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Abstract

This paper presents the use of discrete Simultaneous Perturbation Stochastic Approximation 

(DSPSA) to optimize dynamical models meaningful for personalized interventions in behavioral 

medicine, with emphasis on physical activity. DSPSA is used to determine an optimal set of model 

features and parameter values which would otherwise be chosen either through exhaustive search 

or be specified a priori. The modeling technique examined in this study is Model-on-Demand 

(MoD) estimation, which synergistically manages local and global modeling, and represents 

an appealing alternative to traditional approaches such as ARX estimation. The combination 

of DSPSA and MoD in behavioral medicine can provide individualized models for participant-

specific interventions. MoD estimation, enhanced with a DSPSA search, can be formulated to 

provide not only better explanatory information about a participant’s physical behavior but also 

predictive power, providing greater insight into environmental and mental states that may be most 

conducive for participants to benefit from the actions of the intervention. A case study from data 

collected from a representative participant of the Just Walk intervention is presented in support of 

these conclusions.

I. INTRODUCTION

The unprecedented availability of data made possible today by advances in technology 

and increased use of mobile devices has allowed dynamic modeling to become a primary 

source of data-driven solutions to problems in many fields, including behavioral medicine. 

However, moving from data to dynamical models presents many challenges, as the 

informative utility of data is limited by its ability to be operationalized in both an 

explanatory and predictive sense. This means that special attention must be given to 1) 
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experimental design for obtaining quality data and 2) estimating useful models. This paper 

focuses on the latter.

Despite the availability of data (or the relative ease by which we are able to collect 

data), distilling a comprehensive and useful model often requires exhaustive search and 

high computational power. These difficulties arise from the large number of measured 

features that are potential model inputs and the presence of noise. To more efficiently find 

optimal models, we demonstrate the use of discrete simultaneous perturbation stochastic 

approximation (DSPSA), a simulation-based technique that optimizes models through 

stochastic search [1], [2]. In this paper, we illustrate the results of DSPSA as a tool for 

feature selection, model order selection, and parameter estimation, which will allow users 

to more easily obtain models from large volumes of data and utilize more computationally-

demanding models. This will be shown thorough the use and optimization of Model-on-

Demand (MoD) estimation, which is an appealing approach for modeling noisy, nonlinear 

systems [3], [4].

Behavioral medicine presents a rich field of opportunities to apply MoD, as there 

has been a push for idiographic (i.e., “single subject”) approaches to understand each 

individual’s specific barriers to health-promoting behavior and personalized behavior-

change interventions. The Just Walk study [5], [6], [7], explores increasing physical activity 

(PA) to mitigate the risk of chronic disease in people who are primarily sedentary and 

may be at higher risk for a variety of illnesses. While the benefits of increased PA are 

well-documented, there remains an issue in how to promote sustained increases in physical 

activity. Providing individuals with information about improving their health through 

increased PA, alone, is not enough to benefit at-risk populations. Significant improvement 

requires that participants sustain engagement at higher levels of PA over extended periods of 

time.

Just Walk addresses a lack of physical activity by presenting individualized PA interventions 

via idiographically-developed dynamical models of walking behavior, delivered to 

participants through mobile health (mHealth) technologies. Combining control systems 

theory, behavioral science, and informatics, the study utilized system identification 

principles to design goal setting and positive reinforcement models. Through this trans-

disciplinary approach, Just Walk not only demonstrated the benefit of system identification 

principles in the development of personalized interventions, but also highlighted the 

significance of individualized interventions, noting the complexity of physical activity 

(its dependence on environmental and mental factors) and the limitations of nomothetic 

approaches (i.e. finding general governing laws or principles), which are the current 

dominant paradigm, to successfully model individual participant behavior.

