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Abstract

Advances in high-throughput genomic technologies coupled with large-scale studies including 

The Cancer Genome Atlas (TCGA) project have generated rich resources of diverse types of 

omics data to better understand cancer etiology and treatment responses. Clustering patients into 

subtypes with similar disease etiologies and/or treatment responses using multiple omics data 

types has the potential to improve the precision of clustering than using a single data type. 

However, in practice, patient clustering is still mostly based on a single type of omics data or 

ad hoc integration of clustering results from individual data types, leading to potential loss of 

information. By treating each omics data type as a different informative representation from 

patients, we propose a novel multi-view spectral clustering framework to integrate different omics 

data types measured from the same subject. We learn the weight of each data type as well as 

a similarity measure between patients via a non-convex optimization framework. We solve the 

proposed non-convex problem iteratively using the ADMM algorithm and show the convergence 

of the algorithm. The accuracy and robustness of the proposed clustering method is studied both 

in theory and through various synthetic data. When our method is applied to the TCGA data, 

the patient clusters inferred by our method show more significant differences in survival times 

between clusters than those inferred from existing clustering methods.
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1 Introduction

Identifying cancer patient subtypes based on their genomics profiles has proved useful for 

tumor classification, and it has been successfully applied to many cancer types (Perou et al., 

2000; Verhaak et al., 2010; Markert et al., 2011; Guinney et al., 2015; Cristescu et al., 2015; 

Liu et al., 2017). For example, for breast cancer, PAM50-based subtypes are commonly used 

to predict patient prognosis and guide patient treatment in clinical care (Parker et al., 2009; 

Bastien et al., 2012). As more technologies and platforms are being developed and applied 

to characterize patients’ molecular profiles, there is a need to develop accurate clustering 
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algorithms to integrate diverse types of data to identify patients having different tumor 

subtypes (Kristensen et al., 2014; Bailey et al., 2016). Many projects, such as The Cancer 

Genome Atlas (TCGA) project (Weinstein et al., 2013), have generated rich resources of 

multi-dimensional omics data. Despite its importance, due to the lack of statistical methods 

for data integration, clustering patients is still mostly based on a single type of omics data 

(e.g., gene expression data) in practice (Verhaak et al., 2010; Markert et al., 2011; Chen 

et al., 2013; Guinney et al., 2015; Cristescu et al., 2015; Netanely et al., 2016), and to 

the best of our knowledge there have been limited studies comprehensively considering 

the combination of multiple omic profiles for identifying tumor subtypes (Liu et al., 2013; 

Serra et al., 2015; Imangaliyev et al., 2017). Because different tumor subtypes may exhibit 

heterogeneity-relevant signals from different pathways via different mechanisms, different 

subtypes may only be identified when different data types are analyzed together (Kristensen 

et al., 2014).

One challenge in integrating different data sets is that they have different degrees of quality 

and information on patient heterogeneity and subtypes. Some data may be more noisy due 

to sample processing and measurement errors, and their inclusion in clustering may add 

limited information on patient clustering. In addition, as various omics data sets reveal 

patient heterogeneity from different perspectives, each data set must be used with caution. 

However, this aspect has mostly been overlooked in the multi-view clustering literature 

where all representations are equally considered (Shen et al., 2009; Zhang et al., 2012; Liu 

et al., 2017). On the other hand, manual integration (e.g., consensus clustering (Monti et al., 

2003)) of clustering results from different data sets tends to be subjective, and it is difficult 

to capture both concordant and unique alterations across data types (Shen et al., 2009).

In this article, we propose a kernel-learning method to iteratively update the importance 

of each view (data set) and perform refined clustering analysis by aggregating multiple 

omics data sets that include a large number of molecular features. We adopt the spectral 

clustering framework with sparse structures on the target matrices. Spectral clustering is a 

popular clustering method utilizing the eigenvectors of a graph Laplacian that is derived 

from the data for clustering. It often outperforms traditional clustering methods such as 

k-means clustering (von Luxburg, 2007), and can be computed efficiently by standard linear 

algebra software. The main reason for adopting spectral clustering is that once a similarity 

measure is constructed between samples for each data type, these similarity structures 

can be easily shared across different data types through our proposed multi-view spectral 

clustering framework (which is described in Section 2.3) to improve clustering accuracy. 

One limitation of spectral clustering is that the results of spectral clustering may be sensitive 

to the choice of similarity measures, and there are no clear criteria for determining an 

appropriate similarity measure from data (Wang et al., 2017). In this paper, to allow for 

more flexibility in choosing similarity measures, we update similarities between subjects 

from multiple Gaussian kernels for each data set, which alleviates the user from having to 

choose the best kernel functions and kernel parameters for each data set beforehand. The 

weights for different data sets and kernels are learned simultaneously in the optimization 

procedure, where the weight assigned to each data set indicates its quality in clustering 

analysis, while the weight assigned to a kernel represents the quality of the corresponding 

view’s information. Our proposed method is able to assign larger weights to the data sets 
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and kernels with more information about clustering. We assess the performance of the 

proposed clustering method through both simulations and applications to 22 major cancer 

types of TCGA in terms of survival outcomes.

2 Methods

2.1 Sparse spectral clustering

Given a set of data points X = x1, ⋯, xn
T ∈ ℝn × p spectral clustering (von Luxburg, 2007) 

uses the symmetric similarity matrix S = sij ∈ ℝn × n, where p is the number of features, 

n is the number of samples, and sij ≥ 0 represents a similarity measure between data 

points xi and xj. For spectral clustering (SC) to perform well, it is important to choose an 

appropriate similarity matrix S. Gaussian kernel is one of the most commonly used functions 

to construct S = (sij) with si, j = exp − xi − xj 2/ 2σ2 , where xi − xj  is the Euclidean 

distance between xi and xj, and σ controls the width of the neighborhoods.

