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Abstract

Insufficient physical activity (PA) is commonplace in society, in spite of its significant impact on 

personal health and well-being. Improved interventions are clearly needed. One of the challenges 

faced in behavioral interventions is a lack of understanding of multi-timescale dynamics. In 

this paper we rely on a dynamical model of Social Cognitive Theory (SCT) to gain insights 

regarding a control-oriented experimental design for a behavioral intervention to improve PA. The 

intervention (Just Walk JITAI) is designed with the aim to better understand and estimate ideal 

times for intervention and support based on the concept of “just-in-time” states. An innovative 

input signal design strategy is used to study the just-in-time state dynamics through the use 

of decision rules based on conditions of need, opportunity and receptivity. Model simulations 

featuring within-day effects are used to assess input signal effectiveness. Scenarios for adherent 

and non-adherent participants are presented, with the proposed experimental design showing 

significant potential for reducing notification burden while providing informative data to support 

future system identification and control design efforts.

I. Introduction

Inactivity has led to an increase in chronic diseases within populations [1]. Physical 

inactivity causes an increased deterioration of body functions resulting in illnesses like 

obesity, diabetes, heart diseases, cancer, rheumatoid arthritis and more. On the other 

hand, maintaining healthy levels of PA can work as a preventive measure against all of 

these illnesses, or at least delay their onset [1], [2]; an increase from 4,000 to 8,000 

steps/day reduces the risk for all-cause mortality by 51% for adults. Despite the various 

public physical activity awareness campaigns over the years, there is a low prevalence 

of healthy PA levels in the general population; about 80% of adults in the US do not 
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meet the recommended CDC guidelines of 150 minutes of moderate to vigorous physical 

activity exercise [3]. Thus, the question is not if PA is beneficial for health, rather how to 

support people to engage and sustain healthy PA levels. Control systems engineering has 

proven to be very beneficial in many fields, and the adoption of system identification and 

dynamic control strategies in the behavioral medicine field is an area of significant promise 

in research [4], [5]. Prospects include dissemination of interventions that can help fight 

addiction, and adopt healthy behavior to the general population.

With increased availability of temporally dense data afforded by digital technologies, there 

has been a re-emergence in the use of idiographic methods, that is, data analysis explicitly 

designed to study predictions and patterns within time series data corresponding to a single 

individual. These temporally dense time series data have also enabled the use of control 

systems methods, such as dynamical systems modeling, system identification, and control 

systems design to guide dynamic decision-making. In particular, prior work has illustrated 

the value of dynamical systems modeling for specifying dynamic predictions relevant to 

behavior change in context [6], the value of system identification for producing informative 

data about dynamic processes related to behavior change [5], and the possibility of creating 

controllers to drive digital health interventions [7].

Building on this prior work, a key gap in the field’s understanding of dynamical processes 

of behavior exists with regard to multi-timescale prediction and, by extension, decision-

making. In particular, the field has advanced the concept of a just-in-time adaptive 

intervention [8], which involves both provision of support when a person has the need for 

a specific type of support, opportunity to respond favorably to the support, and receptivity 

to receiving the support, which can then contribute to adaptations over time that result 

in meaningful behavior change (e.g., meeting and sustaining behavioral targets). Thus, it 

is not only important to provide good “just-in-time” support, but to also make sure said 

support is contributing towards meaningful behavior change over time. This issue could be 

conceptualized as a multi-timescale problem in that robust prediction and decision-making 

is needed both in shorter timescale (e.g., deciding whether to send a notification to invite a 

person to plan a bout of walking in the next 3 hours) and longer timescales (e.g., establishing 

“ambitious but doable” step goals in a given day that can facilitate gradual increases towards 

clinically meaningful targets).

The purpose of this paper is to describe an innovate input signal design to study multi-

timescale dynamics that are part of a digital health intervention Just Walk JITAI (JITAI 

stands for Just-in-Time Adaptive Intervention). This work leverages prior work, particularly 

a dynamical model of Social Cognitive Theory (SCT) that encapsulates prior domain 

knowledge about behavioral processes that influence physical activity. Specifically, we use 

SCT to simulate plausible responses of participants to different signal design strategies, and 

use these responses to assess the quality of the input signal designs.