An individual’s walking behavior is complex and idiosyncratic, influenced by a variety of 

factors that themselves may be context dependent. To develop a useful model of behavior, 

it is necessary to capture complexity and nonlinearity. While dynamic models for behavior 

have been developed with linear AutoRegressive with eXogenous input (ARX) modeling, 

these may be too simple to provide sufficient explanation for an individual’s behavior 

that can be translated into an intervention which requires predictive information about 
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the factors that promote walking for specific participants. The simplicity of ARX models 

restrict the model’s ability to capture nonlinearity in individual behavior and may not 

allow for sufficient prediction or explanation of behavior as an individual’s environment 

or mental state changes. Consequently, MoD presents an appealing approach, as it fits a 

local model at each operating point, allowing it more flexibility and adaptability to build 

models “on demand.” While MoD may provide a better method to model PA, it is more 

computationally-demanding than ARX and requires greater prior knowledge, as there are 

additional parameters that need to be specified. However, this increase in complexity can 

be mitigated by DSPSA, making MoD more accessible and applicable in a broader set of 

application settings.

The paper is organized as follows: Section II provides an overview of the MoD estimation 

framework, while Section III describes DSPSA. Section IV demonstrates the application of 

MoD and DSPSA with a representative participant from the Just Walk intervention study. 

Section V provides conclusions and directions for future work.

II. MODEL-ON-DEMAND OVERVIEW

The primary advantage of Model-on-Demand, compared to traditional global estimation 

methods, is that the model is optimized locally. MoD applies a weighted regression 

to generate local estimates, adjusting the neighborhood size from a stored database of 

observations to build models ‘on demand.’ This optimizes the bias/variance trade-off locally, 

allowing MoD to achieve lower errors for a fixed model structure. This is particularly useful 

as the number of observations increases, as it becomes more difficult to obtain a global 

model that is optimal over an entire data set [3].

The MoD modeling formulation can be described with a single input single output (SISO) 

process as demonstrated by the approach of [4]. Consider a SISO process with nonlinear 

ARX structure,

y(t) = m(φ(t)) + e(t) (1)

in which m(·) is an unknown nonlinear mapping and e(k) is an error term. The error is 

modeled as a random signal with zero mean and variance σk
2. The MoD predictor attempts to 

estimate output predictions, ŷ(i), based on a local neighborhood of the regressor space φ(t). 
The regressor vector takes on the form of a linear ARX as shown in Equation 2.

φ(t) = y(t − 1)…y t − na u t − nk …u t − nb − nk
T (2)

where na denotes the number of previous outputs, nb denotes the number of previous inputs, 

and nk denotes the delay in the model. Note that for multi-output systems, na is specified for 

each output, and for a multi-input system, nb and nk are specified for each input.

A local estimate ŷ(i) is then obtained at each operating point from the solution of the 

weighted regression problem, shown in Equation 3:
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β = arg min
β

∑
i = 1

N
ℓ (y(i) − m(φ(i), β ))

× W ∥ φ() − φ(t) ∥M
ℎ

(3)

in which ℓ(·) is a quadratic norm function, u M ≜ uTMu is a scaled distance function 

on the regressor space, h is a bandwidth parameter controlling the size of the local 

neighborhood, and W (·) is a window function (also referred to as the kernel) assigning 

weights to each remote data point based on its distance from φ(t) [4]. The window is 

typically a bell-shaped function with bounded support. MoD users specify kmin, kmax, and 

a goodness-of-fit criterion, which then affect the bandwidth parameter and the window 

function. Two common goodness-of-fit criteria include the Akaike information criterion 

(AIC) and generalized cross validation (GCV), but many others may also be considered. 

Assuming a local model structure,

m(φ(t), β) = β0 + β1
T(φ(i) − φ(t)) (4)

which is linear in the unknown parameters, a MoD estimate can be computed using least 

squares methods. Denoting β0 and β1 as the minimizers of Equation 3 using the model from 

Equation 4, a one-step ahead prediction is given by

y(i) = α + β1
Tφ(i) (5)

where α = β0 − β1
Tφ(t). Each local regression problem produces a single prediction ŷ(i) 

corresponding to the current regression vector φ(t). To obtain a prediction at other operating 

points in the regressor space, MoD adapts both the relative weights and the selection of 

data to optimize a new local model at the next operating point. This diverges from global 

modeling techniques in which the model is estimated from the data once, and then the data 

is discarded. The bandwidth h, which is computed adaptively at each prediction, controls 

the neighborhood size governing the trade-off between the bias and variance errors of the 

estimated model.

In application, users can specify the ARX structure used in φ(t), the local polynomial order 

in m(·), kmin, kmax, and the goodness-of-fit criterion; these variables impact the size of the 

neighborhood chosen to fit the local model.