SC solves the following problem: for a target clustering number C,

min
L ∈ ℝn × C

tr LT In − W L s . t . LTL = IC,

where W = D−1/2SD−1/2 is the normalized similarity matrix, and D = diag d11, ⋯, dnn  is 

a diagonal matrix with dii = j = 1
n sij. Finally, each row of the optimal L is treated as 

a point in ℝc, and clustered into C groups by k-means. Note that In − W  is called a 

normalized graph Laplacian (Andrew et al., 2001; von Luxburg, 2007), and solving the 

above optimization is equivalent to finding C eigenvectors of In –W corresponding to the C 
smallest eigenvalues (or C eigenvectors of W corresponding to the C largest eigenvalues). 

Note that in the ideal case in which C is the underlying clustering number and W fully 

reflects similarities between samples, i.e., wij > 0 if and only if the ith and jth samples 

belong to the same underlying cluster, the optimum L encodes true clustering membership 

such that Lik ≠ 0 if and only if the ith sample belongs to the kth cluster. For detailed 

properties of SC, see von Luxburg (2007).

There are equivalent forms of SC as follows. Under the constraint LTL=IC, we have

tr LT In − W L = tr LTL − tr LTW L = C − tr W LLT = C − W , LLT ,

where A, B = tr ATB  for two matrices A and B. Since C is a constant, the minimizer of the 

original optimization of SC is equivalent to the minimizer of the following problem:

min
L ∈ ℝn × C

− W , LLT s . t . LTL = IC .

Moreover, it holds that
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LLT F
2 = tr LLT T LLT = tr LLT LLT = tr LLT = tr LTL = tr IC = C,

where the first equality holds due to A F
2 = tr ATA  for any matrix A, thus LLT

F
2

 has 

a constant value C as long as LT L = IC holds. Hence, the minimizer of the original 

optimization of SC is also equivalent to the minimizer of

min
L ∈ ℝn × C

ϵ LLT F
2 − W , LLT s . t . LTL = IC

for any ϵ ≥ 0. We will use this optimization for further variations. Note that the term LLT
F
2

plays an important role in the computational convergence of the proposed optimization, 

which will be given in Section 2.3. The role of ϵ is to control the effect of the term LLT
F
2

, 

and a small ϵ > 0 guarantees a convergence of the algorithm (Theorem 2) and also leads 

to slightly better clustering results in our settings. In the ideal case in which wij > 0 if 

and only if the ith and jth samples belong to the same underlying cluster, the obtained 

LLT ∈ ℝn × n has a block diagonal structure and thus sparse (Lu et al., 2016). Motivated by 

this observation, we can modify the sparse spectral clustering (Lu et al., 2016) as follows:

min
L ∈ ℝn × C

ϵ LLT
F
2 − W , LLT + λ LLT

1 s . t . LTL = IC . (1)

Note that (1) includes a nonlinear constraint and is not convex. Instead of using the nonlinear 

constraint LT L = IC , we add the relaxed convex constraint tr(LLT ) = C and 0 LLT I to 

address the computational issue of the nonconvex model. It is known that the set {P : tr(P) = 

C, 0 P I}, called the Fantope (Dattorro, 2005), is a convex hull of the set {P = LLT : LT L = 

IC } (Dattorro, 2005; Vu et al., 2013). Hence we consider the following convex optimization 

problem

min
P ∈ ℝn × n

ϵ P F
2 − W , P + λ P 1 s . t . tr P = C, 0 P I, (2)

which can be efficiently solved using the ADMM algorithm (Boyd et al., 2011). Note 

that the computational convergence of the proposed algorithm, which will be given later 

(Theorem 2), is achieved only when ϵ > 0.

Let P  be the solution to the convex sparse spectral clustering problem as formulated in 

(2). Theorem S1 of the Supplementary materials shows that the clustering result obtained 

by the C leading eigenvectors of P  accurately estimates the underlying clusters when 

there exists C clusters under some regularity conditions. This result implies that even 

with the approximation error due to convex relaxation of (2) with regard to (1), the 

estimated target matrix P  preserves the true clustering membership. Proofs are deferred 

to the Supplementary materials. Throughout the paper, let C* be the underlying number of 
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clusters, f i ∈ 1, ⋯, C∗  be the clustering membership of the ith sample, Tk = {i ϵ [n]: f (i) 

= k} be the set of the sample indices in the kth cluster for k = 1, ⋯, C∗, and Ng (i) be the 

collection of g nearest neighbors of the ith sample. Recall that the ψ2 norm of a random 

variable Z is defined by Z ψ2 = inf t:E exp Z2/t2 ≤ 2  (Rudelson and Vershynin, 2013).