The paper is organized as follows: Section II gives a brief description of SCT. Section 

III presents components and the thought process for the behavioral change experiment. 

Section IV details the input signal design, while in Section V simulation results of the 
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examined case studies are presented and discussed. Section VI provides conclusions along 

with implications on future work.

II. Social Cognitive Theory (SCT)

Theories of behavior change like SCT utilize psychological constructs to hypothesize how 

different factors may impact behavior. SCT allows for the prediction of the ability of an 

individual to engage in determined behavior, by explaining the interconnections between 

various factors influencing behavior, including prior experience [9]. The constructs in the 

SCT can be measured using sensors or other approaches of inference from sampled signals. 

Fluid analogies utilize engineering principles, such as the conservation of mass, to represent 

theories of behavioral change like SCT as dynamic mathematical models. The work done in 

[6] describes a dynamical model for the SCT which can be seen in Fig. 1 in a fluid analogy 

representation.

In the fluid analogy the main SCT behavioral constructs are considered as inventories 

(tanks) in an inventory system with the level inside each vessel representing system outputs. 

Brief descriptions of the main system outputs included in this work are as follows:

1. Outcome expectancies (η2): The perceived chance that engaging in a behavior 

will lead to certain outcomes.

2. Self-efficacy (η3): The perceived capability and desire to engage in a targeted 

behavior, given constraints, obstacles and demands.

3. Behavior (η4): The actual behavior of interest. This can represent different 

characteristics of behavior (e.g. frequency, intensity, duration). For this study, 

the behavior of interest is the amount of steps taken per day.

4. Behavioral outcomes (η5): The outcomes (e.g. fatigue, fitness, etc) resulting 

from engagement in a behavior.

5. Cues to action (η6): Represents cues that trigger the urge to engage in behavior 

throughout the day.

Based on the SCT, behavioral constructs are influenced by exterior stimuli from various 

factors as well as from interactions between the constructs, which is depicted by how 

inventory levels change over time based on influences of inflows/outflows into the system 

(system inputs) and deviations in connected inventories. The inputs considered in this work 

are summarized below:

1. External Cues: Represents exogenous stimuli to the system (e.g. assigned goals, 

a friend’s invite) which triggers behavior or behavior increase.

2. Perceived barriers and obstacles: Represents external conditions that directly 

impact self-efficacy (e.g. busyness, seasonal illness).

3. Environmental context: External and environmental conditions that can have a 

positive or negative impact on the experience at which behavior occur and the 

behavioral outcomes as a consequence (e.g. weather, weekday versus weekend).
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III. Intervention Design: Just Walk JITAI

The Just Walk JITAI intervention design follows a similar structure to an earlier behavioral 

intervention (Just Walk) with respect to the goal setting component, where in an open-loop 

setting participants were given a specific amount of steps to walk each day as the daily 

goal, provided as cycles of multisine signals [10]. In an extension to what was done in Just 
Walk, in this intervention the maximum and minimum values of the daily goals in each 

cycle are adjusted based on the average performance of the previous cycle. This allows 

for maintaining ambitious yet achievable daily goals personalized for each participant in 

each cycle. For the initial cycle of the intervention the maximum and minimum values are 

decided based on the participant’s performance at the baseline period, where participant 

behavior is measured prior to the start of the intervention.

The second component of Just Walk JITAI is the inspiring bouts, which consists of within-

day notifications designed to inspire a person to take a short (e.g. 10 minutes) walk. This 

intervention component is designed with focus on studying the notion of a just-in-time (JIT) 

state, which involves the degree to which the notification is well matched to a particular 

moment. To operationalize this, three conditions about the current moment are taken into 

account:

• Need (N): Whether the participant has not met or progressed enough towards the 

given daily goal.

