012 4 2 -46 -41 40 6.098 5193
2 1b 16 -12 65 5.148 5 2a -36 -50 52 5.438

3 1c 23 -10 68 4575 6 2b -50 -41 55 3.789

4 2 37 -17 15 6.013 131 7 3 59 1 24 5.308 1886
5 13 =22 8 5.407 1886 8 47 -41 58 5.295 6128
6 M =17 49 4.683 2372 9 4a 37 -50 52 4.972

7 4a 0 -2 43 4.439 10 4b 37 -58 61 4.460

1 4c 30 -65 61 4.255
12 5 -62 -17 33 4814 1797

escape response learning. These behaviours are usually best cap- 13 5a -50 -24 33 4584
tured by reinforcement learning models such as temporal difference 14 5b -46 29 27 3.849

learning®, and reflect a computationally different process®. Having
said that, such error-driven learning models have been applied to
statistical learning paradigms in other domains before*’, and so here
we were able to directly demonstrate that they provided a worse
fit than Bayesian inference models (Fig. 3). In contrast to simple
reinforcement learning models, Bayesian models allow to build
an internal, hierarchical representation of the temporal statistics of
the environment that can support a range of cognitive
functions'**2,

A key benefit of the computational approach is that it allows us to
accurately map underlying operations of pain information processing
to their neural substrates®. Our study shows that the probabilistic
inference of pain frequency is encoded in somatosensory processing
regions, such as the primary somatosensory cortex and posterior
insula/operculum; it also involves supramodal regions, such as pre-
motor cortex and dorsal striatum (Fig. 5). This is broadly consistent
with the view that statistical learning involves both sensory and
supramodal regions’.

A specific facet of the Bayesian model is the representation of an
uncertainty signal, i.e. the posterior SD, and a model update signal,
defined as the statistical KL divergence between consecutive pos-
terior distributions. This captures the extent to which a model is
updated when an incoming pain signal deviates from that expected,
taking into account the uncertainty inherent in the original predic-
tion. In our task, the uncertainty of the prediction was encoded in a
right superior parietal region, which partially overlapped with a
wider parietal region associated with the encoding of the model
update (Figs. 6, 7). This emphasises the close relationship between
uncertainty and learning in Bayesian inference**. A previous study on
statistical learning in other sensory domains reported that a more
posterior, intraparietal region was associated with the precision of
the temporal inference®. The role of the superior parietal cortex in
uncertainty representation is also evident in other memory-based
decision-making tasks; e.g. the superior parietal cortex was found to
be more active for low vs. high confidence judgements**. In addi-
tion to the parietal cortex, the model update signal was encoded in
the left premotor cortex and bilateral dorsolateral prefrontal cortex

(Fig. 6), which neighboured regions activated by pain predictions
(Fig. 7). This is particularly interesting, as the premotor cortex sits
along a hierarchy of reciprocally and highly interconnected regions
within the sensorimotor cortex. The premotor cortex has also been
implicated in the computation of an update signal in visual and
auditory statistical learning tasks®.

In conclusion, our study demonstrates that the nociceptive
system generates probabilistic predictions about the background
temporal statistics of pain states, in absence of external cues, and
this is best described by a Bayesian inference strategy. This extends
both current anatomical and functional concepts of what is con-
ventionally considered a ’sensory pain pathway’, to include the
encoding not just of stimulus intensity***° and location®, but also the
generation of dynamic internal models of the temporal statistics of
pain intensity levels. Future studies will need to determine whether
temporal statistical predictions modulate pain perception, similarly
to other kinds of pain expectations>**>. More broadly, temporal
statistical learning is likely to be most important after injury, when
continuous streams of fluctuating signals ascend nociceptive affer-
ents to the brain, and their underlying pattern may hold important
clues as to the nature of the injury, its future evolution, and its
broader semantic meaning in terms of the survival and prospects of
the individual. It is therefore possible that the underlying computa-
tional process might go awry in certain instances of chronic pain,
especially when instrumental actions can be performed that might
influence the pattern of pain intensity®’*, Thus, future studies could
explore both how temporal statistical learning interacts with pain
perception and controllability, as well as its application to
clinical pain.