2.2 Multiple kernel learning

As shown in Theorem S1, an appropriate Gaussian kernel can produce an accurate 

clustering result under some regularity conditions. In our proposed method with multi-view 

clustering framework, we utilize multiple Gaussian kernels to learn the similarities between 

samples because in practice a single similarity matrix may not generalize many biological 

experiments. We consider the following Gaussian kernels (Wang et al., 2017): for samples i 
and j,

Kσ, g xi, xj =

exp −
xi − xj 2

2ϵij2
if i ∈ Ng j or j ∈ Ng i

0 otherwise,

ϵij =
σ μi + μj

2 , μi =
j ∈ Ng i xi − xj

g

for some fixed σ and g. Note that this similarity measure only considers the distances of 

each sample to at most 2g other samples, including its g nearest neighbors. The motivation 

behind using a few nearest neighbors for each sample is that in high dimensional space 

the ranking of samples based on distance is still meaningful though the primary similarity 

measure might not (Houle et al., 2010). We consider σ ∈ 1, 1.25, ⋯, 2  and g ∈ 10, 12, ⋯, 30
and learn the similarity matrix using the 55 Gaussian kernel functions. More specifically, 

let Sσ, g ∈ ℝn × n be the similarity matrix constructed by the kernel function Kσ, g. Let Dσ ,g 

be the corresponding degree matrix such that Dσ, g = diag d1, ⋯, dn  is a diagonal matrix with 

di = ∑j = 1
n Sσ, g ij. We use the following unified normalized similarity matrix S:

S =
σ, g

wσ, gGσ, g,
σ, g

wσ, g = 1, wσ, g ≥ 0, Gσ, g = Dσ, g−1/2Sσ, gDσ, g−1/2,

where Gσ ,g is the normalized similarity matrix and the weights wσ ,g are learned in the 

optimization step. Note that this multiple kernels framework is often more flexible than that 

using a single affinity matrix and relying on a single conventional similarity (Beyer et al., 

1999).
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2.3 Multi-view clustering

Consider a total of M data sets X 1 , ⋯, X M , where the mth data set X m = x1
m , ⋯, xn

m T

has pm features for n subjects. For a multi-view case in which multiple data sets are available 

for clustering analysis, one naive approach is to concatenate all the features together and 

perform clustering on the concatenated features or to manually integrate the clustering 

results from each data set (The Cancer Genome Atlas Network, 2012; Zhang et al., 2013; 

Hoadley et al., 2014; Liu et al., 2017). However, more informative and less informative 

data sets are treated equally by these approaches. Since we jointly consider the M data 

sets X m ∈ ℝn × pm for m = 1, ⋯, M, we utilize the multi-view version of (2) by allowing 

different importance to X(m) in the sense that the objective function of the convex sparse 

spectral clustering is differently weighted by cm for the mth data set as follows: for the set of 

similarity matrices S1, ⋯, SM  and some positive constant ϵ,

m
Pm , cm

ϵ
m

cm Pm F
2 −

m
cm Sm, Pm + λ

m
cm Pm 1 + μ

m ≠ j
Pm − Pj F

2 +
m

gc cm

s . t . tr Pm = C, 0 Pm I, cm ≥ 0, cm = M,
(3)

where gc ⋅  is some penalty function, and Pm ∈ ℝn × n and cm ∈ ℝ. This optimization allows 

us to give a flexible weight to the target matrix Pm (corresponding to the data set X 
(m) ) such that more informative data sets will play a more important role in clustering 

by allowing larger cm. Note that the fourth term in (3) plays a role for fusing the sample-by-

sample similarity information of different data sets.

Together with (3) and the unified normalized similarity matrix as in Section 2.2, we consider 

the following optimization problem:

min
Pm , cm , wml

ϵ
m

cm Pm F
2 −

m
cm Sm, Pm + λ

m
cm Pm 1 + μ

m ≠ j
Pm − Pj F

2

+
m

gc cm +
m l

gw wml

s . t . tr Pm = C, 0 Pm I, Sm =
l

wmlGml, wml, cm ≥ 0,
l

wml = 1,
m

cm = M,

(4)

where gc ⋅  and gw ⋅  are some penalty functions, Gml is the normalized similarity matrix 

by the lth kernel in X (m) , and Pm ∈ ℝn × n and cm ∈ ℝ. Here, for 1 ≤ l ≤ ℓ = 55 and 1 ≤ m ≤ 

M , wml is the weight on the lth kernel for the mth data set that represents the importance of 

these factors for clustering.

For the penalty functions, we use the entropy function with the same penalty parameter to 

reduce the complexity of the optimization problem: for nonnegative x,

gc x = gw x = ρxlogx

for some penalty parameter ρ > 0 . This entropy penalty function avoids the case that the 

weight from one data set dominates those from the other data sets so that we give nonzero 

Park et al. Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weights to many variables. One can use other penalty functions, but the entropy penalty 

yields a closed-form solution for updating the weights that reduces computation time. 

Moreover, we have observed in our simulations that our method can effectively distinguish 

more important data types from less important ones by assigning different weights (Section 

3.4). More importantly, we have theoretically proved that the proposed clustering method (4) 

using the entropy penalty function enjoys clustering consistency (Theorem 1).

Let Pm  and cm  be the solutions to the convex optimization (4). Sample clustering is 

performed using Lm ∈ ℝn × C, which consists of the C eigenvectors corresponding to the C 

largest eigenvalues of Pm. We construct L = c1L1, ⋯, cMLM ∈ ℝn × MC by incorporating 

the obtained weights cm such that the data sets with larger cm play more important roles 

in clustering. We apply k-means clustering with the target number of clusters C to the 

normalized rows of L to infer the membership of the n samples.

Theorem 1 shows that the proposed multi-view spectral clustering method enjoys 

consistency property under some regularity conditions. Proofs are deferred to the 

Supplementary materials.