• Opportunity (O): Whether the participant has a window of opportunity to go on 

a walk within the upcoming sampling period (based on an availability signal or 

recognized patterns).

• Receptivity (R): If the participant has received less than 3 messages within the 

day.

Three combinations of the conditions are chosen as the decision rules for the inspiring bouts 

component: 1) N+O, 2) N+R, 3) N+O+R also known as the JIT decision rule.

The premise of the inspiring bouts component is to examine the dynamic responses to 

provision of support within moments that are more or less likely to be “just-in-time”; 

meaning a moment when a person has the need, opportunity and receptivity to a given 

intervention. By nudging participants to plan for PA when they are in “just-in-time states” 

the yield of the inspiring bouts should increase, while maintaining minimal burden and 

notification fatigue.

Participants in the intervention are given a Fitbit Versa 3 device to track their daily step 

count. Daily goals are delivered through a smartphone application which syncs with the 

Fitbit device to obtain measurements and store them in a database on a secure server. 

Measurement of other output psychological constructs like self-efficacy (η3), and behavioral 

outcomes (η5) are taken through surveys known as ecological momentary assessments 

(EMAs) provided to participants at different times of the day. Multiple specifically 

articulated survey questions are designed to assess each construct and the average score 

is utilized.
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In this paper the SCT model is simplified by excluding the self-management skills inventory 

(η1). Moreover, only perceived barriers/obstacles (ξ5) and environmental context (ξ7) are 

considered as disturbances out of system’s exogenous inputs. External cues (ξ8) are also 

considered including both intervention components: goal setting (ξ8
gs) and inspiring bouts 

(ξ8
ib). This yields the system of ordinary differential equations (ODEs) that can be seen in 

(1–5) below:

τ2
dη2
dt = β25η5(t) − η2(t) + ζ2(t) (1)

τ3
dη3
dt = γ35ξ5(t) + γ311ξ11(t) + β34η4(t)

− η3(t) + ζ3(t)
(2)

τ4
dη4
dt = γ48

gsξ8
gs(t) + γ48

ib ξ8
ib(t) + β42η2(t)

+ β43η3(t) + β45η5(t) + β46η6(t)
− η4(t) + ζ4(t)

(3)

τ5
dη5
dt = γ57ξ7(t) + β54η4(t) − η5(t) + ζ5(t) (4)

τ6
dη6
dt = γ68ξ8(t) − η6(t) + ζ6(t) (5)

In a departure from previous work, the SCT model in Equations 1 through 5 has been 

modified to accommodate for within-day effects (like inspiring bouts notifications) on the 

numerical solution generated during integration. This is essential in the simulations covered 

in this paper, where the model is used to achieve an informative input signal design for 

the system of interest. The process of input signal design is iterative by nature, and the 

developed simulation allows for examining different designs on hypothetical participants 

to set expectations and validate decisions made in the design. For instance, by simulating 

extreme scenarios, a rough estimate of the number of notifications being sent to a participant 

throughout the intervention is obtained. This allows for the assessment of the expected 

notification burden associated with each decision rule.

IV. Input Signal Design

To elicit dynamics over the timescales of interest, two different input signals are designed 

for the goal setting and inspiring bouts intervention components, respectively. Both signals 

follow the guidelines presented in [11], in which equation (6) is applied to define the 

effective frequency range of the input signal based on a a priori knowledge of the dominant 

system time constant,
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ω* = 1
βsτdom

H ≤ ω ≤ αs
τdom

L = ω* (6)

τdom
L  and τdom

H  represent the lower and higher bounds for the estimated dominant time 

constant of the system. αs and βs dictate the input signal’s content of high and low 

frequency.

For goal setting a multisine (MS) signal is utilized. The input signal design parameters of 

τdom
L = 1days, τdom

H = 2days, αs = 2, βs = 2 are chosen based on obtained knowledge from 

previous work. The design parameters lead to a cycle length of 26 days as seen in Fig. 2. 