Methods

Participants

Thirty-five healthy participants (17 females; mean age 27.4 years old;
age range 18-45 years) took part in two experimental sessions,
2-3 days apart: a pain-tuning and training session and an MRI session.

Nature Communications | (2022)13:6613
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(a) Uncertainty of the inference (SD posterior)

Fig. 6 | Uncertainty and learning signals. a Uncertainty (SD) of the posterior
probability of high pain in the Bayesian jump frequency model was associated with
activations in the right superior parietal cortex (FDR corrected p < 0.001, colorbar

shows Z scores >3.3). b Neural activity associated with the model update, i.e. the
Kullback-Leibler (KL) divergence between posteriors from successive trials (posi-
tive contrast, FDR corrected p < 0.001, colorbar shows Z scores >3.3).

Each participant gave informed consent according to procedures

approved by University of Cambridge ethics committee
(PRE.2018.046).
Protocol

The electrical stimuli were generated using a DS5 isolated bipolar
current stimulator (Digitimer), delivered to surface electrodes placed
on the index and middle fingers of the left hand. All participants
underwent a standardised intensity work-up procedure at the start of
each testing day, in order to match subjective pain levels across ses-
sions to a low-intensity level (just above pain detection threshold) and
a high-intensity level that was reported to be painful but bearable (>4
out of 10 on a VAS ranging from O [‘no pain’] to 10 ['worst imaginable
pain’]). The stimulus delivery setup was identical for lab-based and MR
sessions. After identifying appropriate intensity levels, we checked
that discrimination accuracy was >95% in a short sequence of 20 ran-
domised stimuli. This was done to ensure that uncertainty in the
sequence task would derive from the temporal order of the stimuli
rather than their current intensity level or discriminability. If needed,
we tweaked the stimulus intensities to achieve our target discrimin-
ability. Next, we gave the task instructions to each participants (openly
available®).

After receiving a shock on trial ¢, subjects were asked to predict
the probability of receiving a stimulus of the same or different
intensity on the upcoming trial (trial ¢ +1). We informed participants
that in the task they "would receive two kinds of stimuli, a low-
intensity shock and a high-intensity shock. The L and H stimuli would
be presented in a sequence, in an order set by the computer. After
each stimulus, the following stimulus intensity could be either the

same or change. The computer sets the probability that after a given
stimulus (for example L) there would be either L or H" (we showed a
visual representation of this example). We asked participants to
"always try to guess the probability that after each stimulus there will
the same or a different one" and we informed them that "the com-
puter sometimes changes its settings and sets new probabilities”, so
to pay attention all the time. We also told them the sequence would
be paused occasionally in order to collect probability estimates from
participants using the scale depicted in Fig. 1. A white fixation cross
was displayed on a dark screen throughout the trial, except when a
response was requested every 12-18 trials. The interstimulus
interval was 2.8-3 seconds. There were 300 stimuli in each block,
lasting ~8 min. Average intensity ratings for each stimulus level
were collected after each block during a short break. Low-intensity
stimuli were felt by participants as barely painful, rated on average
1.39 (SD 0.77) on a scale ranging from 0 (no pain) to 10 (worst
pain imaginable). In contrast, high-intensity stimuli were rated
as more than 4 times higher than low-intensity stimuli (mean 5.74, SD
4.85). Participants were given 4 blocks of practice, 2-3 days
prior the imaging sessions and 5 blocks (1500 stimuli) during
task fMRI.