Theorem 1. Suppose that for the mth data set X m = x1
m , ⋯, xn

m T
, the n datapoints follow 

the following sub-Gaussian distribution:

xi
m = μf i

m + zi
m for m = 1, ⋯, M and i = 1, ⋯, n,

where zi
m = zi1

m , ⋯, zipm
m T ∈ ℝpm is a random vector with independent component 

satisfying E zij
m = 0, E zij

m 2 = σm2 , and zij
m

ψ2 ≤ σmψ for some ψ > 0. Let σ2 = maxmσm2

and p = maxmpm. Suppose for any k ∈ 1, ⋯, C∗ ,

max
m

min
k ≠ k

μk
m − μk

m
2
2

≥ 8pσ2 + 64σ2ψ2logn/c

for some constant c > 0. Assume c1n ≤ Tk ≤ 1 − c1 n for some constant c1 ∈ 0, 1/2  and 

M ≤ exp 3C∗ . Let Pm  and cm  be the solution to (4) with λ = C∗/n2, μ = nλ/ C∗M , 

ϵ = 1/n3, ρ = 1, and C = C* with multiple Gaussian kernels as presented in Section 2.2. 

Let Lm ∈ ℝn × C∗
 be the C* eigenvectors corresponding to the C* largest eigenvalues of Pm. 

Then, with probability 1 − 2 ℓ C∗ 2/n, k-means clustering to the normalized row vectors of 

L = c1L1, ⋯, cMLM ∈ ℝn × MC∗
 guarantees the exact clustering results.

Theorem 1 implies that when λ, µ , and ϵ are set to some functions of known parameters 

n and M, and the unknown parameter C* , then the proposed method provides consistent 

clustering results under some regularity conditions. In the implementation of (4), we exploit 
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these relationships to infer C* in a data-dependent manner. Specifically, by treating C as the 

underlying number of clusters C* , we set λ, µ , and ϵ by the functions of C, and determine 

C via sensitivity analysis with respect to small additive noise. We add N 0, σX
2  noise to X, 

where σX is the standard deviation of all the entries in X, to create a perturbed data set 

on which to apply the proposed clustering method by varying number of clusters C. This 

method is motivated by the observation that if the underlying clustering structure is strong, 

we would expect that sample assignment would be robust from adding small noises. See 

Section 2.5 for details.

2.4 Algorithm

Let F({Pm},{cm},{wml }) be the objective function of (4), where Pm = P1, ⋯, PM , 

cm = c1, ⋯, cM , and wml = w11, ⋯, wMℓ . Although F ⋅  is not a jointly convex 

function, it is convex for one parameter conditional on the other variables. Hence we 

iteratively solve (4) as follows: at the ith iteration of each update,

cm i = argmin
cm

F Pm i − 1, cm , wml i − 1 (5)

wml i = argmin
wml

F Pm i − 1, cm i, wml (6)

Pm i = argmin
Pm

F Pm , cm i, wml i (7)

until convergence, where Pm i = P1
i , ⋯, PM

i , cm i = c1
i , ⋯, cM

i , and 

wml i = w11
i , ⋯, wMℓ

i . Note that (5)-(7) are convex optimizations, and (5) and (6) have 

closed-form solutions. The optimization problem (7) can be solved using the ADMM 

algorithm (Gabay and Mercier, 1976). See Section A of the Supplementary materials for 

details of the algorithm. Throughout the paper, we write a ≲ b if a ≤ C1b for some positive 

absolute constant C1. We use a ≍ b when a ≲ b and b ≲ a.

Theorem 2 shows that the algorithm enjoys a computational convergence property.

Theorem 2. Let F({Pm},{cm},{wml}) be the objective function of (4). Let Pm i, cm i, 

wml i be the obtained iterates of the proposed algorithm, where Pm i is the ti-th iterate of 

the ADMM in (7). Then Pm i, cm i, wml i converge to some stationary point Pm
∗ , cm∗ , 

of F in the sense that for a fixed tolerance parameter δ ∈ 0, 1 , it holds that

m
Pm

i∗ − Pm∗ F +
m

cm
i∗ − cm∗ +

m l
wml

i∗
− wml

∗ ≤ C2δ
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with the iterate number i∗ ≍ δ− 2θ − 1 / 1 − θ , and the iterate number of ADMM for 

(7) being ti∗ ≍ log δ/i∗ /log μ  and ti∗ − k ≍ ti∗ ti∗ + 1 k − 1 for all 1 ≤ k ≤ i∗ − 1, where 

C2 > 0, 1/2 < θ < 1, and δθ/ 1 − θ < μ < 1 are some absolute constants.

Theorem 2 essentially follows from the global convergence properties of the block 

coordinate descent method (Xu and Yin, 2013) and the ADMM in (7), and the fact that the 

objective function F is strictly convex for one variable providing that the remaining variables 

are fixed among {Pm},{cm},{wml }. It is worth noting that the convergence of the proposed 

algorithm is achieved when ϵ > 0 proofs are deferred to Section C of the Supplementary 

materials.

2.5 Choosing the number of clusters

The proposed clustering method requires a target number of clusters. We choose the number 

of clusters (C) that produces the most stable and reproducible results under additive noises 

on the original data X. Specifically, we add i.i.d. N 0, σX
2  noise, where σX is the standard 

deviation of all the entries in X, to create a perturbed data set on which to apply the 

proposed clustering method by varying the target number of clusters. We compute the 

adjusted Purity between the baseline clustering and the one obtained on the perturbed data 

over 100 runs with setting λ, µ , and ϵ by the functions of C based on the results of Theorem 

1, and choose the number that has the highest performance value. Note that the adjusted 

Purity between the clustering results U and V using the target number of clusters C is

Purity U, V /μPurity C ,

where µPurity (C) is the expected value of the Purity between any two random partitions 

having C clusters. See Section F of the Supplementary materials for the definition of the 

Purity.