The MS signal determines the daily goals given to participants throughout the 260 days 

intervention, in 10 cycles. For each cycle the lower bound in goals is determined by the 

average steps taken per day from the previous cycle with a 2,000 steps/day range. This 

design is expected to result in an added transient in the output signals, which will have to be 

taken into account in subsequent dynamical analysis of the experimental data.

The effective frequency range of the signal is related to the design parameters through 

(6). As it is highlighted in the power spectrum of the signal seen in Fig. 2; this indicates 

excitation between ω* ≈ 0.25 rad/day to ω* ≈ 2 rad/day for the designed MS signal.

As per the inspiring bouts component, the three decision rules for sending prompts to 

participants are tested against fully randomized prompts, to study the effectiveness and 

dynamics of the decision rules. The purpose of the decision rules is to minimize the burden 

on participants and notification fatigue by prompting engagement in PA when participants 

are most likely to respond. To construct this categorical four level input signal, an innovative 

method is used where a pseudo-random binary sequence (PRBS) is utilized as the base. 

Then, a random multi-level sequence (RMLS) is superimposed over one of PRBS’s binary 

levels.

Input signal design parameters for the PRBS are chosen as follows τdom
L = 3days, 

τdom
H = 3.5days, αs = 2, βs = 2. This results in a 60 days cycle with nr = 4 shift registers 

and switching time Tsw = 4 days. The parameters are chosen to cover the most important 

dynamics of the system by introducing variability in a sufficient frequency without allowing 

the system to settle. Four cycles of the designed PRBS signal are needed to cover 240 

days of the study, then the inspiring bouts element is taken offline for the remainder of 

the experiment. Fig. 3 provides further assurance regarding the chosen guidelines for the 

base PRBS input signal, as it can be seen that the spectral power density packs sufficient 

persistent excitation by the amount of harmonics included in the effective frequency range 

between ω* 0.14 rad/day to ω* ≈ 0.67 rad/day.

A uniformly distributed RMLS with three levels is superimposed over the base PRBS signal, 

where the signal equals 1. The three level RMLS is generated with a different realization 

at each instant that the PRBS signal switches to 1. This allows for superimposing a new 

random sequence at each instant it is needed, without any repetitions across cycles as can be 
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seen in Fig. 3, which reduces the bias from the possibility of participants recognizing any 

repetitive patterns.

The switching time for the RMLS signal is one day, allowing to introduce more variability 

at a higher frequency to the decision rules input signal. This adds excitation to the high 

frequencies while preserving excitation in the lower frequencies at the effective frequency 

range, as Fig. 3 illustrates. Moreover, the decision framework of the inspiring bouts 

component allows for identification of high frequency dynamics through the effect of the 

notifications sent to participants within-day.

The utilization of the decision rule input signal for the inspiring bouts component, along 

with the goals signal for the goal setting component assures covering a wide range of system 

dynamics over the different time scales of interest. Despite the overlap in the effective 

frequency ranges of the designed input signals, each of them is unique in the component it 

covers, and the two signals are orthogonal to one another in nature. This can be confirmed 

by applying cross-correlation analysis on the designed input signals. The input signal design 

is made with the purpose of providing persistence of excitation across both low and high 

frequency, and generate dynamically informative experimental data suitable for various 

modeling approaches.

V. Simulation Results & Discussion

The SCT model described previously is utilized to simulate the designed intervention on 

two types of hypothetical participants: an adherent (ideal) participant, and (on the contrary) 

a non-adherent participant. The simulations focus on the scenario where life challenges 

can affect participant performance. Such challenges are demonstrated by the exogenous 

disturbances in the form of perceived obstacles & barriers, and environmental context. This 

is done to mimic real life situations where undesired environmental factors like weather 

(i.e., rain, heat waves, etc.) might not allow participants to exercise or walk in their normal 

routine. Another exogenous factor that can impact engagement in PA lies in the daily life 

obstacles participants perceive and face, like coming down with a seasonal illness or having 

to accommodate for unforeseen work/school/social life demands. To generate the exogenous 

disturbances signal a uniformly distributed random number is generated for each day of the 

simulation, if the number exceeds a probability threshold, the exogenous signal is set to 

the amplitude of 5 units. Different thresholds are utilized for the two different exogenous 

disturbances of interest utilized in both scenario.