A unique sequence was generated every time the experiment was
launched asinref. 14. L and H stimuli were drawn randomly froma2 x 2
transition probability matrix, which remained constant for a number of
trials (chunks). The probability of a change was 0.014. Chunks had to
be >5 and <200 trials long. In each chunk, transition probabilities were
sampled independently and uniformly in the 0.15-0.85 range (in steps
of 0.05), with the constraint that at least one of the two transition
probabilities must be >/< 0.2 than in the previous chunk. Participants
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. Mean posterior p(L)

Mean posterior p(H)

Fig. 7 | Statistical inference and model update activate adjacent sensorimotor
and premotor regions. Overlay of the temporal prediction (mean posterior
probability) of low (green) and high pain (pink), their uncertainty (SD posterior

.| Model update
B SD posterior

probability, blue) and the model update (KL divergence between successive pos-
terior distributions, red-yellow); FDR corrected p < 0.001, colorbar shows Z
scores >3.3.

were not informed when the matrix was resampled, and a new chunk
started.

At the end of the task we asked participants for general
comments about the strategy they used. A minority of partici-
pants reported to have no clue about the stimulus sequence and
were rather bored by the task. The majority of subjects thought
that it was difficult to predict the sequence but they were starting
to get a sense of the temporal pattern after a while. Some tried to
use strategies like counting, but they tended to abandon it to
favour a more spontaneous approach of feeling the "flow" or the
"rhythm" of the sequence.

Behavioural data analysis were conducted with Python packages
pandas (pypi version 1.1.3) and scipy (pypi version 1.5.3). Effect size was
calculated as Cohen’s d for t-tests.

Computational modelling of temporal statistical learning
Learning models. The models used in comparison are listed as
followed:

Random (baseline model)

Probabilities are assumed fixed and reciprocal for high and low
stimuli

Pr=1-p @

where p, was fitted as a free parameter. Uncertainty was assumed to
be fixed.
Rescorla-Wagner (RW model)

Rated probabilities are assumed to be state values, which were
updated as

Vt+1 < Vt+a(Rt - Vr) (2)

where R, =1 if stimulus was low, and O otherwise. The learning rate o
was fitted as free parameter”.

Bayesian models

Bayesian models update each trial with stimulus identity infor-
mation to obtain upcoming trial probability from the posterior
distribution™. Using Bayes’ rule, the model parameter 6, is estimated at
each trial ¢ provided previous observations y,.. (sequence of high or
low pain), given a model M.

PO W1.eM) ~ p(1.¢10:,M)P(6,,M) 3

Stimulus information can either be the frequency or transition of
the binary sequence. There are ‘fixed’ models that assume no sudden
jump in stimuli probabilities, and jump’ models that assume the
opposite. The four combinations were fitted and compared.

Fixed frequency model

For fixed models, the likelihood of parameters 8 follows a Beta
distribution with parameters N, +1 and N, +1, where N, and N, are the
numbers of high and low pain in the sequence yy... Given that the prior
is also a flat Beta distribution with parameters [1,1], the posterior can be
analytically obtained with:

P(Oly.,) = Beta(BIN), + 1N, +1) “)
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The likelihood of a sequence y;.. given model parameters 8 can be
calculated as:

POLI0) =p0110) [ T;_, POV ) ®)

Finally, the posterior probability of a stimulus occurring in the
next trial can be estimated with Bayes’ rule:

PO i) = / PYe11090p(Olyr.)dO ©)

Priors "window" and "decay" were fitted as free parameters.
"Window" is the previous n trials where the frequency of stimuli was
estimated, and "decay" is the previous n trials where the frequency of
stimuli further from current trial was discounted following an
exponential decay.

When "window" w is applied, then N, and N, are counted within
the window of w trials y.—,, .. When "decay" d is applied, an exponential
decay factor e=9 is applied to the k trials before their sum is calculated.
Both "window" and "decay" were used simultaneously.