3 Results

3.1 Evaluation metrics

We use the following three performance metrics to evaluate the consistency between the 

inferred clusters and the true labels: Normalized Mutual Information (NMI) (Strehl and 

Ghosh, 2003), Purity (Wagner and Wagner, 2007), and Adjusted Rand Index (ARI) (Wagner 

and Wagner, 2007). See Section F of the Supplementary materials for the details of these 

metrics. Note that NMI and Purity take on values between 0 and 1, whereas ARI can yield 

negative values. These metrics measure the concordance of two clustering labels such that 

higher values suggest higher concordance between two labels.

3.2 Data

We collected data from 22 major cancer types with sufficient numbers of patients from the 

TCGA project, with the following three molecular profiles: RNA expression (RNA-seq V2), 

miRNA, and copy number alterations (CNA). To reduce the batch effects, we considered 

each molecular profile from one platform. The RNA data sets are from the Illumina 
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sequencing technology with the log2(x+1) transformed RSEM (RNA-Seq by Expectation 

Maximization) values, the miRNA mature strand expression data sets are measured by 

Illumina miRNA-seq, and the CNA have discrete values which are estimated using the 

GISTIC2 threshold method and compiled using data from all TCGA cohorts (Weinstein et 

al., 2013). Note that CNA data have values −2, −1, 0, 1, or 2, depending on corresponding 

gene copy levels (Mermel et al., 2011). See Supplementary Section G for details. Patients 

with missing molecular profiles were removed, resulting in a total of 6,976 patients included 

in the clustering and survival analysis. See Section G of the Supplementary materials for the 

details of the 22 data sets.

3.3 Other methods compared

To demonstrate the advantages of the proposed clustering method, we compare its 

performance with the following clustering methods for a specified number of clusters C:

• Consensus clustering (‘Cons-R’, ‘Cons-M’, ‘Cons-C’, ‘Cons-A’): We consider 

the consensus clustering proposed by Liu et al. (2017) using each omics data 

set individually and the three data sets (multi-view) together, respectively. Note 

that consensus clustering can naturally integrate multiple molecular data types 

measured from the same set of subjects.

• Spectral clustering (‘S-R’, ‘S-C’, ‘S-M’, ‘S-A’): We consider spectral clustering 

(Andrew et al., 2001) using each omics data set X (k ) for k = 1, 2, 3, as well 

as all three data sets by applying k-means to the combined matrix [Q1,Q2 ,Q3 ] , 

where Qk is the n by C matrix whose columns consist of C eigenvectors 

corresponding to the C smallest eigenvalues of normalized graph Laplacian of 

the X (k ) .

• k-means clustering (‘K-R’, ‘K-C’, ‘K-M’, ‘K-A’ ): We consider k-means 

clustering using each omics data set as well as all three data sets by simply 

merging the data.

• Kernel addition (‘Ker-A’ ): We consider combining different kernels by 

adding them, and then running our multi-view clustering. By comparing the 

performance of this method with our proposed method, we can investigate the 

effect of learning multiple kernels.

• SIMLR (‘SIM-R’, ‘SIM-C’, ‘SIM-M’, ‘SIM-A’ ): We consider a clustering 

method using the multi-kernel-learning technique proposed by Wang et al. 

(2017). ‘SIM-A’ uses all three data sets by integrating the obtained C 
eigenvectors corresponding to the three obtained target matrices from single-

view SIMLR.

• Multi-view pairwise sparse spectral clustering (‘SS-R’, ‘SS-C’, ‘SS-M’, ‘SS-

A’ ): We consider the multi-view clustering method that adopts a sparse spectral 

clustering proposed by Lu et al. (2016).

• Co-regularized clustering (‘C-A’, ‘P-A’) : We consider the multi-view clustering 

methods that adopt a co-regularized spectral clustering framework proposed 
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by Kumar et al. (2011). ‘C-A’ and ‘P-A’ are centroid and pairwise based, 

respectively.

• iCluster (‘iCluster-A’): We consider the iCluster algorithm (Shen et al., 2009) 

that incorporates flexible modeling of the associations between different omics 

data types and the variance-covariance structure.

• The proposed multi-view clustering methods (‘MKerW-A’, ‘MKer-A’): 

‘MKerW-A’ is our proposed multi-view clustering with multiple kernels and 

learning weights of data sets as in (4). ‘MKer-A’ is our clustering method 

without learning weights of data, i.e., cm = 1 in (4).

Across all methods considered, we include ‘-R’, ‘-M’, ‘-C’, and ‘-A’ at the end of each 

method, to denote that the method is applied to RNA, miRNA, CNA, and all the three data 

types together, respectively.

3.4 Identifying a cancer type

In this subsection, we consider 22 cancer types to illustrate the performances of the proposed 

method in identifying different cancer types. In the first implementation, all the patients are 

included in clustering analysis. In the second implementation, about half of the patients from 

each cancer type are randomly selected for clustering analysis. For example, 200 and 370 

patients are randomly chosen from Bladder Cancer (BLCA) and Breast Invasive Carcinoma 

(BRCA), respectively, in each experiment. We repeat this procedure 50 times and record 

the accuracy of clustering methods. In the third implementation, we consider the balanced 

sample case such that 30 patients are randomly selected from each of the 22 cancer types, 

thus a total of 660 patients are chosen. We also repeat this procedure 50 times. In the main 

paper, we focus on the third implementation case. See the Supplementary materials for the 

results of the first two cases.