III. Simulation-Based Optimization using Discrete SPSA

While Model-on-Demand provides a method to estimate models for noisy, nonlinear 

dynamics, choosing the parameters that produce an optimal model presents a separate 

challenge. The MoD parameters include choices of local polynomial order, ARX structure, 

and goodness-of-fit criterion, in addition to the features or inputs used to estimate the 

model, giving rise to a large number of combinations, across which an exhaustive “brute 

force” search would be impractical. For example, a model with 10 features available 

would require a search over 210 − 1 = 1023 combinations. To estimate optimal model 
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parameters and bypass the need for exhaustive search, we propose the use of a discrete 

form of Simultaneous Perturbation Stochastic Approximation (DSPSA), a simulation-based 

optimization technique.

SPSA [1] is a popular technique that is useful in contexts where a closed-form objective 

function is not available and where noise may be present. It provides a non-deterministic 

approach to typical gradient descent methods. For feature selection, Binary SPSA (BSPSA) 

was found to outperform other methods, including Binary Genetic Algorithms, and 

conventional feature selection methods such as Sequential Forward Selection, Sequential 

Backward Selection, and Sequential Forward Floating Selection. These methods were 

evaluated on multiple datasets, in which BSPSA was found to perform at least comparably 

in small datasets (less than 100 features) and highly favorably in large datasets (over 100 

features), as measured by cross-validation error [8].

To use SPSA, we start with a guess of the model parameter values θ , which are updated 

with each iteration. To obtain an estimated gradient, all model parameters are subjected to a 

random, two-sided simultaneous perturbation, which are then used to evaluate the objective 

function, J(θ ). These two evaluations are then used to approximate the gradient, which 

is subsequently used to update the parameter values. This is repeated for a user-specified 

number of iterations k.

The objective function chosen for the optimization problem often takes on the form of a loss 

function, L, which is not readily available or explicit and can instead be approximated by 

noisy measurements, J(θ) = L(θ) + ϵ(θ). SPSA then minimizes the loss function through a 

process that resembles gradient descent, iterating and updating θ.

SPSA has been used in many problems spanning a diverse set of fields, including supply 

chain management and public health ([2], [9]). As will be demonstrated in this paper, SPSA 

is also useful in behavioral medicine, providing model parameter estimations and feature 

selection for individualized health interventions. SPSA can be used to search simultaneously 

across both continuous and discrete parameter values. Discrete SPSA (DSPSA) will be 

shown here, used for both model parameters and for feature selection.

The following summarizes the DSPSA process for k iterations, as described in [2] and [8]:

1. Initialize the Input Vector and Gain Sequences. Specify an initial p-dimensional 

input vector, θ , in which p corresponds to the number of features or parameters 

subject to stochastic search. The gain sequences ak and ck define the step size of 

each iteration and perturbation, respectively.

2. Generate the Perturbation Vector. Generate a perturbation vector (Δk) of 

dimension p using a Bernoulli ±1 distribution with probability 1/2.

3. Create Two Input Vectors for Gradient Approximation. From the input vector, 

create a new vector, π θk = θk + 1p/2, in which ⌊·⌋ is the floor operator and 1p is 

a p-dimensional vector of ones. From π θk , create two input vectors for gradient 
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approximation, θk
+ = π θk + ckΔk and θ−

k = π θk − ckΔk. Apply bounds to limit 

between discrete values and round θk
+ and θk

−.

4. Approximate the Gradient. Evaluate the objective function J(·) at the bounded 

and rounded input vectors, θk
+ and θk

−. Use these two evaluations to approximate 

the gradient using a finite difference approximation:

gk =
J θk

+ − J θk
−

2ckΔk
(6)

5. Update the Input Vector. Using the gradient approximation, update the input 

vector:

θk + 1 = θk − akgk (7)

Apply bounds to limit between discrete values and round the new input vector.

6. Report the Best Solution Vector. Once the SPSA search has reached its final 

iteration, report the best solution.

In a binary application of DSPSA (where the parameter choices are limited to only 0 and 

1), it is necessary to correspondingly limit the input vector between 0 and 1 at each iteration 

(i.e. at steps 3 and 5).