The goal of the intervention is to increase the amount of steps participants take per day, 

and ideally reach 10,000 steps/day. All simulations assume inactive participants with 2,000 

steps/day as the baseline and the intervention starting at day zero. Additive high frequency 

noise is introduced to the behavior as part of the system, to mimic the variability in the 

amount of steps taken per day, as observed in previous work. Other stochastic conditions 

are incorporated in the simulation as white noise through unmeasured disturbances ζi(t) at 

each inventory i. In this section the results obtained for each participant are presented and 

the insight these provide into the intervention and input signal design is discussed.
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To account for the opportunity condition in simulations, an availability signal is developed 

with a hypothetical schedule for the participants. Time within-day is divided to eight periods 

of three hours, where the first two periods and the last period are excluded to avoid sending 

prompts while participants are asleep. Participant availability in the remaining five periods 

within the day is randomly generated. This signal is utilized in all simulations for the 

opportunity condition in the decision rules.

A. Adherent Participant: With Disturbances

In this scenario the participant is very adherent with the given goals, as the cues to actions 

level sharply increases with the increase in the daily goals. Despite the negative impact 

of the considered exogenous disturbances (which can be seen in the self-efficacy and 

behavioral outcome responses), this participant manages to adapt to higher goals quite 

effectively. The participant overachieves the daily goals by decent margins (up to 4,000 

steps/day) as illustrated in Fig. 4 by the goal attainment signal; this participant meets or 

exceeds the daily goals for 63.5% of the intervention. Based on this described nature of the 

behavior, this participant can be classified as a goal-oriented, determined person who is not 

easily deterred by any obstacles or inconveniences. Self-efficacy and behavioral outcomes 

increase as the benefits of the increased behavior levels are observed by the participant, 

and higher outcome expectancies follow. This contributes to behavior itself as part of the 

self-efficacy (SE) operant-learning (OL) loops.

Overachieving the assigned goals in each MS cycle by this participant leads to the 

progression in the daily goals towards the target of 10,000 steps/day. The majority of the 

significantly negative goal attainment values (Fig. 5) are associated with the beginning of a 

new cycle of goal setting as a result of the higher daily goals. Consequently, it is observed 

that the participant’s self-efficacy decreases upon experiencing significant increases in the 

goals in a new MS cycle. This particular observation helped inform the decision on an 

ambitious yet achievable upper bound for goals in each cycle. The seen trend in the 

behavioral outcomes and outcome expectancies is gradual increase with the increase in 

behavior.

As a consequence of positive goal attainment, this participant does not meet the need 

condition of the decision rules for the majority of the intervention. As a result, this 

participant receives the least amount of notifications out of the illustrated scenarios (263 

notification: 144 randomized and 119 non-randomized). It is also observed that the decision 

rules work as they are designed; need and opportunity and JIT decision rules offer the least 

amount of burden when a participant meets the daily goals as shown in Table I. Lastly, when 

the need and receptivity decision rule (N+R) is followed, the notification rate is noticeably 

higher than what is seen in the JIT rule. In all decision rules, the rate of observed daily 

notifications and the total number of notifications are significantly less than during the 

randomized periods.

B. Non-adherent Participant: With Disturbances

The non-adherent participant performs worse from an intervention standpoint. As a result, 

the average step-count for this participant only slightly increases above the baseline by the 
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end of the intervention and the 10,000 steps/day target is never reached (the highest given 

daily goal is close to 5,700 steps/day). The lower daily goals are a result of the participant 

having negative goal attainment for 31.2% of the intervention. The negative goal attainment 

values lead to lower self-efficacy and reduced behavior levels as a consequence. It can also 

be observed in Fig. 6 that this participant is more sensitive to exogenous disturbances than 

the adherent participant; self-efficacy and behavioral outcomes drop more significantly when 

inconvenient circumstances occur.