Figure S1 of the Supplementary materials shows the heatmap of the similarity measures 

between patients obtained by one of the Gaussian kernel functions based on each of 

the three molecular data types. We observe that RNA and miRNA clearly show 22 block-

diagonal matrices compared to CNA. In this setting, we can see the performance of the 

proposed method ‘MKerW-A’ if one of the data types (e.g., CNA) does not provide correct 

information in terms of exact clustering.

Figure 1(A) shows the average and one standard deviation of the assigned weights of the 

three data set in the proposed method based on 50 randomly generated data sets. We can 

see that RNA and miRNA contribute more to clustering compared to CNA, which suggests 

that the proposed clustering method tends to give higher weights to data including clearer 

clustering structure. We further investigate this by considering partially corrupted data sets 

by adding significant Gaussian noises to the observed data. Figures 1(B)-(D) show the 

results when RNA, miRNA, or CNA are corrupted, respectively, while the other two data 

types remain the same. It can be seen that the corrupted data type becomes less important 

than the other two data types, demonstrating that the entropy based penalty function can 

distinguish data types of different degrees of information.
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Figure 2 shows the average adjusted Purity value for different target numbers of clusters 

C over 2 ≤ C ≤ 30 , with λ = C /n2, μ = nλ/ CM , and ϵ = 1/n3, based on the results of 

Theorem 1. We can see that the highest mean value with the smallest standard deviation is 

achieved at the true number of clusters 22 (i.e., number of cancer types). Based on this, we 

set C = 22 as the target number of clusters in the following analysis.

Figure 3 shows the average NMI of ‘MKerW-A’ against the other clustering methods 

over 50 replicates based on randomly selected patients. We can see that ‘MKerW-A’ 

outperformed the other methods in terms of NMI as well as Purity and ARI measures 

(Supplementary Figures S2-S3). The differences between the results from ‘MKerW-A’ and 

‘MKer-A’ suggest that learning weights on different data types may lead to more accurate 

clustering results than assigning equal weight to each data type.

When all patients were included in the clustering analysis or when about half of the patients 

were randomly selected from each of the 22 cancer types, ‘MKerW-A ‘ still provided the 

most accurate clustering results in terms of the three performance metrics, followed by 

‘MKer-A’ (Supplementary Figures S4-S6 and S7-S9, respectively). We also observe that the 

proposed method can correctly infer the underlying number of clusters 22 (Supplementary 

Figures S10 and S11) for these two cases as well.

3.5 Survival analysis

If clustering analysis is effective in identifying cancer subtypes, we would expect to see 

that the subgroups of patients identified by ‘MKerW-A’ would show differences in clinical 

features as reflected in the heterogeneity of their genomic profiles. In this article, we 

consider patient’s survival outcome to compare ‘MKerW-A’ with other clustering methods 

(See Section 3.3), because we expect that subjects in different clusters inferred by ‘MKerW-

A’ will have different survival distributions. We apply the clustering methods to each cancer 

type with the target number of clusters (See Section G of the Supplementary materials). We 

then consider the following two metrics to measure the differences in survival distributions 

between identified subtypes:

• Area between two curves: we consider the ten year survival distribution (120 

months) from the time the patient on treatment, i.e., 0
120 wi t − wj t dt, where 

t represents a monthly basis time and wi (t) is the fitted survival curve using 

the Weibull distribution for the subjects in Cluster i. To quantify the degree to 

which two curves intersect, we use ‘Area_Min’, defined by mini ≠ jAij, where 

Aij = 0
120 wi t − wj t dt

0
120 wi t − wj t dt

.

• Log-rank test: this is a nonparametric test to compare the survival distributions of 

two or more groups. We record the log p-value of the log-rank test to measure the 

heterogeneity of survival outcomes among identified clusters.
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The larger mini ≠ jAij, the more heterogeneity between the survival curves of the identified 

clusters, while a smaller p-value for the log-rank test suggests more difference between the 

curves.

We record these measures for the 25 clustering methods across 22 cancer types. For 

‘Area_Min’, the proposed ‘MKerW-A’ has the highest mean values over the 22 cancers, 

and the differences of the mean values from the other methods are statistically significant 

(paired t-test p-value < 0.05 for the 23 clustering methods, while the p-value of ‘MKerW-A’ 

versus ‘MKer-A’ is close to 0.1). For the log-rank test, ‘MKerW-A’ also has the smallest 

mean p-value over the 22 cancer types.

Figure 4 and Figure S12 of the Supplementary materials show the heatmaps of the two 

measures for 25 clustering methods over 22 cancer types. We can see that for most data 

sets, ‘MKerW-A’ is superior to the other clustering methods in terms of the heterogeneity 

of the distributions of the survival outcomes. The relative performances of the 25 clustering 

methods is different across the two metrics because these two metrics capture different 

aspects of heterogeneity of survival outcomes. For example, when we rank the 25 clustering 

methods based on each of the average values of the measures, ‘P-A’ is ranked the 4th and 

9th based on Area_Min and Log-Rank, respectively. So, it would be more robust to assess 

the clustering methods based on these measures simultaneously instead of relying on one 

measure.