Fixed transition model

Priors "window" and "decay" were fitted as free parameters as in
the Fixed frequency model above, however, the transition probability
was estimated instead of the frequency. The likelihood of a stimulus
now depends on the estimated transition probability vector 6~ [0y,
0yn] and the previous stimulus pairs N~ [Npy, Nysl. Given that both
likelihood and prior can be represented using Beta distributions as
before, the posterior result can be analytically obtained as:

P(Oy1.,) = Beta(Opy N py; + LNy + DBeta(@y Ny + LNy +1) - (7)

Jump frequency model

In jump models, parameter 6 is no longer fixed, instead it can
change from one trial to another with a probability of pjump. Prior pjump
was fitted as a free parameter, representing the subject’s assumed
probability of a jump occurring during the sequence of stimuli (e.g. a
high pjump assumes the sequence can reverse quickly from a low pain
majority to a high pain majority). The model can be approximated as a
Hidden Markov Model (HMM) in order to compute the joint distribu-
tion of @ and observed stimuli iteratively,

PBra1dres) =Pes1lOrs1.0) / PO, yr0p6,110)d6,  (8)

where the integral term captures the change in 6 from one observation
t to the next ¢ +1, with probability (1- pjump) of staying the same and
probability pj,mp of changing. This integral can be calculated numeri-
cally within a discretised grid. The posterior probability of a stimulus
occurring in the next trial can then be calculated using Bayes’ rule as

p(Vr+1|y1:r):/pO’t+1|9z+1)p(9r+1D’1:r9r+1)
- / p(ytﬂlem)[ / p(etlylzap(emlet)det] do, .,

= / p(ytﬂletﬂ) [(1_pjump)p(etH=0t|y1:t)+pjumpp(00)] detﬂ
)
Jump transition model
Similarly to the jump frequency model above, prior pj,m,, was
fitted as a free parameter, but estimating transition probabilities
instead of frequency. The difference is the stimulus at trial y..; now

dependent on the stimulus at the previous trial, hence the addition of
the term y, in the joint distribution term, shown below.

PO i) = / PO +110:+1.Y0 | = Pjump)P O +1=0:Y1.6) + PjumpP(00) | A6, 11
(10)

KL divergence. Kullback-Leibler (KL) divergence quantifies the dis-
tance between two probability distributions. In the current context, it
measures the difference between the posterior probability distribu-
tions of successive trials. It is calculated as

P
D (P Q=) _,Pilog (%)

11)
where P and Q represent the two discrete posterior probability dis-
tributions calculated in discretised grids 2. KL divergence can be used
to represent information gains when updating after successive trials®.

Subject rated probability. For each individual subject, model-
predicted probabilities p; from the trial kK were used as predictors in
the regression:

Yi~Bot+ By - pMyp0)+B, - Ns+e 12
where y, is the subject rated probabilities, M; is the ith candidate
model, N; is the session number within subject, So, 81, B> and 6; are free

parameters to be fitted and ¢ is normally distributed noise added to
avoid fitting errors™.

Model fitting. To estimate the model-free parameters from data,
Bayesian information criteria (BIC) values were calculated as:

BIC=n- log6§+k -logn 13)

Gt=min: S 0~ 30 (14)
where 67 is the squared residual from the linear model above that
relates subject ratings to model-predicted probabilities, and n is the
number of free parameters fitted.

We use fmincon in MATLAB to minimise the BIC (as approximate
for negative log likelihood>) for each subject/model. The procedure
was repeated 100 times with different parameter initialisation, and the
mean results of these repetitions were taken as the fitted parameters
and minimised log likelihoods. Model’s parameter recovery is reported
in Supplementary Note 1.

Model comparison. In general, the best fit model was defined as the
candidate model with the lowest averaged BIC. We conducted a ran-
dom effect analysis with the VBA toolbox’®, where fitted log likelihoods
from each subject/model pair were used as model evidence. With this
approach, model evidence was treated as random effects that could
differ between individuals. This comparison produces model fre-
quency (how often a given model is used by individuals), model
exceedance probability (how likely it is that any given model is more
frequent than all other models in the comparison set), and protected
exceedance probability (corrected exceedance probability for obser-
vations due to chance)*’*%, These values are correlated and would be
considered together when selecting the best fit model.