IV. CASE STUDY: JUST WALK

Just Walk is a 12 week study that explored the development of dynamical models to explain 

individual walking behavior via system identification principles [5], [7]. The study recorded 

changes in physical activity (measured in steps) due to goals and rewards sent through a 

mobile app. Participants in Just Walk were sent step goals and obtained points (expected 

points) upon completing these goals.

Using data provided by the Just Walk study, DSPSA and MoD were used as methods to 

obtain dynamical models that describe walking behavior to both explain the factors that 

influence an individual’s physical behavior and predict their responsiveness to goals and 

rewards, given their mental state and environment. In earlier studies, ARX models were used 

to model an individual’s walking behavior, and so MoD results will be compared to ARX 

models here [6].

From the Just Walk data, we can explore 8+ inputs that influence an individual’s walking. 

The recorded inputs (8) include goals, expected points, granted points, predicted busyness, 
predicted stress, predicted typical, weekend, and weather (temperature). Goals refers to the 

daily step goals sent to participants. These goals are attached to expected points, which are 

the daily points available for the participant to earn. If participants meet their goals, they 

receive some amount of points, which are considered granted points. Predicted busyness, 
predicted stress and predicted typical are psychosocial measures determined each morning 
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by ecological momentary assessment. Weekend is a binary input, in which weekend = 1 

if the current day is either Saturday or Sunday, and weekend = 0 otherwise. We can also 

explore beyond the eight inputs in the original study by creating new inputs in the form of 

interaction terms, such as an interaction between expected points and predicted busyness.

For the following case study, the goal is to find a model to 1) understand the factors 

that contribute to an individual’s walking behavior and 2) have predictive power for use 

in behavioral interventions. DSPSA was used to optimize the MoD model. Given data 

on factors that may have influence, the DSPSA algorithm is used to choose factors (i.e. 

environmental factors, subjective mental states) and MoD design variables (i.e. ARX orders, 

local polynomial order, etc.) to achieve the ‘best’ model. In this case, the term ‘best’ is a 

function of the model’s capacity to fit an individual’s data on three fronts: 1) prediction 

(on validation data), 2) estimation (on the estimation data used to create the model), and 3) 

overall fit (on the participant’s entire data set – both validation and estimation data). This is 

reflected in the objective function defined in the DSPSA algorithm, which as described in 

the ensuing section is a weighted average of the NRMSE MoD fit percentages.

Since we are searching over features, but not the values of those features, this requires a 

binary search (a discrete search bounded between 0 and 1), as we are evaluating whether or 

not the feature should be included in the model. The SPSA search over the model parameters 

is also discrete, as the values that get used in the model must be integers (i.e. polynomial 

orders that define the local ARX regressor).

A. DSPSA Initialization

Applying SPSA to a representative participant in the Just Walk study, the following 

parameters were subjected to stochastic search: features (i.e. inputs), ARX orders (i.e. na, nb, 
nk) for each input/output, and local polynomial order (per Equation 4). The features vector 

consisted of 9 inputs: all 8 inputs from the Just Walk study and an interaction term between 

expected points and predicted busyness.

All features were initialized in a single vector, θw ∈ ℝ9. The input vector is binary (0: the 

input is not used in the model, 1: the input is used in the model), and so the vector was 

bound between 0 and 1 and rounded such that it can only take on values of 0 or 1 when used 

to evaluate a model. Between iterations, the vector was allowed to take on values between 

0 and 1. The vector was simply rounded before being used to define the inputs being used 

for a specific model. The convergence of these values was not demonstrated as clearly as in 

cases with continuous-valued input vectors, as demonstrated in [9].

The ARX orders (na, nb, nk) were each initialized as individual vectors, θ
na ∈ ℝ1, θ

nb ∈ ℝ9, 

and θ
nk ∈ ℝ9. The values of θ

na and θ
nb were both bound between 0 and 3, while θ

nk was 

bound between 0 and 1. These orders could take on higher values, but we chose to limit 

them to keep the regressor structure simple. The local polynomial order was also initialized 

as its own vector θP ∈ ℝ1 , and was restricted between 0 and 2.
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Similar to the input vector, the ARX orders and local polynomial order values were allowed 

take on any value between their respective bounds. However, they were rounded before 

evaluating the model.