We highlight the fact that integrating multiple omics data types does not always yield 

better results. For example, based on the log-rank test, the best method among the k-means 

clusterings is the one using the RNA data only, whereas the average p-value of k-means 

using RNA only and the three omics data types is 0.12 and 0.24, respectively. Spectral 

clustering shows similar patterns, where the mean p-value using RNA only and all the three 

omics data types is 0.15 and 0.22, respectively. Another kernel-learning based clustering 

method SIMLR performs worse when using all three omics data types than the one using 

the RNA data only. The inferior results of the other clustering methods with multiple omics 

data types suggests that care is needed when integrating multiple omics data for clustering 

analysis, and there is no guarantee that integrating more data sets will lead to improved 

clustering results.

In terms of ‘Area_Min’, using RNA data generally has better results than using the other two 

data types, miRNA and CNA, which suggests that the three data types contribute differently 

to clustering results, justifying the need to weigh each data type differently. There is also 

evidence by comparing the results of ‘MKerW-A’ and ‘MKer-A’, where the former learns 

the weights of data in the optimization procedure and the latter gives the same weights to 

different data types. Based on Area_Min and the log-rank test, ‘MKerW-A’ performs better 

than ‘MKer-A’ in 17 and 15 cancer types, respectively. Hence, there is benefit to learn the 

weights from the data, and it is expected that RNA has a higher weight than the other two 

data types.

Figure 5 shows the learned weight of the three data types across 22 cancer types. We can 

see that RNA data generally have the largest weight, followed by miRNA and CNA. Average 
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learned weights of RNA, miRNA, and CNA are 40%, 35%, and 25%, respectively, and 

the differences of these learned weights of the three data types are statistically significant 

(paired t-test p-value < 10−5).

‘MKerW-A’ and ‘MKer-A’ generally performed better than ‘iCluster’ and other mutli-view 

clustering methods considered. In terms of ‘Area_Min’, the differences between ‘MkerW-A’ 

and the other multi-view methods are all statistically significant at the 0.05 level. Overall, 

‘MKerW-A’ showed better stability in separating patients with different survival times than 

other clustering methods. In the next three subsections, we provide more details on breast 

cancer, low grade glioma, and pancreatic cancer.

3.6 Breast Cancer

To gain further insights into the molecular subtypes generated by the ‘MKerW-A’, we 

compare the identified clusters with the subtypes defined by PAM50, which consist of 

“Luminal A” (LumA), “Luminal B” (LumB), “Her2-enriched” (Her2), “ Basal-like” (Basal), 

and “Normal-like” (Normal), based on the expression profiles of 50 signature genes, where 

the “Basal” and “Her2” subtypes are more difficult to treat than the other subtypes (Parker 

et al., 2009; Bastien et al., 2012). Figure 6(A) shows the frequency of PAM50 subtypes for 

each of the four identified clusters based on ‘MKerW-A’. It can be seen that although there 

is good correspondence between the subtypes identified by these two approaches, there are 

clear differences with Chi-square p-value < 0.05.

The majority of samples in Cluster 1 are from Her2 and LumB, with most Her2 patients 

assigned to Cluster 1. More than 75% of Cluster 2 patients are from LumA, with about 50% 

of LumA patients assigned to Cluster 2. Cluster 3 and Basal consist of mostly the same 

patients, while Cluster 4 includes some patients from LumA and LumB, and 50% of LumB 

patients are in Cluster 4. The survival curves for the five PAM50 subtypes are not separated 

very well, where the p-value of log-rank test is not significant (p-value=0.72, Figure 6(B)). 

However there are significant differences in the survival distributions across clusters based 

on ‘MKerW-A’ (p-value =0.03, Figure 6(C)). Specifically, the Cluster 1 (Her2-like) subtype 

has worse survival, patients in Cluster 2 have better survival than those in the other clusters, 

and patients in Clusters 3 and 4 have similar survival outcomes. Our results suggest that 

the molecular subtypes identified by ‘MKerW-A’ could complement the PAM50-defined 

subtypes to more accurately predict patient prognosis.

3.7 Lower Grade Glioma

Lower grade glioma (LGG) develops in the glial cells of the brain. LGG could be classified 

into grades I, II, III, or IV based on the histological information defined by the World Health 

Organization (Vigneswaran et al., 2015). The TCGA LGG data set includes information of 

grades II and III, which are treated as low grade and high grade in this study. The subtypes 

identified by ‘MKerW-A’ are closely associated with the histological classification system. 

Figure 7(A) shows the frequency of grades-subtypes for each of the four obtained clusters 

based on ‘MKerW-A’. Most samples in Cluster 1 identified by ‘MKerW-A’ consist of high 

grade LGG patients than the other three clusters. Figure 7(B) shows the survival curves with 

the grades information of LGG, and there are significant differences between the two curves. 
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Figure 7(C) shows the fitted survival curves with the obtained clusters by ‘MKerW-A’, and 

Cluster 1 has worse survival than the other three clusters as the majority of Cluster 1 are 

from low grade patients.

3.8 Pancreatic Cancer

Pancreatic cancer is the third most aggressive cause of cancer deaths in the world and the 

fourth in the United States (Matsuoka and Yashiro, 2016; Raphael et al., 2017). The high 

mortality of pancreatic cancer is mostly due to the low response rate to treatment, which 

may be related to the heterogeneous nature of the disease (Matsuoka and Yashiro, 2016; 

Raphael et al., 2017). Erlotinib is the only targeted therapy approved by FDA for pancreatic 

adenocarcinoma, the most common type of pancreatic cancer (Matsuoka and Yashiro, 2016). 

The treatment data are provided in the TCGA data portal and all samples have treatment 

information in the clinical file, i.e. “Yes” or “No” values. Among 176 patients, 14 patients 

do not have the treatment information, and these patients were not considered.