Consequently, contributions from the SE and OL loops to the behavior levels are minimal. 

This leads to the average level of behavior to decrease closer to the baseline value towards 

the end of the intervention. This under-performing non-adherent participant is more likely to 

drop out of the study due to the negative impact on self-efficacy as well as the lower values 

of behavioral outcomes and outcome expectancies.

The overall number of notifications sent in this scenario is the highest of the two cases (Fig. 

7; 459 notifications: 144 randomized and 315 non-randomized). This is to be expected as the 

participant does not manage to meet the goals for the majority of the intervention; hence, 

higher notification rates are observed. The notification rates for the three decision rules are 

all substantially lower than the that of the randomized periods for all simulated scenarios, 

which shows that the decision rules are working as designed.

VI. Conclusions And Future Work

This paper provides proof of concept of the effectiveness of system identification approaches 

in input signal design for behavioral intervention experiments. Through the utilization of 

a priori knowledge from previous work and simulation the iterative input signal design 

process can be optimized to establish behavioral interventions, which provide dynamically 

informative experimental data covering the important multi-timescale dynamics associated 

with behavioral change. This is the aim of the Just Walk JITAI, where innovative design 

of the input signals for goal setting and inspiring bouts allow for systematic examination 

of behavioral change dynamics at high frequencies (e.g. within-day) while maintaining low 

burden on participants. In future work methods like pattern recognition will be utilized 

for the opportunity condition, rather than a randomly generated availability signal. The 

gathered experimental data should allow for estimation and validation of control-oriented 

models through sophisticated system identification methods including grey box approaches 

and Model-on-Demand (MoD; [12]). The estimated idiographic dynamical models can 

be applied in optimal personalized behavioral interventions through model-based control 

algorithms like Model Predictive Control (MPC). Furthermore, the estimated models 

provide insight into control strategies in cases where measurements of some of the 

psychological constructs (e.g., self-efficacy) are not easily attainable.

The adoption of system identification approaches in behavioral science can lead to a better 

understanding of the multi-timescale dynamic processes of behavior on an idiographic level, 

that allows for the provision of intervention support following the notions of just-in-time 

state. This should maximize the gains from behavioral interventions and allow for fostering 

healthy behavior in participants. The implementation of judiciously designed, personalized 
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JITAIs for PA on a large scale should improve the life quality and expectancy of participants 

and the community overall.
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Fig. 1: 
Schematic illustrating the fluid analogy of the Social Cognitive Theory model [4], [6].
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Fig. 2: 
Multisine base cycle for the goal setting input signal along with its spectral power density.
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Fig. 3: 
Combined PRBS and RMLS constructing the decision rule signal. Spectral power density of 

the final decision rules signal in comparison to the PRBS base.
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Fig. 4: 
Simulation that illustrates the response of an adherent participant to the designed input 

signals, in the presence of disturbances in the form of perceived barriers/obstacles and bad 

environmental context
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Fig. 5: 
Notifications sent throughout the intervention (middle), the decision rules (bottom) and goal 

attainment (top) associated with notifications sent each day for the adherent participant in 

the presence of the disturbances.
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Fig. 6: 
Simulation that illustrates the response of a non-adherent participant to the designed input 

signals, in the presence of disturbances in the form of perceived barriers/obstacles and bad 

environmental context
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Fig. 7: 
Notifications sent throughout the intervention (middle), the decision rules (bottom) and goal 

attainment (top) associated with notifications sent each day for the non-adherent participant 

in the presence of the disturbances.

El Mistiri et al. Page 17

Proc Am Control Conf. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El Mistiri et al. Page 18

TABLE I:

Notification rates (in notifications/day) for each decision rule per scenario.

Scenario N+O N+R JIT

Adherent with disturbances 0.50 0.84 0.51

Non-Adherent with disturbances 1.8 1.8 1.3
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