Gain sequences were specified for each input vector. These were determined by the relative 

size of approximated gradient compared to the values of the input vectors as well as the 

relative size of the perturbation. While these have to be determined by the user, they are 

typically not difficult to narrow down. The same ck and ak values were used for the input 

vectors corresponding to na, nb, and nk, but this does not have to be the case. For the ARX 

orders ck = 0.1 and ak = 0.005 were used; for feature selection ck = 0.1 and ak = 0.0002 were 

used, while for the local polynomial order, ck = 0.2 and ak = 0.003 were used. These gains 

were sufficient to allow the search to span the full range of values for each of the parameters 

across the iterations.

The following fixed parameters were chosen for MoD: kmin = 40, kmax = 400, and the 

goodness of fit criterion was generalized cross validation (GCV).

As noted previously, the DSPSA algorithm is set up to maximize the weighted average of 

the MoD model’s ability to fit (1) validation data, Jv(θ ), (2) estimation data, Je(θ ), and (3) 

overall data, Jo(θ ), where J{v,e,o} corresponds to the Normalized Root-Mean-Square Error 

(NRMSE), which is calculated at each iteration by Eqn. 8

J v, e, o (θ) = 100% × 1 − ∥ y − y ∥2
∥ y − y ∥2

(8)

ŷ is the model output, while y is the average of the data. The fit percentages were then 

weighted as 4/6, 1/6, and 1/6, respectively. The predictive fit was weighted heavier than 

both the estimation and overall fits, since the predictive fit is typically much lower than 

the other two (and sometimes negative) and since the predictive ability of the model serves 

a significant purpose in future behavioral health interventions, namely to predict whether 

a participant is in a state or environment conducive towards their behavioral goals (i.e. 

walking more). These weights and fits then give us our objective function, which in this 

case takes on the form of a maximization problem (or minimization of the negative of the 

weighted fit).

max
θ ∈ ℤ+

J(θ)
(9)

J(θ) = 4
6Jv(θ) + 1

6Je(θ) + 1
6Jo(θ) (10)

in which θw, θna, θnb, θnk, θP ∈ θ, and the optimized solution found by SPSA is θ*. As 

shown by Eqn. 9 and 10, all input vectors are used to simultaneously update the same 

objective function. They are not evaluated independently.
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B. DSPSA Results

The NRMSE fit for both MoD and ARX model’s evaluated at the kth iteration of inputs 

(features, ARX orders, local polynomial order) are shown in Figure 1. The largest weighted 

average of the MoD fits occurs at k = 22. The exact fits of the model evaluated at the optimal 

iteration are listed in Table I. In each evaluation, the NRMSE and RMS fits provided by 

the MoD model is superior, corresponding to just under double that of the ARX model. The 

model evaluations on each data set outlined in Table I are shown in further detail in Figures 

2, and 3.

The features used in the optimal iteration as well as their respective nb and nk orders are 

outlined in Table II. These are also the features used in the model evaluated in Figures 2 and 

3. The na value is common to all inputs, so there is only one value being optimized. In this 

case, the optimal na value found by DSPSA is na = 2, so two prior lags of the output (steps) 

are used in the model.

In Figures 2 and 3, the validation data is taken from the last 25% of the participant’s data, 

while the initial 75% is used to estimate the model. The change in neighborhood size, used 

by MoD to estimate a local model, is also shown in the middle plot of both figures.

Figure 4 illustrates the features used in both the MoD and ARX models at each iteration. 

The features used in the optimal iteration and demonstrated in Figures 2 and 3 are: goals, 
expected points, granted points, predicted busyness, predicted stress and weekend, which is 

a reduced set of features from the original nine.

The na, nb, and nk values evaluated at each iteration, are updated for all initialized inputs, 

regardless of which inputs are used in the model at that same iteration. However, the ARX 

orders are only used in the model if its corresponding feature is also used in the model 

(which can be identified in Figure 4). An additional constraint was placed on the DSPSA 

search regarding nb and nk values, since they cannot simultaneously be zero in the regressor 

structure. Correspondingly, nk values were set to 1 whenever nb = 0.