Neuroimaging data

Data acquisition. First, we collected a T1-weighted MPRAGE structural
scan (voxel size 1 mm isotropic) on a 3T Siemens Magnetom Skyra
(Siemens Healthcare), equipped with a 32-channel head coil (Wolfson
Brain Imaging Centre, Cambridge). Then we collected 5 task fMRI
sessions of 246 volumes using a gradient echo planar imaging (EPI)
sequence (TR=2000ms, TE=23ms, flip angle=78° slices per
volume =31, Grappa 2, voxel size 2.4 mm isotropic, A>P phase-
encoding; this included four dummy volumes, in addition to those pre-
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discarded by the scanner). In order to correct for inhomogeneities in
the static magnetic field, we imaged 4 volumes using an EPI sequence
identical to that used in task fMRI, inverted in the posterior-to-anterior
phase-encoding direction. Full sequence metadata are available*’.

Preprocessing. Imaging data were preprocessed using fmriprep (pypi
version: 20.1.1, RRID:SCR_016216) with Freesurfer option disabled,
within its Docker container. Processed functional images had first four
dummy scans removed, and then smoothed with an 8 mm Gaussian
filter in SPM12.

Generalised linear model analysis. Nipype (pypi version: 1.5.1) was
used for all fMRI processing and analysis within its published Docker
container. Nipype is a python package that wraps around fMRI analysis
tools including SPM12 and FLS in a Debian environment.

First and second level GLM analyses were conducted using SPM12
through nipype. In all first level analyses, 25 regressors of no interest
were included from fmriprep confounds output: CSF, white matter,
global signal, dvars, std_dvars, framewise displacement, rmsd, 6
a_comp_cor with corresponding cosine components, translation in 3
axis and rotation in 3 axis. Sessions within subject are not
concatenated.

In second level analyses, all first level contrasts were entered into a
one-sample ¢-test, with group subject mask applied. The default FDR
threshold used was 0.001 (set in Nipype threshold node
height_threshold = 0.001).

For visualisation and cluster statistics extraction, nilearn (pypi
version: 1.6.1) was used. A cluster extent of 10 voxels was applied.
Visualised slice coordinates were chosen based on identified cluster
peaks. Activation clusters were overlayed on top of a subject averaged
anatomical scan normalised to MNI152 space as output by fmriprep.

GLM design. All imaging results were obtained from a single GLM
model. We investigated neural correlates using the winning Bayesian
jump frequency model. All model predictors were generated with the
group mean fitted parameters in order to minimise noise. First level
regressors include the onset times for all trials, high pain trials and low
pain trials (duration=0). The all trial regressor was parametrically
modulated by model-predicted posterior mean of high pain, the KL
divergence between successive posterior distributions on jump
probability, and the posterior SD of high pain.

For second level analysis, both positive and negative T-contrasts
were obtained for posterior mean, KL divergence and uncertainty
parametric modulators, across all the first level contrast images from
all subjects. A group mean brain mask was applied to exclude activa-
tions outside the brain. Given that high and low pain are reciprocal in
probabilities, a negative contrast of posterior mean of low pain would
be equivalent to the posterior mean of high pain. In addition, high and
low pain comparisons were done using a subtracting T-contrast
between high and low pain trial regressors. We corrected for multiple
comparisons with a cluster-wise FDR threshold of p <0.001 for both
parametric modulator analyses, reporting only clusters that survived
this correction.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw functional imaging data are deposited at https://doi.org/10.18112/
openneuro.ds003836.v1.0.0% and derived statistical maps are avail-
able at https://neurovault.org/collections/12827/. Sequence genera-
tion, task instructions and behavioural data are openly available
https://zenodo.org/record/6997897. Source data are provided with
this paper.

Code availability
Analysis code is openly available at https://zenodo.org/record/
6997897%,
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