We have investigated how patients of the individual clusters, identified by the 

proposed method ‘MKerW-A’, respond to molecular targeted therapy. Figure S13 of the 

Supplementary materials shows the survival distribution of pancreatic cancer patients treated 

versus untreated for each inferred cluster, and Figure S14 of the Supplementary materials 

shows the difference of survival time of patients treated versus those not treated with 

molecular targeted therapy. We observe that the targeted therapy is effective for pancreatic 

cancers. However, when we look further into each identified cluster, these effects are 

different among the four clusters, with the targeted therapy seems to be effective only in 

Cluster 3 and Cluster 4. Patients in these two clusters have significantly increased survival 

time when treated with targeted therapy (corrected log-rank test p-value < 0.001). However, 

for patients in Cluster 1 and Cluster 2, we do not detect significant differences in survival 

time between those treated and those untreated. Similar results can also be found in the 

STAD data set, which also suggests that the identified clusters have different responses 

to the Radiotherapy (Supplementary Section I). To sum up, the inferred clusters could be 

helpful for choosing the the right therapies for the patients.

To investigate whether certain gene expression or gene copy number could be predictive 

markers for survival benefit from the targeted therapy, we have performed a two-sample 

t-test for each gene by treating Clusters 1 and 2 as one group and Clusters 3 and 4 as 

another group. Among the 20 most frequently mutated genes in pancreatic cancer provided 

in the TCGA data portal, we observe that “SCN5A”, “GLI3”, “CSMD3”, and “EGFR” 

are significantly over-expressed in Clusters 3 and 4, while “GNAS” and “GSK3A” are 

significantly under-expressed in Clusters 3 and 4, i.e., expression status of these genes could 

be potential predictive markers for survival benefit from the targeted therapy. On the other 

hand, we observe that “CSMD3”, “TP53”, “SMAD4”, and “CDKN2A” copy numbers could 

be potential predictive markers (t-test p-value < 0.05).

Specifically, we observe that patients with “EGFR” mutations are mostly assigned to 

Clusters 3 and 4, which is consistent with the finding that the targeted therapy is more 

effective for patients with “EGFR” mutations (Wang et al., 2015). On the other hand, 

“KRAS”, known as the most frequent gene mutations in pancreatic cancer (Lee et al., 2007), 
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is not significantly differentially expressed in different groups, which is consistent with the 

results in Wang et al. (2015). However, note that whether “KRAS” is associated with the 

targeted therapy in pancreatic cancer patients remains controversial (da Cunha Santos G et 

al., 2010). It is worth studying further, both clinically and biologically.

4 Discussion

In this article, we have introduced a novel multi-vew clustering algorithm that allows 

different weights on the data sets, motivated by the fact that some of the available data 

sets may be more informative than others in revealing the true structure of the data. We 

have investigated the statistical properties of the proposed multi-vew clustering method and 

showed that it can accurately infer the underlying clusters under some regularity conditions. 

From various simulations, we showed the improved performance of our clustering method 

compared with other single-view and multi-view clustering methods. For cancer data, we 

observed that the identified subtypes based on our proposed clustering method can better 

characterize tumor heterogeneity as reflected in better separations of survival distributions 

for patients between the identified clusters. In our method, we solve the proposed non-

convex problem iteratively with the embedded ADMM algorithm, and we also prove the 

convergence of the algorithm. We also proposed data-driven approaches for choosing the 

parameters.

Note that some data types may not be informative in clustering analysis. In our simulations, 

we considered the case in which some data are not informative for clustering analysis, and 

we investigate its assigned weight in the proposed method. We observed that the proposed 

method using the entropy penalty function does distinguish the less informative data by 

giving lower weight compared to informative data. In the software, we give an option to 

users to set the weights of data types, i.e., cm, freely as they want to add more flexibility to 

user.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The average of assigned weights of the three data sets when 30 patients were randomly 

selected from 22 cancer types resulting in a total of 660 patients. A total of 50 experiments 

were run. We considered four sets of data: (A) the original data sets; (B) the RNA data that 

were corrupted by significant additive noise; (C) the miRNA data that were corrupted by 

significant additive noise; and (D) the CNA data that were corrupted by significant additive 

noise. The error bars represent one standard deviation.
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Fig. 2. 
Robustness of clustering analysis for additive noise when the target number of clusters is 

varied between 2 and 30 when 30 patients were randomly selected from each of the 22 

cancer types. The adjusted Purity values were averaged over 100 runs for each target number 

of clusters. The error bars represent one standard deviation.
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Fig. 3. 
The average NMI and one standard deviation of 50 replicates for the 25 clustering methods 

when 30 patients were randomly selected from each of the 22 cancer types. The methods are 

ordered according to the NMI values.
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Fig. 4. 
Heatmap of the minimum survival curves area proportion. Abbreviations of the cancer types 

and clustering methods are given on the left and bottom. Legend for the shades is given 

on the right. For details of abbreviations of the 22 cancer types, see Section G of the 

Supplementary materials.

Park et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 

The relative learned weights 100 ×
ci

c1 + c2 + c3
 for i = 1, 2, 3 on the RNA, miRNA, and CNA 

data for ‘MKerW-A across 22 cancer types, where the cm are obtained by solving (4). The 

cancers are ordered decreasingly according to the weights on the RNA data.
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Fig. 6. 
Application to breast cancer.
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Fig. 7. 
Application to Lower Grade Glioma.
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