V. CONCLUSIONS AND FUTURE WORK

The results obtained from the Just Walk case study show that Model-on-Demand estimation 

can provide better individualized models than ARX, with both more explanative and 

predictive power. Though the challenge of choosing the right parameters to inform the 

MoD model can be tedious and require a search over many combinations, DSPSA provides 

an efficient means to determine the inputs of the highest-performing models. DSPSA can 

be used not only for feature selection but can also provide insights into additional model 

parameters such as the MoD local polynomial order and ARX orders. DSPSA also bridges 

the gap between using MoD and using ARX in terms of modeling expertise or additional 

information to search over MoD’s adjustable parameters. The case shown here only searched 

over ARX orders and the local polynomial order, but SPSA can readily be used to search 

over other MoD parameters.
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While the parameters during DSPSA do not appear to converge as it performs ‘gradient 

descent,’ DSPSA still allows users to obtain an optimized set of model parameters 

efficiently and with modest effort, while avoiding a brute force search. However, this 

highlights one limitation in SPSA, in that there is no ‘natural stopping point’ as the 

algorithm runs until it hits a stall limit or finishes the iterations defined by the user (common 

to both continuous and discrete applications). With DSPSA, the inability to observe a clear 

convergence also prevents users from readily inferring whether the model identified is the 
best model (or the near best model). Due to the discrete inputs (and lack of an explicit 

function), there is also already a limit to our ability to infer how combinations of features 

contribute to model proficiency (i.e. whether taking one feature away or adding one will help 

or hurt the model, given the other features already being implemented); this problem is not 

unique to the SPSA framework. Visualization of the exact iterations or parameter values in 

continuous space may still be useful for analyses. These may allow DSPSA users to observe 

the step size taken at each iteration, to better understand the approximated gradient resulting 

from the particular simultaneous perturbation.

Despite these limitations, using DSPSA in conjunction with MoD has demonstrated that 

MoD can provide better models than ARX for behavioral health interventions. This also 

highlights the need for more robust modeling for individualized solutions, which is better 

achieved by MoD than ARX. Given the ease by which DSPSA can be set up and the 

efficiency by which it finds optimal models, using DSPSA also provides a method to 

find idiographic dynamic models for personalized interventions for a large number of 

participants, making the concept of personalized interventions scalable.

The combined use of MoD and DSPSA may further be used for model predictive control 

(MPC) in behavioral intervention settings, as shown by [10]. With the MoD models, 

optimized by DSPSA, Model-on-Demand predictive controllers can be developed to provide 

adaptive interventions for participants, further improving their effectiveness. Other objective 

functions may also be useful to consider, such as including a term to favor parsimony or 

lower ARX orders. DSPSA may also be useful to search over different sets of estimation and 

validation data (i.e., splitting an individual’s data into segments).
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Fig. 1. 
NRMSE Fit Percentages Per DSPSA Iteration. The weighted fit is a weighted average of the 

prediction, estimation, and overall fits, with their respective weights being 4/6, 1/6, and 1/6. 

The best model was chosen as the one that maximizes the weighted combined fit.
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Fig. 2. 
MoD and ARX Models on Validation Data (25% of Participant Data). The output is 

measured in steps.
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Fig. 3. 
MoD and ARX Models on Estimation Data (75% of Participant Data). The output is 

measured in steps.
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Fig. 4. 

Features used at each iteration θk
w
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TABLE I

MoD and ARX Comparisons for θ*

NRMSE Fit (%) RMS Error (steps) Max Error (steps)

MoD ARX MoD ARX MoD ARX

Prediction 25.73 13.35 1877.42 2192.41 5585.31 4289.08

Estimation 63.89 35.52 837.01 1499.33 3876.73 4208.57

Overall 50.03 27.55 1189.39 1724.26 5536.66 4807.34
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TABLE II

Feature Selection and nb, nk orders for θ* (na = 2, P = 1)

Initialized Features Selected Features n b n k 

Goals Goals 1 1

Expected Points Expected Points 2 0

Granted Points Granted Points 2 0

Predicted Busyness Predicted Busyness 1 0

Predicted Stress Predicted Stress 0 1

Predicted Typical Predicted Typical 2 1

Weekend Weekend 1 1

Temperature - - -

Expected Points/Predicted Busyness - - -
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